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UNIFORMLY DE BRUIJN SEQUENCES AND SYMBOLIC DIOPHANTINE

APPROXIMATION ON FRACTALS

LIOR FISHMAN, KEITH MERRILL, AND DAVID SIMMONS

Abstract. Intrinsic Diophantine approximation on fractals, such as the Cantor ternary set, was undoubt-
edly motivated by questions asked by K. Mahler (1984). One of the main goals of this paper is to develop
and utilize the theory of infinite de Bruijn sequences in order to answer closely related questions. In
particular, we prove that the set of infinite de Bruijn sequences in k ≥ 2 letters, thought of as a set of
real numbers via a decimal expansion, has positive Hausdorff dimension. For a given k, these sequences
bear a strong connection to Diophantine approximation on certain fractals. In particular, the optimality
of an intrinsic Dirichlet function on these fractals with respect to the height function defined by symbolic
representations of rationals follows from these results.

1. Introduction

In this paper, we give a novel application of combinatorics to the field of Diophantine approximation.
Since we do not assume that the reader is familiar with this field, let us first recall some important concepts
and ideas. We refer the reader to Section 5 where we rigorously define and discuss these notions.

Classically, the field of Diophantine approximation sought to quantify how well real numbers can be
approximated by rationals, weighing the distance to the rational point against some function of its de-
nominator. The inaugural result in the field is Dirichlet’s theorem, Theorem 5.1, which states that every
irrational real number has infinitely many rational points p/q that lie within distance 1/q2 of it. This result
raises the question of whether that function, 1/q2, can be improved. That it cannot be, in a sense made

precise in Section 5, is due to a result of Liouville, who showed that quadratic irrational numbers, like
√
2,

admit no better rate of approximation. In modern terminology, we call such points badly approximable.
A more complete description of the set of badly approximable numbers, in this and related contexts,

was the subject of much activity in the early-to-mid twentieth century. Via a characterization of badly
approximable numbers in terms of continued fraction expansions one can show that the set of badly
approximable numbers is uncountable, but it is also relatively easy to show that this set is a Lebesgue
null set [6, Theorem 1.9 and Corollary 1.6], so we must turn to other notions of “size”. One such notion,
particularly well-suited to disntinguishing between sets of measure zero, is that of Hausdorff dimension.
Jarńık showed that despite being a Lebesgue null set, the set of badly approximable real numbers has full
Hausdorff dimension, so it is still “large” in some sense.

As discussed further in Section 5, the core questions of Diophantine approximation can be formulated in
many diverse contexts, essentially whenever we have a complete metric space X , a countable dense subset
Q, and some notion of “height” defined on Q (this would be the size of the denominator in the classical case
above). Over the last decade, a plethora of results regarding Diophantine approximation on fractals have
emerged [4, 5, 8, 10, 11, 12, 14, 15, 18]. Many of these results were motivated by the following question(s)
posed by K. Mahler in 1984 [17, §2]: “How close can irrational elements of Cantor’s set be approximated
by rational numbers

(1) in Cantor’s set, and
(2) by rational numbers not in Cantor’s set?”
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In this paper we will restrict our attention to Mahler’s first question; see Section 6 for details. We
remark that while in [12], the first- and third-named authors were able to exhibit an optimal Dirichlet
function (see Definition 5.2) corresponding to Mahler’s second question, it seems that finding an analogous
answer to his first question is significantly harder, see e.g. [5, 7, 12] for detailed discussions and conjectures
regarding this question.

In [12], a new height function was defined on the rational points of the Cantor set (see Section 6), and
a Dirichlet-type theorem was proven [12, Corollary 2.2 and its proof]. The purpose of this paper is to
demonstrate the optimality of that Dirichlet theorem, and give an estimate on the Hausdorff dimension
of the set of “badly approximable” points. This set, as noted in [12], admits a precise combinatorial
description, although at the time we had been unable to exhibit any members belonging to it. In the
present paper, we focus on a combinatorially defined subset of the set of badly approximable points, the
set of uniformly de Bruijn sequences. The existence of uniformly de Bruijn sequences demonstrates the
optimality of the Dirichlet function (Theorem 6.3), and by estimating from below the Hausdorff dimension
of the set of uniformly de Bruijn sequences (Theorem 2.1), we are able to get a positive lower bound for
the Hausdorff dimension of the set of badly approximable points (Corollary 6.4), a first step towards a
Jarńık-type result. See Section 6 for a more nuanced discussion of these points.

1.1. Acknowledgements. The first-named author was supported in part by the Simons Foundation grant
#245708. The third-named author was supported in part by the EPSRC Programme Grant EP/J018260/1.
The authors would like to thank Joseph Kung for valuable comments on an earlier version of the paper, and
Jonah Ostroff for introducing us to the notion of de Bruijn sequences. The authors thank the anonymous
referee for valuable comments.

2. Finite and infinite de Bruijn sequences

Let A be a finite alphabet of cardinality k ≥ 2. We recall that a (non-cyclic) de Bruijn sequence of order
n in A is a sequence ω of length kn + n− 1 in the alphabet A that has the property that every sequence
of length n in A appears as a consecutive substring of ω exactly once. For example, in the alphabet
{0, 1}, the sequence 00110 is a de Bruijn sequence of order 2 while in the alphabet {0, 1, 2}, the sequence
00010020110120210221112122200 is a de Bruijn sequence of order 3. We say that an infinite sequence
ω ∈ AN is infinitely de Bruijn if the set

(2.1) Bω
def
= {n ∈ N : the initial segment of ω of length kn + n− 1 is a de Bruijn sequence of order n}

is infinite. We say that ω is totally de Bruijn if Bω = N, and uniformly de Bruijn if Bω has bounded gap
sizes. The construction of infinitely de Bruijn sequences goes back to Becher and Heiber [2],1 who showed
that when k ≥ 3, totally de Bruijn sequences could be constructed recursively by extending each de Bruijn
sequence of order n to a de Bruijn sequence of order (n+1). We shall discuss their method in more detail
below. When k = 2, it is known that no totally de Bruijn sequence exists, but Becher and Heiber do
construct a uniformly de Bruijn sequence such that Bω = 2N.

In order to state our main theorem for this section, let us briefly recall the definition and basic properties
of the Hausdorff dimension of a fractal2 F ⊆ Rd, see e.g. [9, Chapters 2-3]. Let d denote the standard
metric on Rd, and let diam(U) denote the diameter of a set U ⊆ Rd. Fix δ > 0 and let F ⊆ Rd. We say
that a countable collection {Uj : j ∈ N} of subsets of Rd is a δ-cover of F if F ⊆ ⋃∞

j=1 Uj and diam(Uj) ≤ δ
for every j. For each s ≥ 0, let

Hs
δ(F )

def
= inf

{

∞
∑

j=1

diam(Uj)
s : {Uj : j ∈ N} is a δ-cover of F

}

.

1Note that in [2], the phrase “infinite de Bruijn sequence” has a different meaning; we do not use that meaning in this

paper because it makes an ad hoc distinction between the k = 2 case and the k ≥ 3 case.
2The word “fractal” normally has a connotative but not a denotative meaning in mathematics; a set is called a fractal if

it is “sufficiently complicated at fine scales”. The Cantor ternary set, i.e. the set of all numbers in [0, 1] that can be written
in base 3 with only the digits 0 and 2, is a canonical example of a fractal; further examples are given in Subsection 5.2.
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Then the s-dimensional Hausdorff measure of F is the number

Hs(F )
def
= lim

δ→0
Hs
δ(F ),

and the Hausdorff dimension of F is the number

dimH(F )
def
= inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) = ∞}.

