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Abstract

Cointegration is now extensively used to model the long term common trends

among economic variables in the field of econometrics. Recently, cointegration

has been successfully implemented in the context of structural health monitoring

(SHM), where it has been used to remove the confounding influences of environ-

mental and operational variations (EOVs) that can often mask the signature of

structural damage. However, restrained by its linear nature, the conventional

cointegration approach has limited power in modelling systems where measur-

ands are nonlinearly related; this occurs, for example, in the benchmark study

of the Z24 Bridge, where nonlinear relationships between natural frequencies

were induced during a period of very cold temperatures. To allow the removal

of EOVs from SHM data with nonlinear relationships like this, this paper ex-

tends the well-established cointegration method to a nonlinear context, which

is to allow a breakpoint in the cointegrating vector. In a novel approach, the

augmented Dickey-Fuller (ADF) statistic is used to find which position is most

appropriate for inserting a breakpoint, the Johansen procedure is then utilised

for the estimation of cointegrating vectors. The proposed approach is examined

with a simulated case and real SHM data from the Z24 Bridge, demonstrating

that the EOVs can be neatly eliminated.
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1. Introduction

Due to the fact that many structural and mechanical systems are approach-

ing or exceeding their original design life, structural health monitoring (SHM)

has been continually developing over the past decades. However, one of the main

obstacles that has kept SHM from practical implementation in industry is the

effect of environmental and operational variations (EOVs). EOVs are variations

induced by temperature, wind, humidity, traffic, etc. Because EOVs are influ-

encing the systems constantly, any measurements of the system responses can be

contaminated by EOVs, thus any potential damage information may be masked

falsely [1]. For instance, when Farrar et al. considered different levels of damage

on the I-40 Bridge in New Mexico, USA, it turned out that changes of the first

modal frequency caused by damage were from 2% to 6% depending on different

damage levels [2]; however, numerous investigations have suggested that varia-

tions induced by ambient temperature can range from 5% to 10% [3]. As such,

it is crucial for in situ SHM to discriminate the changes in the features extracted

from sensor readings which are caused by structural damage from those changes

caused by benign EOVs, such a process is termed as data normalisation. Many

approaches have been developed to address data normalisation issues, including

regression modelling, machine learning approaches, projection methods and so

on [1]. When the measurements of the EOVs are available, regression models

are common methods employed to explicitly model the dependency between the

EOVs and system response or damage-sensitive features [4]. Alternatively, prin-

cipal component analysis (PCA) is a projection method to find EOV-insensitive

features which are damage-sensitive at the same time. The fact that EOVs are

accountable for the most of the variance in the sensor readings, meaning that,

by projecting the features onto the space spanned by the eigenvectors associated

with the smallest eigenvalues, one can obtain features that are not influenced by
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Figure 1: Upper panel: normalised price index of crude oil price and household heating oil

price of US; Lower panel: normalised series of displacement measurements from the Tamar

Bridge.

EOVs but are potentially still sensitive to damage [5]. For further information

on these methods, readers are suggested to refer to [6] as a comparatively recent

review.

Recently, cointegration has been adopted successfully to address the chal-

lenge of EOVs in structural health monitoring [7]. As a routine method for

dealing with nonstationary time series in econometric studies, cointegration is

now widely used in statistical arbitrage, macroeconomic analysis, and fiscal pol-

icy research. However, what is the link between an econometric method and

EOVs in SHM? The answer is the existence of stochastic common trends. Con-

sider Figure 1 for example; the upper panel shows two normalised price indices

(heating oil and crude oil in the US) during a certain time period; the lower

panel exhibits two time series of two hanger displacements of the Tamar Bridge

measured during a certain time history [8]. By visual inspection of these two

images, two common characteristics can be observed immediately: each pair of

time series is nonstationary; each pair shares some long-term common trend.

These characteristics are not hard to understand, that economic time series are

simultaneously affected by markets, monetary policies etc., while displacement
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Figure 2: Cointegrated residual series plotted with normalised price index of crude oil price

and household heating oil price of US.

of each bridge hanger is significantly influenced by temperature, traffic etc., or

in the terminology of this paper - EOVs. Nonstationary series are said to be

cointegrated if there exists a linear combination of them that is stationary. De-

note the two time series in the upper panel of Figure 1 by xt and yt ; they can

be found to be cointegrated if some linear combination of them:

εt = xt + αyt (1)

is stationary (confirmed by performing a stationarity hypothesis test). The

residual series for the oil price series and the displacement series are plotted

in Figure 2, which shows that the residual series are purged of common trends

and become largely stationary. Once the underlying equilibrium between the

displacement series is built, the stationary residual series can serve as a damage

indicator that is immune to EOVs. It is worth noting at this point that the

cointegrated residual series of the oil series seems to behave differently before

and after approximately point 5000. This interesting phenomenon can be seen

as a regime change in the market, which will be elaborated more in the latter

part of this paper.

