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ABSTRACT 

Lignocellulose forms the structural framework of woody plant biomass and represents the most 

abundant carbon source on the Planet. Turnover of woody biomass is a critical component of the 

planetary carbon cycle, and the enzymes involved are of increasing industrial importance as industry 

moves away from fossil to renewable carbon resources. Shipworms are marine bivalve molluscs that 

digest wood and play a key role in global carbon recycling by reprocessing plant biomass in the 

oceans. Previous studies suggest that wood digestion in shipworms is dominated by enzymes 

produced by endosymbiotic bacteria found in the animal’s gills, while little is known about the 

identity and function of endogenous enzymes produced by shipworms. Using a combination of meta-

transcriptomic, proteomic, imaging and biochemical analyses, we reveal a complex digestive system 

dominated by uncharacterized enzymes that are secreted by a specialized digestive gland and that 

accumulate in the cecum, where wood digestion occurs. Using a combination of transcriptomics, 

proteomics and microscopy, we show that the digestive proteome of the shipworm Lyrodus 

pedicellatus is mostly comprised of enzymes produced by the animal itself, with a small but 

significant contribution from symbiotic bacteria. The digestive proteome is dominated by a novel 300 

kDa multi-domain glycoside hydrolase that accounts for more than half of the total protein content in 

the cecum and functions in the hydrolysis of β-1,4-glucans, the most abundant polymers in wood. 

These studies allow an unprecedented level of insight into an unusual and ecologically important 

process for wood recycling in the marine environment, and open up new biotechnological 

opportunities in the mobilization of sugars from lignocellulosic biomass. 

 

INTRODUCTION 

Large amounts of wood from terrestrial plants enter the marine environment and support complex 

ecosystems. Tropical mangrove swamps, for example, provide safe nurseries that support fisheries [1] 

and are amongst the most productive ecosystems on the planet. It has been shown that around 70% of 

dead wood in mangroves is reprocessed by the action of wood-boring bivalve molluscs known as 
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shipworms [2, 3]. Shipworms acquired their name due to their devastating effects on wooden ships 

prior to the advent of copper-bottoming, a process developed to protect wooden vessels from their 

attack. Shipworms continue to destroy timber structures and docks around the world but, despite their 

ecological, historical and economic importance, the process by which these animals digest wood 

remains poorly understood. 

Shipworms burrow cylindrical tunnels using specialized shell valves with abrasive toothed ridges as a 

rasp and ingest the wood particles as they burrow. Wood particles are transported by ciliary currents 

through the esophagus and stomach to accumulate in the cecum [4], which occupies a large part of the 

animal’s body (Fig. 1A) and is thought to form the main site of wood digestion [2]. While the 

digestive systems of most herbivorous and xylophagous animals harbor commensal microbes that 

assist with digestion, the shipworm cecum is reported to be largely devoid of microbial life [5]. 

However, large amounts of carbohydrate active enzymes (CAZymes) have been shown to be 

produced by endosymbiotic bacteria housed in specialized cells (bacteriocytes) in the animal’s gills, 

and have been reported to play a major role in wood digestion by shipworms [6]. The gills are 

spatially distant from the cecum (Fig. 1A), and the route by which bacterial enzymes move to the site 

of wood digestion remains elusive. Previous work in Bankia setacea suggests that bacterial CAZymes 

account for the majority of the digestive proteome in shipworms [6]. We have undertaken studies in L. 

pedicellatus with the aim of better understanding the digestive processes in shipworms, and here 

reveal the importance of the shipworm`s own enzymes in wood digestion. 

 

RESULTS 

 

Meta-transcriptomic analysis of L. pedicellatus and its endosymbionts 

In vitro activity assays carried out with cecum fluids of L. pedicellatus against a panel of substrates 

revealed a complex enzymatic cocktail with activity against many polysaccharides associated with 
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lignocellulosic biomass (Fig. 1B). Compositional analysis of wood and shipworm faeces (frass)  

further revealed that more than 40% of the cellulose content, and lesser amounts of hemicellulose are 

removed while passing through the shipworm digestive system (Fig. 1C). While compelling evidence 

has shown that gill bacteriocytes are the main site for the production of bacterial CAZymes in 

shipworms, several authors have also hypothesized that the digestive gland might be responsible for 

the synthesis of endogenous enzymes, while the cecum appears to be the site of wood breakdown and 

could potentially be involved in sugar uptake [2,4]. In order to identify the key genes involved in 

wood digestion and absorption of breakdown products in L. pedicellatus, we performed meta-

transcriptome sequencing from the main organs putatively involved in wood digestion (digestive 

gland, cecum and gills) (Fig. 1A, Table S1) of healthy adult L. pedicellatus growing in blocks of Scots 

pine submerged in sea water.  

Our gene expression analysis reveals that the shipworm digestive gland is the major site of 

transcription of endogenous lignocellulolytic enzymes in L. pedicellatus, all carrying a predicted 

signal peptide for secretion (identified using SingalP). BlastX and functional domain annotation 

shows that the most highly transcribed CAZyme genes in the digestive gland encode putative 

glycoside hydrolases (GHs) belonging to GH9, GH45, GH1, GH13, GH2, GH18, GH31, GH5, GH10 

and GH38 families (Fig. 1D, Table S2).  

Very few bacterial transcripts were detected in the cecum samples, confirming previous reports of the 

virtual absence of live bacteria in this organ [5]. Only two sequences sharing similarity to putative 

GH30s from Bacillus species were found to be expressed at relatively high levels in the cecum (Fig. 