It is well known that for every F ⊆ Rd we have 0 ≤ dimH(F ) ≤ d, and that if dimH(F ) > 0, then F is
uncountable, but not vice versa.3

We also recall that if b ≥ 2 is an integer, then the base b expansion of a number x ∈ [0, 1] is the series
∞
∑

i=1

ωi
bi
,

where ω1, ω2, . . . ∈ {0, 1, . . . , b − 1} are chosen so that the value of the series is equal to x. This choice is
unique unless x is a rational number whose denominator is a power of b, in which case there are exactly
two ways in which the infinite word ω = ω1ω2 · · · can be chosen.

Theorem 2.1. Fix an integer b ≥ 2, and let C(b) = {0, 1, · · · , b−1}. Fix A ⊆ C(b) such that k
def
= #(A) ≥

2. Denote by δ the Hausdorff dimension of the set F consisting of all numbers that can be written in the
form

∑∞

i=1
ωi

bi with ωi ∈ A for every i ∈ N, i.e. the set of all numbers in F that have at least one base b

expansion composed entirely of digits from A.4 Then the set S consisting of all elements of F that have at
least one base b expansion that is uniformly de Bruijn satisfies

0 < αkδ ≤ dimH(S) ≤ log(k!)

k log(k)
δ < δ,

where

αk =











1/49 k = 2

(8 · (9 log4(3)− 1))−1 k = 3
log(k−2)!
k log(k) k ≥ 4

.

In particular, S has positive Hausdorff dimension but not full Hausdorff dimension.

Note that for large values of k, Stirling’s formula gives αk ∼ log(k!)
k log(k) ∼ 1 − 1

log(k) (where x ∼ y means

(1 − x)/(1 − y) → 1), and in particular αk → 1 as k → ∞. Thus S gets closer and closer to having full
dimension as the number of allowed digits increases.

3. Preliminaries

We begin by recalling some key definitions used in Becher and Heiber’s paper, as well as the proof of
the well-known BEST5 theorem.

Definition 3.1 ([2]). Given an alphabet A and an integer n ∈ N, the de Bruijn graph of order n on A is the

directed graphG = Gn(A) with vertex set V (G)
def
= An and edge set E(G)

def
= {(ω, τ) : ωi+1 = τi ∀i ≤ n−1}.

Note that every vertex has in-degree and out-degree both equal to k
def
= #(A), for a total of kn vertices and

kn+1 edges.
If ω is a sequence of length ℓ ≥ n in A, then the path induced by ω on G is the path6 γ = γ1 · · · γℓ−n+1

in G defined by the formula

γi
def
= ωi · · ·ωi+n−1 ∈ V (G).

3The set of Liouville numbers on the real line is a standard example of a comeager (and thus uncountable) set of Hausdorff
dimension 0.

4It is well known that δ = log(k)/ log(b), see Subsection 5.2.
5An acronym after the people who discovered it: de Bruijn, van Aardenne-Ehrenfest, Smith, and Tutte.
6In this paper a “path” in a directed graph is a sequence of vertices such that each pair of consecutive vertices is connected

by an edge from the first vertex to the second vertex. The length of a path is the number of such edges, or equivalently the
number of vertices minus one (counting multiplicity in both cases). A path is simple if all its vertices are distinct except
possible the first and last, and Eulerian if it contains each edge exactly once.
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Observation 3.2. Let ω be a sequence of length ℓω = km+m− 1, and let γ be the path induced by ω on
Gn(A). Note that the length of γ is ℓγ = ℓω − n = km +m− n− 1; in particular, ℓγ = kn+1 if m = n+ 1,
and ℓγ < kn if m ≤ n. Moreover,

(I) If m = n+ 1, then ω is de Bruijn if and only if γ is Eulerian.
(II) If m ≤ n and ω is de Bruijn, then γ is a simple path.

Remark 3.3. If m = n and ω is de Bruijn, then γ is a simple path that visits each vertex exactly once.
However, since γ starts and ends at different vertices, it is not a Hamiltonian cycle, contrary to [2, p.931,
first para.]. In particular, the edge set of γ does not form a regular graph on V (Ω), as is claimed in [2, Proof
of Lemma 3, last para.]. Consequently, the proof given there is technically incorrect; it can be trivially
fixed by adding a step where γ is extended to a Hamiltonian cycle; cf. the first two paragraphs of the proof
of Corollary 4.3 below. Similar remarks apply to [2, Proof of Lemma 5, last para.].

Now let X = (V (X), E(X)) be a directed graph such that for each vertex x ∈ V (X), the in-degree
and out-degree of x are nonzero and equal to each other (though they may depend on x). Fix a vertex
x0 ∈ V (X), and let E be the set of Eulerian paths of X that start and end at x0. Note that, unlike standard
convention, we consider two Eulerian paths to be different if they are formally different as sequences of
vertices even if they are cyclically equivalent. Let T be the set of directed spanning trees of X rooted at
x0 with edges pointing towards x0.

Since both the conclusion of the BEST theorem and its proof will be important for our argument, we
recall them now. We once again remind the reader that our statement differs slightly from the usual one
because of our convention about counting Eulerian paths: we do not consider cyclically equivalent paths to
be the same. But the difference is easy to quantify: the number of Eulerian paths in each cyclic equivalence
class that start and end at x0 is equal to the degree of x0 (we recall that by assumption the in-degree and
out-degree are equal). So our count will be off from the conventional one by a factor of deg(x0).

Theorem 3.4 (BEST theorem). We have

(3.1) #(E) = #(T ) · deg(x0) ·
∏

x∈V (X)

[deg(x) − 1]! .

Proof. Let T ∈ T be a directed spanning tree rooted at x0. For each x ∈ V (X), let Ex denote the set of
edges in X with initial vertex x, and let Tx = E(T )∩Ex, where E(T ) denotes the edge set of T . If x 6= x0,
then Tx is a singleton, say Tx = {vx}, while Tx0

= �. Now let Ord(S) denote the set of total orderings of
a set S, and note that the cardinality of the set

O(T )
def
=

∏

x∈V (X)

Ord(Ex \ Tx)

is exactly deg(x0) ·
∏

x∈V (X)[deg(x) − 1]! . Now for each o = (ox)x∈V (X) ∈ O(T ) we let f(T,o) be

the Eulerian path that starts and ends at x0 defined recursively as follows: Suppose that the points
x0 = γ0, γ1, . . . , γi have been defined, and let x = γi. Then the next vertex γi+1 must be chosen so that
γiγi+1 ∈ Ex, but γiγi+1 6= γjγj+1 for all j < i. We make this choice so as to minimize γiγi+1 according to
the ordering ox subject to these restrictions. If the edges of Ex \ Tx have been exhausted, then if x 6= x0
we choose the vertex vx, and if x = x0, then we terminate the path. There is some work to do to show
that f(T,o) is indeed an Eulerian path, and that every Eulerian path that starts and ends at x0 can be
represented uniquely as f(T,o) for some T ∈ T and o ∈ O(T ), see e.g. [1, pp.445-446]. This implies that
f is a bijection between

∐

T∈T
O(T ) = {(T,o) : T ∈ T , o ∈ O(T )} and E , which completes the proof. �

We will also need the following sufficient condition for the right-hand side of (3.1) to be nonzero:

Lemma 3.5. If X is connected, then there is at least one directed spanning tree rooted at x0, i.e. T 6= �.