Based on the concept of cointegration, several applications on the issue of
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EOVs in SHM have been attempted. Cross et al. [7] proposed the whole frame-

work of the cointegration approach for SHM; the method was validated with a

time-varying multi-degree-freedom lumped mass system, and also a real SHM

problem, which was to perform damage detection of a composite plate subjected

to cyclic temperature variations. An efficient maximum likelihood estimation

method - the Johansen procedure (technical details of which will be covered

shortly in Section 2) - was used to estimate the most stationary cointegrat-

ing relationship; environmental variability could be significantly suppressed in

the stationary residual series and damage could be successfully detected. One

major benefit of employing the cointegration method was that by building the

inner relationship of the monitored variables, direct measurements of EOVs

were not necessary. Furthermore, Cross et al.[5] compared the cointegration

method with another two conventional methods: outlier analysis and princi-

pal component analysis (PCA), utilising the same experimental data from [7].

Although outlier analysis may produce an acceptably low number false-positive

damage indications, some points that are furthest away from the spectrum peak

were observed to be less sensitive to damage; PCA produced very similar re-

sults to cointegration analysis, but PCA may be restricted by the fact that

principal components are decomposed by the rule of orthogonality. After the

first principal component is determined, the minor component used for damage

detection is, therefore, restricted by this orthogonality condition. The cointe-

grating relationship, however, determined by the maximum likelihood method

- the Johansen procedure - is not restrained by other conditions, therefore the

authors of [7] concluded that cointegration may outperform PCA. A similar

study can be found in [9], where Dao and Staszewski applied the Johansen pro-

cedure and a stationarity test also in the context of Lamb-wave-based SHM. As

Lamb waves can be easily corrupted by undesired temperature effects, instead

of using the Lamb wave response directly, they used the cointegrated residual

series and the stationarity test statistic as an indicator of damage presence and

severity respectively. More recently, in an effort to enhance the damage sensi-

tivity of the cointegration method, Worden et al. [10] explored the potential
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connection between multiresolution (discrete wavelet) analysis and cointegra-

tion. By using a discrete wavelet transform (DWT), the original nonstationary

signal could be decomposed into several components at different levels. One

interesting finding was that the ”degree of nonstationarity” decreased as the

level number increased. This provided the possibility of extracting the most

nonstationary components from variables, and then constructing an enhanced

cointegrating relationship. Despite the result that this method improved the

damage sensitivity significantly, the decomposed components were mostly de-

noised. This may contradict a prerequisite of the Johansen procedure, therefore

regularisation to the decomposed component by adding noise was still necessary.

A more recent review paper presented by Worden et al. [11] reviewed some of

the latest developments in algorithms based on nonstationary time series anal-

ysis. Statistical control chart methods, cointegration and Bayesian mixture of

experts models were reviewed with examples; they were proved to be efficient

in removing benign environmental changes and detecting anomalies. The au-

thors also brought forward two open issues in cointegration analysis, which are

heteroskedasticity and nonlinearity, and this paper will attempt to address the

latter one.

Although cointegration has started to play an important role in modelling

nonstationary SHM data, its linear nature may still obstruct its implementa-

tion in a more general sense. Many real world engineering systems have nonlin-

ear responses to environmental and operational variability, which may further

cause nonlinear relationships among monitored variables; here, the conventional

cointegration method becomes much less effective, or inappropriate [12]. The

current authors have carried out exploratory studies on nonlinear methods of

cointegration [13]; however, the methods produced a heteroskedastic residual.

Zolna et al., [14] attempted to remedy this issue via a scaling transformation

which produced a residual stationary in the variance; however, this approach

appeared to move the nonstationarity into the tails of the residual distribution,

thus invalidating any thresholds set using standard statistical process control.

The current authors also investigated a nonlinear cointegration approach in the
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Engle-Granger framework, with Gaussian process (GP) regression performing

as a cointegrating regression function [15]. The GP is a powerful nonparamet-

ric regression model that could provide robust estimation of the distributions

of cointegrated residuals, rather than the point estimates from Ordinary Least

Squares. Real engineering data from the Z24 Bridge was used to validate the

model; it was shown that EOVs could be robustly eliminated with the GP, which

still maintained sensitivity to damage. More recently, the authors of the current

paper have presented an exploratory work to further extend the aforementioned

work. A novel nonlinear cointegration method named regime-switching cointe-

gration has been presented, which will allow cointegrating relationships to switch

according to certain criteria [16]. This paper will be a much extended treatment

of [16], considerably more technical detail will be presented and a real-world ex-

ample will be used to validate the proposed approach and the effects of allowing

multiple switching points will be considered.

This paper is organised as follows. First of all, the background theory of

unit roots and cointegration is briefly reviewed, and then a synthetic example

is presented; the regime-switching cointegration method is illustrated with this

example. The proposed method is briefly summarised in Section 3. A real

example from the benchmark study of the Z24 Bridge is used to examine the

proposed method. Finally, discussions and conclusions are presented.