1E, Table S3). However, manual sequence alignment revealed that the two contigs are actually part of 

one unique transcript featuring a putative polyadenylation (polyA) tail at the 3` terminus, and have 

orthologues in the annotated genomes of model bivalve molluscs (XP_011456351.1 from Crassostrea 

gigas, XP_021348230.1 Mizuhopecten yessoensis), whose intron-exon structure strongly suggests an 

endogenous nature. This GH30 gene might thus be the result of an ancient horizontal gene transfer 

(HGT) from bacteria, a phenomenon previously observed for several GH families in multiple 
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invertebrate genomes [7]. The shipworm cecum also features high expression of endogenous GH1s, 

GH13s and GH2s (Fig. 1E, Table S3).  

RNAseq data show that virtually all bacterial genes found in the shipworm meta-transcriptome are 

transcribed in the gills, with the most abundant being from GH family 6, 11, 5 and auxiliary activity 

(AA) family 10 lytic polysaccharide monooxygenases (LPMOs) (Fig. 1F, Table S4). All these 

bacterial CAZymes carry a putative N-terminal signal peptide likely involved in protein translocation 

through the periplasm for secretion and have best BlastX matches to sequences from 

gammaproteobacteria of the family Alteromonadaceae (mainly Teredinibacter and Saccharophagus 

species). The identification of the gills as the main site of expression of bacterial CAZymes is in line 

with previous work from the shipworm B. setacea, where GH5s and GH6s were found to be the 

dominant CAZymes produced by gill bacteria [6].    

 

Comparison of the digestive gland transcriptome from L. pedicellatus and Crassostrea gigas 

C. gigas (Japanese oyster) is a model suspension feeding bivalve with a fully annotated genome and 

numerous transcriptomic resources readily available through open access databases. We have 

compared the digestive gland transcriptome of the wood boring L. pedicellatus, with publicly 

available data from C. gigas, in order to try and pinpoint the enzymes that shipworms have uniquely 

recruited for wood digestion. The results show that, while putative endo β-1,4-glucanases (GH9 and 

GH45s) and β-glucosidases (GH1s) together account for over 70% of all CAZymes expressed in the 

digestive gland of the shipworm (Fig. 2A), these classes are much less abundantly expressed in the 

oyster (Fig. 2B). In contrast, the oyster transcriptome shows a greater abundance of  putative endo β-

1,3-glucanases (GH16), α-L-fucosidases (GH29), α-galactosidases (GH27), β-galactosidases (GH35), 

α-mannosidases (GH38, GH47), xylanases (GH30), β-xylosidases (GH3) (Fig. 2B) and aryl-sulfatases 

(Fig. S1), compatible with the digestion of polysaccharides (such as mannans, laminarin, xylan, 

sulfated fucans and galactans) abundant in the cell walls of phytoplankton [9], which represents the 

staple diet of C. gigas [10].  
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Proteomic analysis of the shipworm cecum content 

Previous work on B. setacea concluded that most lignocellulolytic enzymes in the shipworm digestive 

system were of bacterial origin [6]. The authors, however, did not take into account the contribution 

of endogenous enzymes by the animal itself. By carrying out shotgun proteomics on the total protein 

extract from the cecum content, we found that CAZymes represent 25% of the total cecum proteome 

(Fig. 3), while the remaining 75% includes abundant proteases, immunity-related and structural 

proteins (data not shown). Our analysis shows that less than 15% of the CAZymes detected in the 

cecum of L. pedicellatus are bacterial, while over 85% are endogenously produced by the animal (Fig. 

3). Interestingly, abundant GHs identified in the cecum proteome usually correspond to the most 

highly transcribed genes in the digestive gland (Fig. 1D), suggesting that the mature proteins are 

secreted and transported by ciliary tracts to the cecum. GH1s represent the dominant enzyme family 

in the cecum proteome, and mostly occur as multi-modular proteins, with domains connected by short 

peptide linkers. The largest multi-domain GH1 (~300 kDa), identified from both transcriptome and 

proteome, appears as the predominant band in SDS-PAGE analysis of the crude cecum extract, and its 

identity was confirmed by tryptic digestion and MALDI-MS/MS analysis (Fig. S2). This sequence is 

specifically expressed in the digestive gland and bears similarity to lactase phlorizin hydrolase (LPH), 

an enzyme that is localized at the intestinal brush border membrane in mammals, comprises four 

distinct GH1 domains and mainly exhibits lactase activity [11].  

Interestingly, although GH9s and GH1s are abundant in both transcriptome and proteome, the relative 

abundance of GH45s is high in the transcriptomic data but lower in the proteome, where it accounts 

for only 1.5% in molar percentage of total CAZymes identified. The major bacterial contributions to 

the proteome are provided by GH11, 10 and 5 proteins, which typically function as xylanases, 

mannanases and endo-glucanases. In B. setacea, bacterial GH5s and GH6 were reported to account 

for over 30% of the total protein content of the cecum [6], but here only make up less than 2% of all 

CAZymes (0.5% of total proteome).  
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Isolation and characterisation of the multi-domain GH1 from L. pedicellatus (LpMDGH1) 

Our combined transcriptomic and proteomic analyses show that a novel multi-domain GH1 

(LpMDGH1) is among the most highly expressed sequences in the digestive gland and represents the 

most abundant CAZyme in the shipworm digestive system (over 20% by mass) and likely plays an 

important role in wood digestion. In order to verify that the identified sequence is not an artefact of 

the de novo transcriptome assembly, we cloned the full length cDNA of LpMDGH1 and confirmed 

that it comprises a single open reading frame coding for a polypeptide of 2752 amino acids 

(Supplementary Text). While the mammalian lactase phlorizin hydrolase (LPH) has four GH1 

domains in the immature protein followed by a transmembrane sequence [11], the shipworm gene 

encodes an N-terminal signal peptide, followed by six GH1 domains and no transmembrane sequence 

(Fig. 4A), confirming our proteomic observations of a soluble extracellular protein. In mammals, the 

first half of the LPH protein has been shown to act as a chaperone that facilitates the folding of the 

second half [12]. The mammalian LPH undergoes several post-translational modifications, and only 

two domains (3 and 4) are found in the mature protein. In contrast, the shipworm MDGH1 mature 

protein, found in the cecum, retains all six GH1 domains, as confirmed by MALDI-MS/MS analysis 

(Fig. S2) and size on SDS-PAGE gels (Fig. S2).  