Proof. Let T be a maximal directed tree rooted at x0. By the maximality of T , there is no edge from
any vertex not in T to any vertex in T . Since each vertex of X has equal in-degree and out-degree, the
number of edges from V (T ) to V (X) \ V (T ) is equal to the number of edges from V (X) \ V (T ) to V (T ),
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which is equal to zero. Since X is connected, this means that either V (T ) = � or V (X) \ V (T ) = �. But
x0 ∈ V (T ) by construction, so V (X) \ V (T ) = � and thus T is a spanning tree, i.e. T ∈ T . �

4. Proof of Theorem 2.1

4.1. The upper bound. We begin by establishing the upper bound of Theorem 2.1. To do this we
will use the Hausdorff–Cantelli lemma, a very useful tool for establishing upper bounds on the Hausdorff
dimensions of certain sets, see e.g. [3, Lemma 3.10]. Let {Uj : j ∈ N} be a countable collection of sets in
Rd, and let U be the set consisting of those elements of Rd that belong to infinitely many of the sets Uj
(j ∈ N). In other words,

S
def
= lim sup

j→∞

Uj =

∞
⋂

N=1

∞
⋃

j=N

Uj.

Lemma 4.1 (Hausdorff–Cantelli Lemma). Let {Uj : j ∈ N} ⊆ Rd be a countable collection of sets, and let
S = lim supj Uj. Fix s > 0. If

(4.1)

∞
∑

j=1

diam(Uj)
s <∞,

then Hs(S) = 0 and thus dimH(U) ≤ s.

It turns out to be convenient to consider a collection {Uj : j ∈ N} that naturally splits up into subcollec-
tions, say {Uj : j ∈ N} =

⋃

m Cm for some sequence of collections (Cm)∞m=1. In this case, the summability
condition (4.1) is equivalent to the condition

∞
∑

m=1

costs(Cm) <∞,

where

costs(Cm)
def
=

∑

U∈Cm

diam(U)s

is the s-dimensional cost of Cm. Note that costs(Cm) should be distinguished from the expression (cost1(Cm))s,
which denotes instead the 1-dimensional cost of Cm raised to the power of s. The set S can be written in
terms of the collections (Cm)∞m=1 as follows:

S = lim sup
m→∞

⋃

U∈Cm

U =
∞
⋂

N=1

∞
⋃

m=N

⋃

U∈Cm

U.

In what follows we will abuse terminology somewhat by calling costs(Cm) the “cost” of the set Sm
def
=

⋃

U∈Cm
U ,

although strictly speaking, it depends not only on Sm but also on how it is decomposed.

Proof of upper bound. For each m, let Sm be the set consisting of all elements of F corresponding to base
b expansions whose initial segments of length km +m− 1 are de Bruijn sequences of order m in A. Then
the lim sup of the sequence (Sm)∞m=1 consists of those elements of F with infinitely de Bruijn base b
expansions. In particular, the set S consisting of those elements of F with uniformly de Bruijn base b
expansions satisfies:

S ⊆ lim sup
m→∞

Sm =
∞
⋂

N=1

∞
⋃

m=N

Sm.

By the Hausdorff–Cantelli lemma, if we can find an s such that

(4.2)

∞
∑

m=1

costs(Sm) <∞,

then we can conclude that dimH(S) ≤ s. We will show that (4.2) holds for all s > δ log(k!)
k log(k) .
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For each m, we view Sm as the union of the collection

Cm def
= {Sωm : ω is a de Bruijn sequence of order m in the alphabet A},

where for each ω, Sωm is the set of points x ∈ F corresponding to base b expansions whose initial segments
of length km+m−1 are equal to ω. Let G be the de Bruijn graph of order (m−1) on A (see Definition 3.1),
so that #(V (G)) = km−1. By Observation 3.2(I), the collection Cm is in bijection with the set of Eulerian
paths on G. Fix a vertex x0 ∈ V (G). We can estimate the number of Eulerian paths starting and ending
at x0 via the BEST theorem. Specifically, we have

∏

x∈V (G)(deg(x) − 1)! = (k − 1)!#(V (G)), since every

vertex x ∈ V (G) has degree equal to k. The number of spanning trees rooted at x0 is at most k#(V (G))−1,
since an edge must be chosen emanating from each vertex x 6= x0, and each vertex has out-degree k. And
for the same reason, deg(x0) = k. Therefore, the number of Eulerian paths starting and ending at x0 is at
most

#(T ) · deg(x0) ·
∏

x∈V (G)

[deg(x)− 1]! ≤ k#(V (G))−1 · k · (k − 1)!#(V (G)) = k!#(V (G)) = k!k
m−1

.

Since there are #(V (G)) = km−1 possible choices for x0, the number of de Bruijn sequences of order m in

A is at most km−1 · k!km−1

.7 Now, if ω is a de Bruijn sequence of order m in A, then the length of ω is
km+m− 1, and thus the diameter of Sωm is at most b−k

m
−m+1. So the s-dimensional cost of Sm according

to the decomposition Cm is at most

km−1 · k!km−1 · (b−km−m+1)s.

Now fix ε > 0 and set

(4.3) s
def
=

1

k
logb(k!) + ε.

Then
∞
∑

m=1

costs(Sm) ≤
∞
∑

m=1

km−1(k!)k
m−1

(b−k
m
−m+1)s.

By the ratio test, this series converges as long as limm→∞ |am+1/am| < 1, where am denotes the mth term.
A straightforward computation yields:

|am+1/am| = k · b−ε(km+1
−km) · b−s,

which tends to 0 as m→ ∞.
Thus by Lemma 4.1, we have

dimH(S) ≤ 1

k
logb(k!) =

log(k!)

k log(b)
=

log(k!)

k log(k)
δ,

since δ = log(k)/ log(b) (see Subsection 5.2).

Since for all k ≥ 2 we have k! < kk and thus log(k!)
k log(k) < 1, we deduce that the Hausdorff dimension of S

is strictly less than δ. �

4.2. The lower bound. The proof of the lower bound is significantly more involved, and will require a
few preliminary results. We begin with the following proposition:

Proposition 4.2. Let X be a k-regular connected directed graph, fix x0 ∈ V (X), and let E be the set of
Eulerian paths of X that start and end at x0. Then there exists E ′ ⊆ E such that:

(i) #(E ′) = k · (k − 1)!#(V (X));
(ii) If δ is a path of length ℓδ starting at x0, then the number of paths in E ′ that extend δ is at most

k · (k − 1)!#(V (X))−ℓδ/k.

7In fact, the exact count for such sequences is known, but we prefer this estimate because it is simpler and yields the same
upper bound on the Hausdorff dimension.
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Proof. Since X is connected, by Lemma 3.5 there exists a directed spanning tree T rooted at x0. Let
E ′ be the set of Eulerian paths δ that start and end at x0 such that for all xy ∈ E(X) and xz ∈ E(T )
with y 6= z, the edge xy appears in δ before xz does. Equivalently, E ′ = {f(T,o) : o ∈ O(T )} where
the notation is as in the proof of the BEST theorem. Then the proof of the BEST theorem implies that
#(E ′) = #(O(T )) = k · (k − 1)!#(V (X)). Now let δ be a path starting at x0 that has at least one extension
in E ′. For each o ∈ O(T ), the path f(T,o) is an extension of δ if and only if the algorithm described in the
proof of the BEST theorem produces δ on input o. Equivalently, f(T,o) is an extension of δ if for each
edge xy of δ, the rank of xy according to ox is the same as its rank according to its location in δ. The
number of elements o ∈ O(T ) satisfying this condition is given by the formula

Nδ =
∏

x∈V (X)

[#(Ex \ (E(δ) ∪ E(T ))]!

= #(Ex0
\ E(δ)) ·

∏

x∈V (X)

[#(Ex \ E(δ))− 1]! ≤ k ·
∏

x∈V (X)

[#(Ex \ E(δ)) − 1]!

where Ex denotes the set of edges with initial vertex x, and E(δ) denotes the edge set of δ. Here we use
the convention (−1)! = 1, since if Ex \ E(δ) = �, then there is exactly one ordering ox satisfying the
appropriate condition, namely the ordering determined by δ, and by hypothesis the element vx comes last
in this ordering. Now since

(i − 1)! ≤ (k − 1)!i/k ∀i = 0, . . . , k,

we have
Nδ ≤ k · (k − 1)!M/k,

where

M
def
=

∑

x∈V (X)

#(Ex \ E(δ)) = #(E(X) \ E(δ)) = k#(V (X))− ℓδ. �

The next result will furnish the lower bound for k ≥ 4. Although it is valid for k = 3, it provides no
useful information in this case since 0 is always a (trivial) lower bound on the dimension.

Corollary 4.3. Let the notation be as in Theorem 2.1, and let S be the set of numbers in F with totally
de Bruijn base b expansions. Assume that k ≥ 4. Then the Hausdorff dimension of S is bounded below by
αkδ > 0, where δ is the Hausdorff dimension of F (and equals log(k)/ log(b)), and

(4.4) αk =
log(k − 2)!

k log(k)
·

Before we turn to the proof, we recall the so-called Mass Distribution Principle, an extremely useful tool
for bounding the Hausdorff dimension from below.

Lemma 4.4 ([9, Principle 4.2]). Let F be a metric space, and let µ be a measure on F such that 0 <
µ(F ) < ∞. Fix s, ε > 0, and suppose that there exists C > 0 such that µ(U) ≤ C · diam(U)s for every set
U ⊆ F such that diam(U) ≤ ε. Then

dimH(F ) ≥ s.

Proof of Corollary 4.3. Fix n ∈ N, and let ω = ω1 · · ·ωkn+n−1 be a de Bruijn sequence of order n in A.
Since the path induced by ω on Gn−1(A) is an Eulerian path in a directed graph in which each vertex
has equal in-degree and out-degree, it must start and end at the same vertex, which means that the first
(n − 1) letters of ω are the same as the last (n − 1) letters, i.e. ωkn+i = ωi for all i = 1, . . . , n− 1.8 Now
let ωkn+n = ωn and ω′ = ω1 · · ·ωkn+n. Then the first n letters of ω′ are the same as the last n letters, but
no other block of n letters is repeated in ω′.

8This phenomenon is related to the fact that we consider non-cyclic de Bruijn sequences instead of cyclic ones: each cyclic
de Bruijn sequence ω = ω1 · · ·ωkn corresponds to a non-cyclic de Bruijn sequence ω1 · · ·ωknω1 · · ·ωn−1 that is longer but has
the same number of consecutive substrings. This correspondence makes it obvious that the first (n− 1) letters of a non-cyclic
de Bruijn word are expected to be the same as the last (n − 1) letters. However, by itself this is not a proof, because our
definition of non-cyclic de Bruijn sequences did not assume that they were constructed from cyclic ones.
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Let G = Gn(A) be the de Bruijn graph of order n on A, and let γ = γ1 · · · γkn+1 be the path induced
by ω′ on G. Then γ is a Hamiltonian cycle (i.e. a simple path traversing each vertex once). The collection
of de Bruijn sequences of order (n+ 1) that extend ω′ is isomorphic to the collection of Eulerian paths on
G that extend γ.

Let x0
def
= γ1 = γkn+1 be the common initial and terminal vertex of γ. Then the collection of Eulerian

paths of G that extend γ is isomorphic to the set of Eulerian paths of Xω
def
= G\E(γ) that start and end at

x0, which we denote by E(ω). Since Xω is a (k− 1)-regular connected directed graph whose vertex set has
size kn (see the proof of [2, Lemma 3] for connectedness), we may use Proposition 4.2 to extract a subset
E ′(ω) ⊆ E(ω). Pulling this subset back via the appropriate correspondences gives us a set S′(ω), contained
in the set of all de Bruijn sequences of order (n + 1) extending ω′ (and thus also extending ω), with the
following properties:

(i) #(S′(ω)) = (k − 1) · (k − 2)!k
n

.
(ii) If τ is a sequence of length ℓτ extending ω, then the number of sequences in S′(ω) that extend τ

is at most (k − 1) · (k − 2)!k
n
−(ℓτ−ℓω−1)/k, where ℓω = kn + n− 1 is the length of ω.

Now we proceed to define a probability measure µ on F ≡ EN via a random algorithm: start with a fixed de
Bruijn sequence ω(1) of order 1, and if ω(n) is a de Bruijn sequence of order n, then let ω(n+1) ∈ S′(ω(n)) be
chosen randomly with respect to the uniform measure on S′(ω(n)), independent of all previous selections.
Let ω be the unique infinite sequence that extends all of the finite sequences ω(n) (n ∈ N). Then ω is a
base b expansion of a unique point π(ω) ∈ F . (The point π(ω) may have a base b expansion other than
ω, but there is no other point with base b expansion ω.) We let µ be the probability measure describing
the distribution of the random variable π(ω). (The existence of such a µ can be guaranteed e.g. by the
Kolmogorov extension theorem.)

To demonstrate that µ satisfies the hypotheses of the mass distribution principle, we first estimate the
measure of cylinder sets of a certain length, then arbitrary cylinder sets, then balls. Here a cylinder set
is a set of the form [τ ] = {π(ω) : ωi = τi ∀i = 1, . . . , ℓτ}, where τ = τ1 · · · τℓτ is a finite sequence in the
alphabet A. Our first estimate is easy: if ℓτ = kn+1 + n for some n, then [τ ] is precisely the set of π(ω) in
the above construction such that ω(n+1) = τ , so µ([τ ]) is just the probability that ω(n+1) = τ , i.e.

(4.5) µ([τ ]) =

n
∏

i=1

1

#(S′(τ (i)))
=

n
∏

i=1

1

(k − 1) · (k − 2)!ki
≤ (k − 2)!−(kn+kn−1+n/k)

if it is possible that ω(n+1) = τ , and µ([τ ]) = 0 otherwise. Now consider the more general case where the
length of τ satisfies kn + n − 1 < ℓτ ≤ kn+1 + n for some n. Then by (ii) above, [τ ] contains at most
(k − 1) · (k − 2)!k

n
−(ℓτ−(kn+n))/k cylinders of length kn+1 + n. Combining with (4.5) shows that

µ([τ ]) ≤ (k − 1) · exp(k−2)!

(

kn − (ℓτ − (kn + n))/k)− (kn + kn−1 + n/k)
)

= (k − 1) · (k − 2)!−ℓτ/k.

Here and hereafter we use the notation expx(y)
def
= xy.

To apply the mass distribution principle (Lemma 4.4), we now need to relate this measure to the
diameter of the cylinder [τ ]. Since elements of [τ ] have the first ℓτ digits of their base b expansions fixed,
the diameter of [τ ] is approximately b−ℓτ (to be precise, it is c · b−ℓτ for some constant 0 < c ≤ 1). Thus

diam([τ ])αkδ = cαkδ expb

(

−ℓτ
log(k − 2)!

k log(k)

log(k)

log(b)

)

= cαkδ · (k − 2)!−ℓτ/k,

so

µ([τ ]) ≤ C · diam([τ ])s,

where C = (k − 1) · c−αkδ and s = αkδ. But any subset of F can be covered by at most two cylinder
sets with comparable diameter, so a similar formula holds for arbitrary sets. Thus by Lemma 4.4, we have
dimH(S) ≥ s = αkδ. �
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As is evident from Corollary 4.3, we now have to deal with the cases k = 2 and k = 3 separately, since
in those cases the formula (4.4) gives α2 = α3 = 0, which is not a useful bound. Note that the Cantor
ternary set falls into the case k = 2, since its set of admissible numerators is A = {0, 2}.
Proposition 4.5. If k = 2 and ω is a de Bruijn sequence of order (n − 2) in A, then the number of de

Bruijn sequences of order (n+ 1) that extend ω is at least 22
n−2

.
In the case where k = 3 and ω is a de Bruijn sequence of order (n − 1) in A, then the number of de

Bruijn sequences of order (n+ 1) that extend ω is at least 43
n−1

.