A modular protein (CjCel1A) comprising 2 sequential GH1s, reminiscent of the mammalian LPH, 

was shown to be produced in the digestive gland of the clam Corbicula japonica [13]. Based on 

amino acid sequence, it was hypothesized that the anterior part (first GH1 domain) of the protein from 

Corbicula is not active as a glycoside hydrolase and might instead work as a chaperone, in a similar 

fashion to the mammalian LPH [14]. Alignment of the six putative GH1 modules of the L. 

pedicellatus protein reveals that domains 2, 4, 5 and 6 possess the required amino acids for hydrolytic 

activity (regions “NE” and “TENG” in the protein alignment), while domains 1 and 3 lack these 

residues, are unlikely to have GH activity and might thus be involved in protein folding, or perhaps 

substrate interactions (Fig. S3). 
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A BlastP search of the full length LpMDGH1 against non-redundant (nr) databases finds best matches 

among molluscs (e.g. Lottia gigantea) and reveals that LPH-like sequences are also present in insects, 

reptiles, birds, amphibians, mammals and fish (Fig. 4B), but not in bacteria, fungi and some animal 

taxa (e.g. crustaceans). The multi-domain GH1s from vertebrates typically feature a putative C-

terminal transmembrane region (Fig. S4), likely involved in anchoring the mature protein to the outer 

face of the cell plasma membrane. Although our analysis indicates that the lack of this transmembrane 

region is a common trait among multi-domain GH1s from invertebrates (Fig. S4), the six-domain 

architecture appears unique to the shipworm protein and might, therefore, represent a specific 

adaptation towards wood digestion.   

Despite our best efforts, we could not obtain soluble LpMDGH1 (nor any of its GH1 domains 

separately) in the heterologous expression systems we tested. However we carried out size-exclusion 

chromatography of soluble cecum extracts and successfully isolated the mature LpMDGH1 to high 

purity. Zymograms and in vitro assays with the purified enzyme showed that it is the major β-

glucosidase in L. pedicellatus cecum (Fig. 4C). Interestingly, the enzyme showed activity towards 

both short chain gluco-oligosaccharides and long chain glucans (glucomannan, β-glucan and 

lichenan), with preference towards β-1,4 linkages, suggesting roles in the digestion of cellulose and 

hemicelluloses (Fig. 4D). Such a release of sugars from complex glucans was not seen in assays with 

a commercially sourced single module GH1 from Agrobacteria (data not shown) and might be an 

unusual feature of the multi-modular protein. MALDI-TOF MS analysis of the reaction products 

revealed that LpMDGH1 releases medium and long chain-oligosaccharides from glucans, suggesting 

that this enzyme might also have endo-glucanase activity (Fig. S5).  Interestingly, a soluble 210 kDa 

enzyme isolated from the digestive fluids of the sea hare Aplysia kurodai was shown to share high 

similarity with the human lactase phlorizin hydrolase (based on N-terminal protein sequencing) [14]. 

Although the authors did not manage to isolate the coding sequence nor localize the organ where it 

was produced, they showed that the purified enzyme can hydrolyze gluco-oligosaccharides as well as 

complex polysaccharides (lichenan, laminarin and cardran), thus suggesting a key role in the digestion 

of sea lettuce by the sea hare [14]. The protein size, in vitro activity and sequence similarity to 
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mammalian LPH suggests that the enzyme from the sea hare has four GH1 domains and plays a 

similar role to the MDGH1 from L. pedicellatus.   

 

Anatomy of the digestive system 

Visible light and electron microscopy analysis of sections of the shipworm`s digestive system show 

that wood particles coming from the grinding action of the valves accumulate in the cecum, where 

most lignocellulose breakdown is thought to occur [2]. Examination of the cecum luminal walls via 

electron microscopy revealed high abundance of microvilli and cilia at the apical surface of the cells 

(Fig. 5A and B), confirming the previously hypothesized role of the cecum in agitating food particles 

and in the absorption of breakdown products (sugars) from wood digestion [2]. This absorptive 

function is supported by the abundant expression of putative glucose transporters (solute carrier 

family 2 transporters and sodium dependent glucose transporters) in the cecum tissues (Fig. S6). 

Although the cecum contains most of the ingested wood particles, the digestive gland has long been 

hypothesized to be involved in production of digestive enzymes in shipworms and other molluscs [15-

22], and our meta-transcriptomic and proteomics data confirm this is the case for Lyrodus. The gland 

has a lobular structure reminiscent of secretory organs in other animals and is directly connected both 

to the stomach and the cecum by ducts [4, 22]. Our high-resolution microscopic analyses reveal that 

the gland contains secretory cells, as previous observed in other molluscs [19-21]. These specialized 

cells occupy the crypts of the tubule, are mostly pyramidal and have a well-developed granular 

endoplasmic reticulum (Fig. 5C) and an extensive Golgi apparatus, producing numerous micro-

vesicles and vacuoles (Fig. 5D) of variable sizes potentially containing glycoside hydrolases and other 

secretory enzymes identified in our studies. The digestive gland also features abundant amoeboid cells 

(phagocytes, ~20 μm in diameter) with pseudopodia and internalized wood particles of variable 

dimensions (Fig. 5E, F). EM images show numerous vesicles budding from the Golgi apparatus and 

apparently fusing with the cell wall of the cavities containing the internalized wood fragments (Fig. 