Proof. For convenience we let ∆ = 2 if k = 3, and ∆ = 3 if k = 2; then ω is a de Bruijn sequence of order
(n−∆+ 1). The first paragraph of Corollary 4.3 shows that the first (n−∆) letters of ω are the same as
the last (n −∆) letters. So if we extend ω to a word ω′ of length kn−∆+1 + n by letting ωkn−∆+1+i = ωi
for i = n−∆+ 1, . . . , n, then the first n letters of ω′ are the same as the last n letters, but no other block
of n letters is repeated.

Let G be the de Bruijn graph of order n on A, and let γ be the path induced by ω′ on G. The length
of γ is ℓγ = kn−∆+1, and γ is a simple path that starts and ends at the same vertex x0. As in the proof
of Corollary 4.3, we let X = Xω = G \ E(γ), where E(γ) is the edge set of γ. The collection of de Bruijn
sequences of order (n+1) that extend ω is isomorphic to the collection of Eulerian paths on G that extend
γ, which in turn is isomorphic to the collection of Eulerian paths on Xω that start and end at x0. By the
BEST theorem, the cardinality of this collection is

N def
= #(T ) · deg(x0;Xω) ·

∏

x∈V (G)

[deg(x;Xω)− 1]!

If k = 3, we complete the proof with the following calculation:

N ≥
∏

x∈V (G)

[deg(x;Xω)− 1]! = exp2(#{x ∈ V (G) : deg(x;Xω) = 3})

= exp2(#(V (G))− ℓγ) = exp2(3
n − 3n−1) = 43

n−1

.

In the first inequality, we have used Lemma 3.5 and the proof of [2, Lemma 3] to deduce that #(T ) ≥ 1.
For the remainder of the proof, we assume that k = 2. In this case, the strategy of the above calculation

cannot work, since we have [deg(x;Xω)− 1]! = 1 for all x ∈ V (G) and thus N ≤ 2#(T ). Instead we must
estimate the number of spanning trees in Xω.

Let S be the set of sequences of length (n−1) that do not occur in ω, and note that #(S) = 2n−1−2n−2 =
2n−2. For each τ ∈ S, let Eτ = {aτb : a, b ∈ A} ⊆ E(Xω), where aτb is shorthand for (aτ)(τb), the edge
from the vertex aτ to the vertex τb. Note that the sets Eτ (τ ∈ S) are disjoint.

Lemma 4.6. If T is a directed spanning tree and τ ∈ S, then there exists a directed spanning tree T ′ 6= T
such that T ′ \ Eτ = T \ Eτ .
Proof. By contradiction, suppose that the conclusion of the lemma is false, i.e. that there exists no such
spanning tree T ′.

Denote the partial order on V (G) induced by the tree T by <, i.e. write x < y if there is a path in
T from x to y, and write x ≤ y if either x < y or x = y. We write x <∗ y if x is a direct descendant
of y, i.e. if xy ∈ E(T ). For each a ∈ A, let f(a) ∈ A be chosen to satisfy aτf(a) ∈ E(T ), and let
g(a) = σ(f(a)), where σ : A→ A is the permutation that swaps the two elements of A. Consider the graph
T ′ = T ∪ {aτg(a)} \ {aτf(a)}. Then T ′ 6= T and T ′ \Eτ = T \Eτ , so by the contradiction hypothesis, T ′

is not a directed spanning tree, which implies that τg(a) ≤ aτ . On the other hand, we have aτ <∗ τf(a)
since aτf(a) ∈ T . Now write A = {a, b}, c = f(a), and d = σ(c) = g(a). Then either f(b) = c or f(b) = d,
and thus we have one of the following two diagrams:

τd ≤ aτ <∗ τc >∗ bτ ≥ τd or τd ≤ aτ < τc ≤ bτ < τd.

Both diagrams are impossible for directed trees: the left-hand diagram is impossible because if aτ and bτ
are siblings, then they have no common descendants, while the right-hand diagram is disjoint because it is
a nontrivial directed loop. This is the desired contradiction. ⊳
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It follows from Lemma 4.6 that there exists a function φ : T ×S → T such that for all T ∈ T and τ ∈ S,
we have φ(T, τ) 6= T and φ(T, τ) \ Eτ = T \ Eτ .

Now by Lemma 3.5 and the proof of [2, Lemma 5], X has a directed spanning tree T0 rooted at x0. Let
(τi)

N
i=1 be an indexing of S, where N = 2n−2. Given ω ∈ {0, 1}N , we define recursively

Tω,0 = T0, Tω,i =

{

Tω,i−1 ωi = 0

φ(Tω,i−1, τi) ωi = 1
.

Then the map {0, 1}N ∋ ω → Tω,N ∈ T is injective. Thus N ≥ #(T ) ≥ #({0, 1}N) = 22
n−2

, which
completes the proof. �

Corollary 4.7. Let the notation be as in Theorem 2.1. Suppose that k ≤ 3, and let

αk =

{

1/49 if k = 2

(8 · (9 log4(3)− 1))−1 if k = 3
∆ =

{

3 if k = 2

2 if k = 3

Then the Hausdorff dimension of the set

{π(ω) ∈ F : Bω contains an arithmetic progression with gap size ∆}
is at least αkδ.

Proof. Let B = 2 if k = 2 and B = 4 if k = 3. Then αk = ((k∆ − 1) · (k∆ logB(k)− 1))−1, and Proposition
4.5 can be expressed uniformly as follows: If ω is a de Bruijn sequence of order n in A, then the number
of de Bruijn sequences of order n + ∆ that extend ω is at least expB(k

n). We denote the set of all such
extensions by S′(ω).

As in the proof of Corollary 4.3, we define a probability measure µ by a random algorithm: let ω(1) be
a fixed de Bruijn sequence of order ∆, and if ω(n) is a de Bruijn sequence of order n∆, then let ω(n+1) be
chosen randomly with respect to the uniform measure on S′(ω(n)), independent of all previous selections.
As before we let ω ∈ AN be the unique common extension, we let π(ω) ∈ F be the unique number for
which ω is a base b expansion, and we let µ be the probability measure describing the distribution of π(ω).

As before, we first estimate the measure of special cylinders, then arbitrary cylinders, then balls. For
ease of notation we fix k = 3 in this proof; for the case k = 2 one can apply the substitutions 9 7→ 8, 8 7→ 7,
4 7→ 2, 3 7→ 2, and 2 7→ 3. Fix n ∈ N and let τ be a sequence of length 9n + 2n− 1 in A. Then

µ([τ ]) ≤
n−1
∏

i=1

1

#(S′(τ (i)))
≤

n−1
∏

i=1

1

exp4(3
2i)

= exp4

(

−9n − 9

9− 1

)

.

Now let τ be an arbitrary sequence of length 9n + 2n− 1 < ℓτ ≤ 9n+1 + 2(n+ 1)− 1. There are two ways
that we could bound µ([τ ]):

1. Since [τ ] ⊆ [τ (n)], we have

µ([τ ]) ≤ µ([τ (n)]) ≤ exp4

(

−9n − 9

8

)

.

2. Since [τ ] can be written as the union of at most exp3(9
n+1 + 2(n + 1) − 1 − ℓτ ) cylinder sets

corresponding to de Bruijn sequences of order 2(n+ 1), we have

µ([τ ]) ≤ exp3(9
n+1 + 2(n+ 1)− 1− ℓτ ) · exp4

(

−9n+1 − 9

8

)

.