5F), suggesting the formation of lysosomes responsible for intracellular wood breakdown. Although 
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wood phagocytes have been previously reported in shipworms with hand drawings [22], this is the 

first high-resolution image of these cells and provides new evidence of their role in lignocellulose 

digestion. This suggests that, while the cecum provides the major site of wood digestion, it may be 

supplemented by intracellular digestion. Indeed, the cecum appears to be a specific adaptation of 

shipworms and has not been reported in other bivalves, where most digestive processes are restricted 

to the gland and intestinal systems.  

 

DISCUSSION 

Lignocellulose represents the most abundant and ubiquitous organic material in nature. The 

breakdown of this recalcitrant polymer plays a critical role in the global carbon cycle, and is attracting 

growing interest from a biotechnological perspective. As society moves away from the use of net 

greenhouse gas emitting fossil resources, the use of surplus woody biomass to provision fuels, 

chemicals and materials is becoming imperative. Understanding the digestive systems of major wood-

digesting animals provides insights and enzymes that could help towards the cost-effective breakdown 

of lignocellulosic biomass into simple sugars and other building blocks. We have undertaken a 

detailed and multifaceted study of the digestive system of Lyrodus pedicellatus, and revealed the 

complex molecular mechanisms of lignocellulose digestion in shipworms. Our work shows that the 

digestive gland of L. pedicellatus produces a complex enzymatic mixture containing most of the 

activities required for the digestion of the plant cell wall, including cellulases (endo-β-1,4-glucanases, 

β-glucosidases) and hemicellulases (β-mannanases/mannosidases, β-xylanases/xylosidases). Although 

the meta-transcriptome of L. pedicellatus lacks endogenous cellobiohydrolases (CBHs), it contains 

bacterial GH6s (which can act as CBHs) expressed in the gills, as previously observed in B. setacea 

[6]. Similarly, we also detected expression of bacterial lytic polysaccharide monooxygenases 

(LPMOs), which likely synergize endogenous as well as bacterial glucanases. Indeed, previous work 

has shown that LPMOs can insert breaks into highly crystalline polysaccharides and, by doing so, 

boost the activity of glycoside hydrolases by several orders of magnitude [23-25].  The surprisingly 



11 
 

low levels of both GH6 and LPMO mature proteins in the shipworm cecum, however, suggest that the 

corresponding transcripts might not be translated efficiently, or that the mature enzymes are unstable 

in the shipworm digestive tract. In support of this, our cecum proteomics analysis revealed abundant 

endogenous proteases, which might reduce the half-life of some bacterial enzymes.  

Our work in L. pedicellatus, and previous studies on wood-feeding cockroaches, beetles and termites 

[26-28], suggest that a combination of endogenous and symbiotic enzymes is optimal for efficient 

plant cell wall digestion in invertebrates. Interestingly, the genomes of insects, crustaceans, annelids 

and molluscs encode numerous enzymes involved in plant cell wall digestion, implying that some of 

these genes were present in the last common ancestor of bilaterian animals [29], before bacterial 

symbioses developed, and likely represent an ancestral mechanism for lignocellulose digestion. Our 

analysis of the digestive gland transcriptome from shipworm and oyster confirms that molluscs share 

a complex array of endogenous lignocellulolytic enzymes, and that their expression levels are adapted 

to their specific diets. Corbicula (oyster) is characterized by high expression of glycoside hydrolases 

and sulfatases involved in the deconstruction of sulfated polysaccharides that are abundant in marine 

algae (as an adaptation to highly ionic environment) [30] but not in fresh water algae and terrestrial 

plants. Our data show that L. pedicellatus relies mostly on GH9s, GH45s and GH1s to breakdown 

terrestrial woody plants, and the same is probably true for most shipworm species, which typically 

feed on submerged wood. There are, however, some notable exceptions. For example, Zachsia 

zenkewitschi feeds on the rhizomes of seagrasses such as Zostera, one of the few examples of marine 

angiosperms to have regained the ability to produce sulfated polysaccharides [31]. Even more 

puzzling is the giant mud-boring teredinid Kuphus polythalamia, where sulfur oxidizing bacteria have 

replaced the ancestral cellulolytic symbionts in the gills [32]. Further work is needed to elucidate the 

function of the digestive gland in this enigmatic chemoautotrophic bivalve, which represents a unique 

example of a shipworm that has entirely lost the ability to digest plant biomass. 

Previous studies in the shipworm B. setacea suggested that glycoside hydrolases produced by 

endosymbiotic bacteria located in the gills dominate the shipworm digestive system [6]. The apparent 

discrepancies in results between our study and that by O’Connor et al. [6] may be in part due to 
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differences between species. Both belong to the family Teredinidae, rely on a diet of wood and share 

some key anatomical features, including digestive glands, extended cecum and the presence of 

analogous bacterial populations in the gill bacteriocytes (mostly gammaproteobacteria related to 

Saccharophagus degradans), therefore it would be of interest to determine what factors underpin the 

differences between our results and those reported by O`Connor et al. [6]. It is worth noting that in the 

study by O’Connor et al. [6] the cecum proteomic data were reported to be searched specifically 

against bacterial DNA extracted from the gills, which would have precluded identification of proteins 

produced by the animal itself. Indeed, our proteomics studies reveal that the bulk of the CAZymes 

found in the cecum of L. pedicellatus is secreted by a specialized digestive gland, while bacterial 

enzymes coming from the gills play a supporting role. The size of the cecum, and abundance of GHs 

found there, suggest that this is the major site of wood digestion in shipworms. Yet, our ultrastructural 

studies indicate a potential role in wood digestion for amoeboid cells in the digestive gland. Although 

intracellular wood digestion is unusual, it has also been inferred from microscopic analysis of 

commensal ciliates found in the digestive system of lower termites, which appear to engulf wood 

particles [33]. 

By investigating the cecum meta-proteome, we have discovered that the most abundant enzyme in the 

L. pedicellatus digestive tract is an unusual multi-modular GH1 with sequence similarity to the lactase 

phlorizin hydrolase found in mammals. In contrast to the mature peptide in the mammalian LPH, 

which has two GH1 domains linked by a short peptide and is mostly active as a β-glucosidase, the L. 

pedicellatus MDGH1 has six domains, and our studies have revealed its specificity against β-linked 

glucosides as well as complex glucans, suggesting the ability to cleave these linkages in cellulose and 

glucomannans during wood digestion. Based on the presence of key amino acid residues predicted to 

be involved in substrate attack, we would expect four of the six GH1 domains in the LpMDGH1 to be 

active glycoside hydrolases. Future work is needed to clarify if the endo and exo activities observed in 

LpMDGH1 depend on the distinct GH1 domains or rather on the fusion nature of the polyprotein, and 

whether the two putatively inactive GH1 domains play any role in the two mechanisms of action. 
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The sustainability of biorefineries hinges on the identification of the most effective enzymatic 

cocktails for the saccharification of plant biomass. Our investigation into the digestive system of L. 

pedicellatus uncovers a wide range of new glycoside hydrolases attacking major fractions of 

lignocellulose (cellulose, xylans and mannans) and unprecedented information regarding their relative 

abundance, which could help engineer an optimal enzymatic cocktail for the breakdown of 

lignocellulose. In this context, the identification of LpDMGH1 as the major enzyme in the 

shipworm`s cecum is particularly interesting, as one of the major bottlenecks in the industrial 

breakdown of plant biomass is the ability to prevent the accumulation of cellobiose, a potent inhibitor 

of endoglucanases and cellobiohydrolases [34]. Shipworms seem to have overcome this issue by mass 

producing a unique multi-domain hydrolase with dual activity towards long chain glucans and 

cellobiose, an elegant evolutionary solution which may help simplify the enzymatic cocktails used in 

cellulosic biorefineries.  

 

CONCLUSION 

This work is first comprehensive investigation into the complex molecular and physiological 

processes by which shipworms extract nutrients from wood and play a fundamental role in the global 

carbon recycling. The identification of the key enzymes produced by the shipworm L. pedicellatus, 

and the in vitro characterization of the most abundant glycoside hydrolase found in its digestive 

system, may open up new opportunities in the biotechnological deconstruction of lignocellulose in 

support of a sustainable bio-economy.  
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MATERIALS AND METHODS 

 

Substrates 

Phosphoric acid swollen cellulose (PASC) was prepared as follows. 5 g of Avicel® PH-101 

were moistened with water and treated with 150 mL ice cold 85% phosphoric acid, stirred on 

an ice bath for 1 hour. Then 500 mL cold acetone was added while stirring. The swollen 

cellulose was filtered on a glass-filter funnel and washed 3 times with 100 mL ice cold 

acetone and subsequently twice with 500 mL water. PASC was then suspended in 500 mL 

water and blended to homogeneity.  

High purity pachyman (β-D-1,3-glucan), barley β-glucan (β-D-1,3-1,4-glucan), lichenan 

(from Icelandic moss, β-D-1,3-1,4-glucan), mannan (borohydride reduced), konjac 

glucomannan (β-D-1,4), carob galactomannan, larch arabinogalactan, wheat arabinoxylan, 

cellotriose, cellotetraose, cellopentaose, cellohexaose, mannobiose and xylobiose were 

purchased from Megazyme. Locust bean gum, carboxymethyl-cellulose (CMC), beechwood 

xylan and cellobiose were purchased from Sigma.  

 

Specimen collection  

Adult Lyrodus pedicellatus, matching the sequences of Cytochrome c oxidase subunit I and small 

subunit rRNA 18S of the Atlantic population of Lyrodus as per Borges et al. [35], were obtained from 

an infested pier composed of greenheart wood (Chlorocardium rodiei) at Portsmouth, UK. Adults 

were harvested and were dissected in order to yield the larvae. Subsequent cultures were reared in 

aquaria at the Institute of Marine Sciences, University of Portsmouth. Seawater was taken directly 

from Langstone Harbour, maintained at a temperature between 15-18°C and a salinity of 33 PSU and 

kept aerated throughout. Tanks were regularly provided with small panels of Scot pine wood for 

larval settlement. 



15 
 

mRNA extraction, preparation and sequencing 

Digestive gland, cecum and gills were dissected from three healthy adult L. pedicellatus and total 

RNA was extracted using TRIzol® Reagent (Thermo Fisher Scientific). Samples were DNase treated 

using Turbo DNA-free (Ambion) before quantification using a Qubit Fluorometer (Thermo Fisher 

Scientific). Ribosomal RNA depletion was carried out with a RiboZeroTM Magnetic Gold Kit 

(Epidemiology) (Epicentre). mRNA was then concentrated using RNA Clean & Concentrator™-5 

(Zymo Research). RNA-Seq libraries were prepared from each mRNA sample as per the Ion Total 

RNA-Seq kit v2 (Thermo Fisher Scientific), using an RNaseIII treatment time of 2.5 - 3 min. Samples 

were barcoded using the Ion Xpress RNA-Seq Barcode kit (Thermo Fisher Scientific). Yields and 

library sizes were assessed using the High Sensitivity D1K screentapes and reagents on a 2200 

TapeStation Nucleic Acids System (Agilent Technologies). Appropriately diluted library aliquots 

were combined in pairs in equimolar amounts and used for template preparation using the Ion 

OneTouch 200 Template Kit v2 DL on a OneTouch system (Thermo Fisher Scientific) prior to 

loading onto a 318 chip and sequenced on an Ion Torrent PGMTM prepared as per the manufacturer's 

instructions (IonPGM200Kit; Thermo Fisher Scientific). All raw sequence data were deposited in 

NCBI under BioProject PRJNA412369 (SRA files: SRR6106265, SRR6106266, SRR6106267, 

SRR6106268, SRR6106269, SRR6106270, SRR6106271, SRR6106272, SRR6106273). Assembled 

contigs are available from the authors upon request. 