Which of these bounds is better depends on the value of ℓτ . Now, as in the proof of Corollary 4.3, we
have diam([τ ]) = c · b−ℓτ for some constant c. Fix 0 < s < α3δ. To apply the mass distribution principle,
we need to show that

µ([τ ]) ≤ C · diam([τ ])s

for some constant C. It is enough to show that

min
(

4−9n/8, exp3(9
n+1 + 2n− ℓτ ) · 4−9−n+1/8

)

≤ C · b−sℓτ = C · 3−tℓτ ,
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possibly with a different value of C, where t = s/δ < α3 < 1. Equivalently, we need to show that

min
(

4−9n/8 · 3tℓτ , 39n+1 · 9n · 4−9n+1/8 · 3(t−1)ℓτ
)

≤ C.

Now the first input to the binary operator min is an increasing function of ℓτ , while the second input is a
decreasing function of ℓτ . It follows that the largest value the left-hand side can attain is the value attained
when the two inputs to min are equal, i.e. when

4−9n/8 = 39
n+1 · 9n · 4−9n+1/8 · 3−ℓτ ,

at which point the left-hand side is

4−9n/8 ·
(

39
n+1 · 9n · 49n/8−9n+1/8

)t

.

We need this expression to be bounded as n → ∞. Applying the change of variables x = 9n, we need to
show that

lim sup
x→∞

4−x/8 ·
(

39x · x · 4x/8−9x/8
)t

<∞.

This is true if and only if

4−1/8 · (39 · 4−1)t < 1,

which in turn is true if and only if t < α3. This proves that the hypothesis of the mass distribution
principle holds for cylinder sets. As in the proof of Corollary 4.3, any subset of F can be covered by at
most two cylinder sets with comparable diameter, so the hypothesis of the mass distribution principle holds
for arbitrary sets as well. �

Combining Corollaries 4.3 and 4.7 yields Theorem 2.1.

Remark 4.8. Either of the strategies used in this proof, the (simpler) strategy for the k = 3 case or the
(more complicated) strategy for the k = 2 case, could have been used (after minor modification) in the case
k ≥ 4 as well, but the resulting bound would have been significantly worse, measured by the fact that the
analogues of αk would not have tended to 1. Similarly, the strategy for the k = 2 case could have been used
for the k = 3 case, again resulting in a worse bound. In general, the principle is that whatever techniques
work for one value of k will also work for higher values of k, but may not give very good estimates for
higher values of k.

5. Intrinsic Diophantine approximation

5.1. Diophantine approximation – a brief survey. We first recall some definitions and state some
well-known classical theorems:

Definition 5.1. Let H : Q → R>0 be a function. We think of H as a “height function”, and for all p ∈ Z

and q ∈ N, we define the height of p/q to be the number H(p/q). We say that a function ψ : R>0 → R>0

is a Dirichlet function (with respect to the height function H) if for every x ∈ R \ Q there exist infinitely
many rationals p/q such that

∣

∣x− p/q
∣

∣ < ψ(H(p/q)).

Historically speaking, the only height function considered on the unit interval [0, 1] was the function
Hstd(p/q) = q, where p and q are chosen in reduced form, i.e. gcd(p, q) = 1. We will refer to this as the
standard height. It is readily verified that for example ψ0(q) = 1 and ψ1(q) = 1/q are Dirichlet func-
tions with respect to the standard height function and using the terminology of Definition 5.1, Dirichlet’s
approximation theorem may be stated as follows:

Theorem (Dirichlet). ψ2(q) =
1
q2 is a Dirichlet function with respect to the standard height function.9

9In fact, Dirichlet’s theorem furnishes a similar result for all dimensions d. It was recently pointed out to us by Y. Bugeaud
that the one-dimensional version of this result is actually much older, coming directly from the theory of continued fractions
(see e.g. [16, displayed equation on p.28]). Nevertheless, we call the theorem “Dirichlet’s theorem” so as to conform to usual
practice.
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For our purposes, although of interest in its own right, an improvement of a Dirichlet function by a
multiplicative constant is not significant. More precisely:

Definition 5.2. We say that a Dirichlet function ψ is optimal if there does not exist a Dirichlet function

φ for which limq→∞
φ(q)
ψ(q) → 0.

It is clear that Dirichlet’s theorem implies that the Dirichlet functions ψ0 and ψ1 defined above are not
optimal. The optimality of the function ψ2(q) = 1/q2 was demonstrated by Liouville, who proved that
quadratic irrationals are badly approximable. A real number x is called badly approximable if there exists
c(x) > 0 such that

∣

∣x− p/q
∣

∣ >
c(x)

q2
for all p/q ∈ Q.

Liouville’s result was later significantly improved by Jarńık, who proved that the Hausdorff dimension of
the set of badly approximable numbers is 1.

5.2. Iterated function systems, limit sets, and Hausdorff dimension. Let k ≥ 2 be an integer.
In what follows, we shall consider a finite famiily (Si)

k
i=1 of contracting similarities on the unit interval

I = [0, 1]. This means that for every 1 ≤ i ≤ k, the map Si : I → I satisfies

|Si(x) − Si(y)| = ci|x− y| ∀x, y ∈ I

for some 0 < ci < 1. We shall call such a family of similarities an Iterated Function System or IFS. A
nonempty compact set F ⊆ I is said to be the attractor or the limit set of the IFS if

F =

k
⋃

i=1

Si(F ).

It is well known (see e.g., [9, Chapter 9]) that the attractor F exists and is unique. Furthermore, if there
exists a bounded nonempty open set U such that

k
⋃

i=1

Si(U) ⊆ U

with the union disjoint, then the IFS is said to satisfy the open set condition. In this case, the Hausdorff
dimension of the attractor is equal to the unique solution s > 0 of the equation

(5.1)

k
∑

i=1

csi = 1.

We say that that the IFS (Si)
k
i=1 satisfies the strong separation condition if

Si(F ) ∩ Sj(F ) = �

for all i 6= j, where F is the attractor.10

A particularly important example of an iterated function system is the system

(5.2) Si(x) =
i+ x

b
, i ∈ C(b)

def
= {0, . . . , b− 1},

where b ≥ 2 is fixed. This system satisfies the open set condition (with U = (0, 1)) but not the strong
separation condition, and its attractor is the entire interval I. In some sense this IFS encodes the base b
expansion(s) of any number in the interval [0, 1], since the number

x = π(ω) = 0.ω1ω2 · · · (base b) =
∞
∑

i=1

ωi
bi

can be written as
x = lim

n→∞
Sω1

◦ · · · ◦ Sωn
(0).

10Note that the strong separation condition implies (but is not implied by) the open set condition.
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By looking at subsystems of the system (5.2), we can find IFSes whose limit sets can be described in terms
of base b expansions. Fix A ⊆ C(b), and consider the subsystem of (5.2) consisting of the similarities
(Si)i∈A. We call such a subsystem a base b IFS. Its limit set is precisely the set of all numbers in [0, 1] that
have at least one base b expansion whose digits all lie in A, i.e.

(5.3) F =

{

x ∈ [0, 1] : ∃ω ∈ AN with x =
∞
∑

i=1

ωi
bi

}

.

For example, if b = 3 and A = {0, 2}, then F is the standard Cantor ternary set, i.e. the set of all numbers
in [0, 1] that have at least one base 3 expansion containing only the digits 0 and 2.

It follows directly from (5.1) that the Hausdorff dimension of the base b IFS corresponding to an alphabet
A ⊆ C(b) is precisely log#(A)/ log(b).

We remark that it is easy to check whether a base b IFS satisfies the strong separation condition:

Observation 5.3. The base b IFS defined by the alphabet A ⊆ C(b) satisfies the strong separation
condition if and only if at least one of the following is true:

(1) 0 /∈ A.
(2) b− 1 /∈ A.
(3) A does not contain any pair of consecutive integers.

If a base b IFS satisfies the strong separation condition, then every element of its limit set F has exactly
one base b expansion whose digits come from A. In this case, there is no ambiguity about talking about “the
base b expansion” of a number in F , since we understand that if there is more than one base b expansion,
then we are talking about the one whose digits come from A.