 

Transcriptome assembly, sequence annotation and identification of putative CAZymes  

After removing the primer sequences and low-quality reads from raw EST sequencing reads, the EST 

sequences from three tissues (digestive gland, cecum and gills) from three healthy adults were 

assembled into unigene contigs using Trinity [36]. The contigs from the three animals were then 

assembled into supercontigs with the CAP3 DNA Sequence Assembly Program [37]. Raw reads were 

mapped onto the transcriptomes of the three molluscs and normalized expression values (TPM = 

Transcripts Per kilobase Million) were calculated for each transcript using Salmon (part of the Galaxy 

toolshed) [38]. Although all three animals provided raw reads with high quality and could be used to 
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assemble a reference transcriptome, TPM values from one animal were found to be poorly correlated 

with the other two (possibly as a result of illness or distress) and were therefore excluded from the 

following analysis.  Average TPM values for each contig in the three tissues (digestive gland, cecum 

and gills) were thus calculated from the two healthy animals. The assembled contigs were annotated 

with the BLASTx algorithm [39] to search against non-redundant (nr) peptide database downloaded 

from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). CAZy 

annotation was carried out using the CAZYmes Analysis Toolkit (CAT) on the BioEnergy Science 

Center website (http://mothra.ornl.gov/cgi-bin/cat/cat.cgi). Sequences annotated as 

glycosyltransferases (GTs) and carboxyl esterases, mostly involved in intracellular processes not 

relevant to lignocellulose digestion, were excluded from the analysis. Among Auxiliary Activity (AA) 

families, only those clearly involved in polysaccharide degradation were considered (LPMO families 

AA9, AA10, AA11 and AA13). 

Contigs were converted to putative ORFs using the online tool Emboss 

(http://www.bioinformatics.nl/cgi-bin/emboss/getorf), putative N-terminal signal peptides were 

predicted with SingalP (http://www.cbs.dtu.dk/services/SignalP/) and putative transmembrane regions 

were predicted using TMHMM (http://www.cbs.dtu.dk/services/TMHMM/). 

Raw transcriptome sequencing data for the digestive gland of a wildly caught Crassostrea gigas 

(Japanese oyster) were retrieved from the EBI portal (run accession SRR334213) [40]. The published 

transcriptome of C. gigas (based on the annotated genome) was retrieved from NCBI (accession 

PRJNA276446). Raw reads were mapped onto the transcriptome of the mollusc and normalized 

expression values were calculated for each transcript using Salmon (part of the Galaxy toolshed) [38]. 

The identity and relative abundance of the CAZyme families were then compared to those obtained 

from the digestive gland of L. pedicellatus. CAZy annotation was carried out using the CAZYmes 

Analysis Toolkit (CAT) on the BioEnergy Science Center website (http://mothra.ornl.gov/cgi-

bin/cat/cat.cgi).  
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Proteomics analysis 

The ceca from five animals grown on Scots pine were dissected in 50 mM sodium phosphate buffer 

pH 7 and the content (food particles and enzymes) was collected, pooled together, added with 1% 

SDS, beta-mercapto ethanol, DTT, boiled for ten minutes, centrifuged and the supernatant run into a 

10% polyacrylamide gel to a depth of 1 cm, before staining with Coomassie.  

In-gel tryptic digestion was performed post reduction with DTE and S-carbamidomethylation with 

iodoacetamide. Resulting peptides were analyzed by label free LC-MS/MS over a 125 min gradient 

using a Waters nanoAcquity UPLC interfaced to a Bruker maXis HD mass spectrometer as detailed in 

[41]. Protein identification was performed by searching tandem mass spectra against the assembled 

transcriptome of L. pedicellatus using the Mascot search program. Matches were passed through 

Mascot percolator to achieve a false discovery rate of <1% and further filtered to accept only peptides 

with expect scores of 0.05 or better. Molar percentages were calculated from Mascot emPAI values by 

expressing individual values as a percentage of the sum of all emPAI values in the sample [42]. 

Proteins identified in the proteomics analysis were annotated via Blastx versus non-redundant NCBI 

databases. CAZy annotation was carried out using the CAZYmes Analysis Toolkit (CAT) on the 

BioEnergy Science Center website (http://mothra.ornl.gov/cgi-bin/cat/cat.cgi). 

One aliquot of the cecum extract (content only) and the purified LpMDGH1 was added with 1% SDS, 

beta-mercapto ethanol, DTT, boiled for ten minutes, centrifuged and the supernatant run in a 4-20% 

gradient polyacrylamide gel. After Coomassie staining, the most abundant band (with an approximate 

molecular weight of 300 kDa) was excised and in-gel digested as described for LC-MS/MS samples.   

A 1 L aliquot of peptide mixture was applied directly to a ground steel MALDI target plate and 

overlaid with an equal volume of a 5 mg/mL 4-hydroxy--cyano-cinnamic acid in 50% aqueous (v:v) 

acetonitrile containing 0.1%, trifluoroacetic acid (v:v). Positive-ion MALDI mass spectra were 

obtained using a Bruker ultraflex III in reflectron mode, equipped with a Nd:YAG smart beam laser.  

MS spectra were acquired over a range of m/z 800-4000. The ten most intense precursors with S/N 

greater than 30 were selected for MS/MS fragmentation in LIFT mode without collision gas. The 

default calibration was used for MS/MS spectra, which were baseline-subtracted and smoothed 
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(Savitsky-Golay, width 0.15 m/z, cycles 4); monoisotopic peak detection used a SNAP averagine 

algorithm (C 4.9384, N 1.3577, O 1.4773, S 0.0417, H 7.7583) with a minimum S/N of 6.  Bruker 

flexAnalysis software (version 3.3) was used for spectral processing and peak list generation. Tandem 

mass spectral data were submitted to database searching using a locally-running copy of the Mascot 

program (Matrix Science Ltd., version 2.5), through the Bruker ProteinScape interface (version 2.1).  

Search criteria included: Enzyme, Trypsin; Fixed modifications, Carbamidomethyl (C); Variable 

modifications, Oxidation (M), Deamidated (N,Q); Peptide tolerance, 100 ppm; MS/MS tolerance, 0.5 

Da; Instrument, MALDI-TOF-TOF. Peptide matches were filtered to require expect scores of 0.05 or 

better. 

 

Cloning the LpMDGH1 cDNA 

The native sequence (from start to stop codon) for LpMDGH1 was cloned from cDNA generated from 

RNA extracted from the digestive gland of L. pedicellatus using external oligonucleotide primers 

designed on the assembled contig from the transcriptome. Total RNA was extracted from one animal 

using the TRIzol® Reagent (Thermo Fisher Scientific) and cDNA was generated with an oligodT 

primer using SuperScript® II reverse transcriptase (Thermo Fisher Scientific). PCR reactions were 

then set up using Phusion® High-Fidelity DNA Polymerase (Thermo Fisher Scientific) and the 

amplicon was cloned into an auxiliary plasmid using the StrataClone Blunt PCR Cloning Kit 

(Stratagene) and the correct sequence was verified with the Sanger method using internal primers. 

Open reading frames (ORFs) were calculated using the online EXPASY tool Translate and confirmed 

that the cloned sequence codes for a unique polypeptide of 2752 amino acid residues (without internal 

stop codons). The sequence has been deposited in GenBank with accession no. MG013499.  

 

Phylogeny and sequence analysis of LpMDGH1 

A protein sequence alignment of the single GH1 domains from LpMDGH1 was obtained using T-

Coffee [43] and visualized using JalView [44]. 
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The LpMDGH1protein sequence was searched via BlastP against NCBI non-redundant databases and 

orthologues from molluscs, insects, fish, amphibians, reptiles, birds and mammals were retrieved. The 

resulting amino acid sequences were aligned using Muscle [45], operating with default parameters. A 

distance matrix was made with Mega6 [46] using a Jones–Taylor–Thornton matrix and a phylogenetic 

tree was then calculated by the maximum likelihood algorithm and standard parameters. The resulting 

tree was visualized using Dendroscope [47].  

 

Purification of LpMDGH1 

The cecum of twenty L. pedicellatus specimens was dissected in 50 mM sodium phosphate buffer pH 

7 and the content (wood particles and enzymes) was collected and centrifuged. The supernatant was 

then filtered with 0.22 μm syringe filters and applied to a SuperoseTM 6 Increase 10/300 GL size 

exclusion chromatography column (GE Healthcare) pre equilibrated with 20 mM Tris-HCl pH 8  plus 

100 mM NaCl. Eluted fractions were analyzed by denaturing SDS-PAGE and those corresponding to 

the LpMDGH1 were pooled, concentrated using Microsep™ Advance Centrifugal Filters (Pall 

Laboratory, 100 kDa cut-off) and re-applied to the same column pre-equilibrated with 20 mM sodium 

phosphate buffer pH 7 plus 100 mM NaCl. Protein purity was again assessed via SDS-PAGE analysis.  

 

Enzymatic assays and zymograms 

Activity of the cecum fluids on a panel of polysaccharides and oligosaccharides was determined by 

DNS reducing sugar assay [8]. Briefly, ten ceca were dissected in 50 mM sodium phosphate buffer 

pH 7 and the content fully re-suspended by pipetting. After centrifugation, the soluble portion 

(supernatant) was filtered through 0.22 μm porous membranes, quantified with the Bradford [48] 

reagent and used for assays.  50 μL reactions were carried out in 96-well plates in 50 mM sodium 

phosphate buffer pH 6 with either 1187 ng of total soluble cecum protein or 237 ng of purified GH1, 

and 1 mg mL-1 polysaccharide or 2.5 mM oligosaccharide. All reactions, including controls, were 

performed in triplicate. The microplate was incubated at 28 °C shaking at 320 rpm for 24 hours, then 
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100 μL of DNS reagent were added to each reaction before heating at 100 °C for 5 min. Absorbance 

at 540 nm was measured with a micro-plate reader and nanomoles of reducing sugars released were 

determined based on absorbance obtained with glucose standards. The DNS reagent was prepared by 

mixing 0.75 g of dinitrosalycilic acid, 1.4 g NaOH, 21.6 g sodium potassium tartrate tetrahydrate, 

0.53 mL phenol and 0.59 g sodium metabisulfite in 100 mL pure water. 

Zymograms were performed as follows. 1.9 μg of total protein from the cecum fluids and purified 

LpMDGH1 were run in a non-denaturing SDS-PAGE gel (4–20% Mini-PROTEAN® TGX™ Precast 

Protein Gel, Biorad). The gel was then incubated in 20 ml of 20 mM sodium phosphate buffer pH 6 

plus 2.5% Triton X100 for 30 min, then washed twice in 20 ml of 20 mM sodium phosphate buffer 

pH 6 for 10 min. The gel was then incubated for 4 hours in 20 ml of 20 mM sodium phosphate buffer 

pH 6 with 0.01% (w/v) of 5-bromo-4-chloro-3-indolyl-β-D-cellobioside to allow formation of the 

insoluble dye. 

 

Compositional analysis of wood and frass 

Untreated Scots Pine (powdered) and dried frass (obtained from L. pedicellatus grown on submerged 

panels of Scots Pine) were analyzed for cellulose, hemicellulose and lignin content in 5 technical 

replicates each, using the methods reported in Marriot et al. [49]. 