5.3. Intrinsic approximation on limit sets. Let F ⊆ R be a closed set, which we will think of as a
fractal. The field of intrinsic Diophantine approximation is concerned with finding rational approximations
to an irrational number x ∈ F by rational numbers that lie on the fractal F . Thus Mahler’s first question is
about intrinsic approximation on the Cantor set. More generally, one may ask about intrinsic approximation
on the attractor of any similarity IFS. This leads to the following definition:

Definition 5.4. Let F ⊆ R be a closed set, and let H : F ∩ Q → R>0 be a height function. We say that a
function ψ : R>0 → R>0 is an intrinsic Dirichlet function on F (with respect to the height function H) if
for every x ∈ F \ Q there exist infinitely many rationals p/q ∈ F ∩ Q such that

∣

∣x− p/q
∣

∣ < ψ(H(p/q)).

Optimality of intrinsic Dirichlet functions can be defined in the same way as in Definition 5.2.

We have the following result:

Proposition 5.5 ([5, Corollary 2.2]). Let F be the limit set of a base b IFS, and let δ be the Hausdorff
dimension of F . Then for all x ∈ F , there exist infinitely many rational numbers p/q ∈ F (p ∈ Z, q ∈ N)
such that

∣

∣x− p/q
∣

∣ <
1

q(logb q)
1/δ

·

In other words, the function ψ∗(q) = (q · (logb q)1/δ)−1 is an intrinsic Dirichlet function on F for the
standard height function.

6. The symbolic height function

Let F be the limit set of a base b IFS satisfying the strong separation condition, and fix a rational
number r ∈ F ∩ Q. It is well known that the base b expansion of r is preperiodic, i.e.

(6.1) r = 0.ω1 . . . ωiωi+1 . . . ωi+j (base b),
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for some i ≥ 0, j ≥ 1, and ω1, . . . , ωi+j ∈ A. Here the bar indicates that the string ωi+1 · · ·ωi+j is infinitely
repeated. Rewriting the right-hand side as a sum of fractions yields

r =
ω1 . . . ωi

bi
+

∞
∑

m=1

ωi+1 . . . ωi+j
bi+mj

=
ω1 . . . ωi

bi
+
ωi+1 . . . ωi+j

bi
· 1/bj

1− 1/bj

=
ω1 . . . ωi

bi
+
ωi+1 . . . ωi+j

bi
· 1

bj − 1

where ω1 . . . ωi and ωi+1 . . . ωi+j are integers that have been written in base b. Adding the two resulting
fractions together, we end up with a (complicated) expression whose denominator is bi(bj − 1). Further
cancellations may or may not be possible, but we can always write the rational number as a fraction of
two integers, the denominator of which is bi(bj − 1).

This fact leads to a natural height function on F ∩ Q related to the base b structure of the fractal F :

(6.2) Hsym(r)
def
= bi · (bj − 1),

where the indices i and j are the smallest integers such that r can be written in the form (6.1). The function
Hsym is called the symbolic height function. It was studied in a more general context in [12]. Notice the
symbolic height of a rational number may not be the same as its standard height (i.e. its denominator
in reduced form). For example, the rational number 0.203 in the Cantor ternary set is equal to 3

4 , so its

standard height is 4. Nonetheless, the symbolic height of 0.203 is 30 · (32 − 1) = 8. It should be thought of
as the denominator resulting from the following calculation:

0.203 =
203
30

∞
∑

m=1

(

1

32

)m

=
6

1
· 1/32

1− 1/32

=
6

1
· 1/9
8/9

=
6

8
·

Although more cancellation is possible at the end of this calculation, this will not always be the case,11

so in a principled way we have stopped reducing the fraction here. The calculation illustrates the fact
that the symbolic height of a rational number r can be thought of as a “symbolic denominator”, i.e.
the denominator of a certain representation of r as the quotient of two integers. The numerator of this
representation can be thought of as a “symbolic numerator” (in the above example the symbolic numerator
would be 2), but as usual, for purposes of Diophantine approximation it is simpler to just work with the
denominator. Note that the standard height is by definition smaller than the symbolic one, since we have
pstd/qstd = psym/qsym, but the left-hand side is in reduced form.

We remark that heuristically, if we are given two rational numbers r1 and r2, and we are told that
r1 lies in the limit set of a base b IFS, but we are not told anything about r2, then we should expect
the (multiplicative) discrepancy between the standard height and the symbolic height to be smaller for r1
than for r2. This is because if we choose the numerator and denominator of a rational randomly, then
the numbers i and j satisfying (6.1) may be comparable to the standard height of the rational (meaning
that the symbolic height is an exponential function of the standard height), but the number would be
exceedingly unlikely to lie in any base b limit set, since its digits would essentially be random. By contrast,
if we choose the digits of a rational randomly out of a fixed alphabet A (with a fixed period and preperiod),
then the amount of cancellation we expect to see in the symbolic representation of the rational will be much
smaller, so the standard height and symbolic height will be relatively close. More heuristics regarding the
relation between the symbolic height function and the standard one were discussed in [12].

11For example, the fraction at the end of the calculation

0.2709 =
29

9
+

709

9
·

1

92 − 1
=

2 · 80 + 7 · 9

9 · 80
=

223

720

is already in reduced form.
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One reason the symbolic height function is interesting is that it naturally shows up in the proofs of
results regarding the standard height function. For example, the proof of Proposition 5.5 can easily be
modified to bound |x− p/q| in terms of the symbolic height of p/q rather than the standard height:

Proposition 6.1 ([5, Proof of Corollary 2.2]). Let F be the limit set of a base b IFS, and let δ be the
Hausdorff dimension of F . Then for all x ∈ F , there exist infinitely many rational numbers r = psym/qsym ∈
F such that

∣

∣x− p/q
∣

∣ <
1

qsym(logb qsym)
1/δ

·

In other words, the function ψ∗(q) = (q · (logb q)1/δ)−1 is an intrinsic Dirichlet function on F for the
symbolic height function.

In fact, the proof of [5, Corollary 2.2] essentially proceeds by first proving Proposition 6.1 and then
using the inequality Hstd ≤ Hsym to deduce Proposition 5.5. It appears extremely difficult to prove any
improvement (either for all points or only for some) of Proposition 5.5 for the standard height without just
proving the same bound for the symbolic height. So in some way, the symbolic height is measuring the
“strength of our techniques”.

Although the symbolic height function is motivated in terms of the standard height function, it can
also be analyzed on its own terms. For example, we can ask whether the intrinsic Dirichlet function ψ∗

appearing in Proposition 6.1 is optimal for the symbolic height function. This is the same (cf. [13, §2.1])
as asking whether there exist any points in F that are badly symbolically approximable with respect to
ψ∗:

Definition 6.2 (Special case of [12, Definition 4.7]). Let F be a base b limit set, and let δ denote the
Hausdorff dimension of F . A number x ∈ F is called badly symbolically approximable (with respect to ψ∗)
if there exists κ > 0 such that for every r = psym/qsym ∈ F ∩ Q, we have

(6.3) |x− r| ≥ κ

qsym(logb qsym)
1/δ

.

Theorem 6.3 (Corollary of [12, Lemma 4.9]; or see below). Let F be the limit set of a base b IFS satisfying
the strong separation condition. Then any x ∈ F whose base b expansion is uniformly de Bruijn is badly
symbolically approximable.

Combining with Theorem 2.1 gives:

Corollary 6.4. With F as above, the set of badly symbolically approximable points has dimension at least
αkδ > 0, where

αk =











1/49 k = 2

(8 · (9 log4(3)− 1))−1 k = 3
log(k−2)!
k log(k) k ≥ 4

.