 

Transmission electron microscopy 

Dissected shipworm tissue (cecum, digestive gland) was fixed for 1-2 hours at ambient temperature in 

primary fixative (4% formaldehyde (w/v), 2.5% (w/v) glutaldehyde in 100 mM sodium phosphate 

buffer pH 7.2), then washed (3 x 10 min) in 100mM sodium phosphate buffer pH 7.2 before 

incubation in secondary fixative for 1 hour on ice (1% Osmium tetroxide in 100 mM sodium 

phosphate buffer pH 7.2). Samples were dehydrated through a graded ethanol series (15 min each), 

followed by two washes (5 min) in epoxy propane.  Samples were infiltrated with a minimum of two 

changes of Epon araldite resin over 24 h at 30 °C and polymerized at 60 °C for 48 hours in flat 
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embedding moulds. Pale gold (70–90 nm) ultra-thin sections were cut with a Diatome diamond knife, 

using a Leica Ultracut UCT microtome, and mounted on hexagonal 200-mesh nickel grids. Sections 

were post-stained with 2% (w/v) aqueous uranyl acetate (10 min), then lead citrate (5 min) [50] in a 

carbon dioxide-free chamber and viewed using a FEI Technai G2 TEM operating at 120 kV. Images 

were captured using AnalySIS software and a Megaview III CCD camera. 
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Figure Legends 

Fig. 1. Overview of the anatomy, lignocellulolytic activities and digestive meta-transcriptome of Lyrodus 

pedicellatus. (A) Schematic diagram of L. pedicellatus, showing cecum, gills and the two portions (anterior and 

posterior) of the digestive gland. (B) In vitro activity assay of cecum fluids with a panel of polysaccharides, 

determined via DNS assay [8]. The detected activities on glucans, mannans and xylans are generally compatible 

with the putative function of the shipworm GHs based on sequence similarity to characterized proteins. P = 

pachyman, PASC = phosphoric acid swollen cellulose, CMC = carboxy methyl cellulose, βG = beta-glucan, L = 

lichenan, X= xylan, AX = arabinoxylan, M = mannan, GM = glucomannan, GaM = galactomannan, LBG = 

locust bean gum, Ga = galactan). Bars indicate means (error bars: standard deviations of three replicates). (C) 

Compositional analysis of lignocellulose fractions (Cell = cellulose; Hemi = hemicellulose; Lign = lignin) from 

Scots pine before (“wood”) and after passing through the shipworm digestive system (“frass”). Bars indicate 

means (error bars: standard deviations of five replicates). (D, E, F) Pie charts showing the relative transcript 

abundance (obtained from TPM values, see Materials and Methods for more details) of CAZymes identified in 

digestive gland (D), cecum (E) and gills (F) of L pedicellatus. Enzyme families where all members are of 

bacterial origin are marked with a pound sign (#).  

 

Fig. 2 Relative transcript abundance (cumulative) of the endogenous (non-bacterial) glycoside hydrolases 

families identified in the digestive gland transcriptomes of L. pedicellatus (A) and C. gigas (B). Normalized 

transcript levels were obtained for TPM values (see Materials and Methods for more details). 

 

Fig. 3. Pie charts showing relative abundance of the CAZy families identified in the proteomics analysis of the 

cecum content of L. pedicellatus. Enzyme families where all members are of bacterial origin are marked with a 

pound sign (#). Numbers indicate the percentage of molar abundance derived from cumulative emPAI values.  

 

Fig. 4. Characterisation of LpMDGH1. (A) Schematic diagram of the architecture of the multi-domain GH1 

from L. pedicellatus (LpMDGH1), featuring an N-terminal signal peptide for secretion and six distinct GH1 

domains (numbered from 1 to 6) connected by short peptide linkers. (B) Maximum likelihood radial phylogeny 
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of a sub-set of multi-domain GH1 proteins identified by BlastP search versus NCBI nr databases. (C) SDS-

PAGE (denaturing and non-denaturing) and zymogram of soluble cecum fluids (s) and purified L. pedicellatus 

LpMDGH1 (p) using the chromogenic substrate 5-bromo-4-chloro-3-indolyl-β-D-cellobioside. A commercial 

protein marker (m) has been run in the same gel, with numbers representing the molecular weight of the protein 

bands in kDa. (D) Histogram showing the nanomoles of reducing sugars (as determined via DNS assay) released 

by the purified LpMDGH1 from cellobiose (c2), cellotriose (c3), cellotetraose (c4) cellopentaose (c5), 

cellohexaose (c6), xylobiose (x2), mannobiose (m2), konjac glucomannan (GM), barley β-glucan (βG), lichenan 

(L) and pachyman (P). Activity assays with insoluble polysaccharides included 1 mg mL-1 substrate. Activity 

assays with soluble oligosaccharides included 2.5 mM substrate. Bars indicate means (error bars: standard 

deviations of three replicates) 

 

Fig. 5. Transmission electron microscopy (TEM) of the cecum and digestive gland from L. pedicellatus. (A) 

TEM of sections of the cecum, showing abundant cilia (c) projecting from the apical surface of the cell. (B) 

TEM of the cecum epithelium. (C) Digestive gland secretory cell with highly developed electron-dense 

endoplasmic reticulum. (D) Golgi apparatus and putative secretory vesicles. (E) High-resolution image of a 

digestive gland phagocyte, showing internalized wood particles and pseudopodia. (F) Magnified wood-

engulfing vesicles in a gland phagocyte. c=cilia; er=endoplasmic reticulum; g=Golgi apparatus; mv=microvilli; 

n=cell nucleus; m=mitochondrion; p=pseudopodium; v=vesicle; w=wood particle. 

  



30 
 

 

 

Figure 1 

 

 



31 
 

Figure 2 

 

 

 

  



32 
 

Figure 3 

 

  



33 
 

Figure 4 

 

  



34 
 

Figure 5 

 

 