In particular, the intrinsic Dirichlet function φ∗ appearing in Proposition 6.1 is optimal.

We remark that the optimality assertion follows directly from combining Theorem 6.3 with [2, Corollary
7]; Theorem 2.1 is not needed.

In contrast to Proposition 6.1, Theorem 6.3 and Corollary 6.4 are weaker than their (unproven) analogues
for the standard height function. This is because while Proposition 6.1 is about finding good approximations
to points, in Theorem 6.3 and Corollary 6.4 we show that for certain points, good approximations cannot
exist. But the inequality Hstd ≤ Hsym means that the quality of an approximation is better according to
the standard height than according to the symbolic height, which yields the appropriate implications.

We remark that Theorem 6.3 is only a one-way implication: there may be (and almost certainly are)
badly symbolically approximable numbers whose base b expansions are not uniformly de Bruijn. A combi-
natorial characterization of the base b expansions of badly symbolically approximable numbers was given
in [12, Lemma 4.9]. As a consequence of the one-sidedness of the implication, Theorem 6.3 yields a lower
bound on the dimension of the set of badly symbolically approximable points but not an upper bound.
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In fact, we believe that there is no nontrivial upper bound: we conjecture that the Hausdorff dimension
of the set of badly symbolically approximable points of any base b limit set F is equal to the Hausdorff
dimension of F . This conjecture is motivated by other situations in Diophantine approximation where the
dimension of the set of badly approximable points has always turned out to be full. However, Theorem 2.1
shows that this conjecture cannot be proven using uniformly de Bruijn sequences.

Although Theorem 6.3 is a consequence of the much more general result [12, Lemma 4.9], we prove it
here for completeness and ease of exposition.

Proof of Theorem 6.3. Let x ∈ F be a number whose base b expansion, which we denote by ω, is uniformly
de Bruijn. Let ℓ denote the size of the largest gap in the set Bω defined by (2.1). Fix r ∈ F ∩ Q, and let
the representation r = 0.τ1 . . . τiτi+1 . . . τj be chosen so as to minimize i and j. Then the symbolic height
of r, as defined in (6.2), is qsym = bi(bj−i − 1) ≤ bj . Since the IFS defining F is assumed to satisfy the
strong separation condition, the distance between x and r is comparable to b−m, where m is the largest
index for which ωi = τi for all i ≤ m. In fact, a careful analysis shows that |x− r| ≥ b−(m+2), though the
precise constant factor is not relevant. We claim that if j ≥ ℓ, then

(6.4) b−m ≥ b−ℓ

bjj1/δ
,

which demonstrates that (6.3) holds with κ = b−(ℓ+2). We now separate into two cases:
Case 1: m ≤ j + ℓ. In this case, we have

b−m ≥ b−jb−ℓ ≥ b−ℓ

bjj1/δ
,

as required.
Case 2: m > j + ℓ. In this case, by the mth letter, the sequence τ will have already begun to repeat.

The longest repeated string in the sequence τ1 . . . τm is τi+1 . . . τm−(j−i) = τj+1 . . . τm. Note that although
the two sides of this equation represent distinct instances of the same string as a substring of τ1 . . . τm, the
two instances may overlap with each other; this happens if and only if m > 2j− i. For the purposes of our
calculations, it does not matter whether these two instances overlap or not.

By the definition of m, we have ω1 · · ·ωm = τ1 · · · τm, so ω also has a repeated string ωi+1 . . . ωm−(j−i) =
ωj+1 . . . ωm of length (m − j) occurring in the first m letters. On the other hand, by the definition of ℓ,
there exists m− j− ℓ < n ≤ m− j such that n ∈ Bω, which implies that ω has no repeated string of length
n occurring in the first kn + n− 1 letters of ω. Since n ≤ m− j, it follows that m > kn + n− 1, and thus

kn ≤ m− n < j + ℓ ≤ 2j.

Since k ≥ 2 and n ≥ m− j − ℓ+ 1, this implies

km−j−ℓ ≤ j.

Raising both sides to the power of 1/δ gives

bm−j−ℓ ≤ j1/δ,

and rearranging gives (6.4). �

References

1. Martin Aigner, A course in enumeration, Graduate Texts in Mathematics, vol. 238, Springer, Berlin, 2007. MR 2339282
2. Verónica Becher and Pablo Heiber, On extending de Bruijn sequences, Inform. Process. Lett. 111 (2011), no. 18, 930–932.

MR 2849850 (2012e:68258)
3. Vasilii Bernik and Maurice Dodson, Metric Diophantine approximation on manifolds, Cambridge Tracts in Mathematics,

vol. 137, Cambridge University Press, Cambridge, 1999.
4. Ryan Broderick, Lior Fishman, Dmitry Kleinbock, Asaf Reich, and Barak Weiss, The set of badly approximable vectors

is strongly C1 incompressible, Math. Proc. Cambridge Philos. Soc. 153 (2012), no. 02, 319–339.
5. Ryan Broderick, Lior Fishman, and Asaf Reich, Intrinsic approximation on Cantor-like sets, a problem of Mahler, Mosc.

J. Comb. Number Theory 1 (2011), no. 4, 291–300.
6. Yann Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160, Cambridge University

Press, Cambridge, 2004.



DE BRUIJN SEQUENCES AND DIOPHANTINE APPROXIMATION ON FRACTALS 17

7. Yann Bugeaud and Arnaud Durand, Metric Diophantine approximation on the middle-third Cantor set, J. Eur. Math.
Soc. (JEMS) 18 (2016), no. 6, 1233–1272. MR 3500835

8. Manfred Einsiedler, Lior Fishman, and Uri Shapira, Diophantine approximations on fractals, Geom. Funct. Anal. 21

(2011), no. 1, 14–35.
9. Kenneth Falconer, Fractal geometry: Mathematical foundations and applications, John Wiley & Sons, Ltd., Chichester,

1990.
10. Lior Fishman, Schmidt’s game on fractals, Israel J. Math. 171 (2009), no. 1, 77–92.
11. Lior Fishman and David Simmons, Intrinsic approximation for fractals defined by rational iterated function systems -

Mahler’s research suggestion, Proc. Lond. Math. Soc. (3) 109 (2014), no. 1, 189–212.
12. , Extrinsic Diophantine approximation on manifolds and fractals, J. Math. Pures Appl. (9) 104 (2015), no. 1,

83–101.
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16. Adrien-Marie Legendre, Essai sur la théorie des nombres (Essay on number theory). Reprint of the second (1808) edition,

Cambridge Library Collection, Cambridge University Press, Cambridge, 2009 (French).
17. Kurt Mahler, Some suggestions for further research, Bull. Aust. Math. Soc. 29 (1984), 101–108.
18. Barak Weiss, Almost no points on a Cantor set are very well approximable, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng.

Sci. 457 (2001), no. 2008, 949–952.

University of North Texas, Department of Mathematics, 1155 Union Circle #311430, Denton, TX 76203-5017,

USA

E-mail address: lior.fishman@unt.edu

Brandeis University, Department of Mathematics, 415 South Street, Waltham, MA 02454-9110, USA

E-mail address: merrill2@brandeis.edu

University of York, Department of Mathematics, Heslington, York YO10 5DD, UK

E-mail address: David.Simmons@york.ac.uk

URL: https://sites.google.com/site/davidsimmonsmath/


	1. Introduction
	1.1. Acknowledgements

	2. Finite and infinite de Bruijn sequences
	3. Preliminaries
	4. Proof of Theorem ??
	4.1. The upper bound
	4.2. The lower bound

	5. Intrinsic Diophantine approximation
	5.1. Diophantine approximation – a brief survey
	5.2. Iterated function systems, limit sets, and Hausdorff dimension
	5.3. Intrinsic approximation on limit sets

	6. The symbolic height function
	References