2. Background theory

2.1. Unit roots and unit root tests

In terms of nonstationarity, econometricians have developed various tools

for testing for it. The unit root process is one of the most popular and well

established modelling methods for nonstationary time series. Consider the first

order autoregressive model of a time series xt:

xt = αxt−1 + ξt, (t = 1, 2, ...N) (2)

where ξt is a stationary process with zero mean and variance σ2, α is a real

number that determines the stationarity of xt: if |α| < 1, xt is stationary; if

7



|α| > 1, then xt is nonstationary, and its variance grows explosively with time;

if |α| = 1, then the variance of xt will be tσ2, which will grow with time, thus

the process is nonstationary. Such a data generating process is termed a unit

root process, or integrated of order 1, I(1). Generally, a process is integrated of

order d, I(d), if it becomes stationary after differencing d times. In the context

of SHM, it is not common to observe time series integrated of 2 or more, a

detailed discussion on this can be found in [17]. Therefore, nonstationary series

are treated as I(1) processes in this paper, if not explicitly stated otherwise.

Unit root tests are still an ongoing popular research topic in econometrics,

good surveys can be found in [18] and [19]. The unit root test adopted in

this paper is perhaps the most commonly used, the Dickey-Fuller(DF) test. To

illustrate how the DF test works, the argument will start from the simplest form

of unit root as expresssed in equation (2), this model can be reformulated as:

∆xt = (α− 1)xt−1 + ξt = πxt−1 + ξt, (t = 1, 2, ...N) (3)

where ∆ is a differencing operator such that ∆xt = xt − xt−1, and π = α − 1.

Based on this form, testing the null hypothesis H0 : π = 0 is equivalent to

testing the hypothesis α = 1; the alternative hypothesis H1 is π < 0. The test

for the null is simply a t test:

τ̂ =
π̂

se(π̂)
(4)

where π̂ is the least-squares estimate of π, and se(π̂) is the standard error of π̂.

However, Dickey and Fuller investigated that under the null, the least-squares

estimation π̂ is not consistent with the true value, thus the usual t test would

be inappropriate for testing the null. They further investigated the asymptotic

distribution of the t−statistic, and gave corrected tables based on Monte Carlo

simulations [20][21].

One may notice that in (2) and (3), the disturbance term ξt is a zero-mean

stationary series, which is still a strong assumption for many cases. To allow

potential serial correlation in the disturbance term, the augmented Dickey-Fuller
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(ADF) test was developed, which is based on the following form:

∆xt = πxt−1 +

m
∑

j=1

γj∆xt−j + εt (5)

where the γj are the coefficients of the autoregressive terms, m is the lag number.

Detailed deviations from equation (3) to (5) can be found in Chapter 6 of [12].

In this regression, a sufficient number of lags should be included to achieve a

white noise residual term εt; an information criteria is a common choice for

determining the lag number. Clearly, the ADF test has greater robustness and

flexibility than the DF test, thus it is most widely used in unit root testing [18].

Similarly to the previous, the null of the ADF test is H0 : π = 0 with

alternative: H1 : π < 0. The t−statistic is the same form as in (4), critical

values are given in [21]. The null hypothesis is rejected if τ̂ is smaller than the

corresponding critical value, and accepted otherwise. The ADF test can also be

easily extended by adding shift terms and/or trend terms:

∆xt = µ+ νt+ πxt−1 +

m
∑

j=1

γj∆xt−j + εt (6)

where µ and νt are the shift and trend terms respectively. Details of the model

(6) and further extensions can be found in [18].

Having reviewed the fundamentals of unit root processes and their statisti-

cal tests, one can now ascertain the nonstationarity of a series through these

procedures. It is not difficult to find that the test statistic is the key ingredient

in the unit root test, therefore in this paper, the power of the test statistic will

be explored, and attempts to measure the degree of stationarity with it, and

determine the best possible model form, will be carried out.

2.2. Cointegration and Johansen procedure

As reviewed in Section 1, cointegration is a powerful tool to understand

nonstationary data. As previously stated, two or more nonstationary series are

cointegrated if a linear combination of them can be found to be stationary.

The example in (1) is the simplest case, bivariate cointegration: xt and yt are
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cointegrated, and (1, α)′ is called a cointegrating vector. However, cointegration

can be extended to the multivariate context by using vector notation. Let

xt = (x1t, x2t, ...xmt) denote an m−variate time series and suppose there exists

a vector β that makes

ut = β · xt (7)

a univariate stationary time series. Here, the vector β = (β1, β2, ...βm)′ is

referred to as a cointegrating vector. Usually there are more than one possible

cointegrating relationships for a multivariate series xt, and many methods to

estimate the cointegrating vectors are available in the literature. The Engle-

Granger two-stage method for example [20], is a simple regression method, which

is to check if single-equation estimates of equilibrium error achieve stationarity.

The main drawback of the Engle-Granger two-stage method, however, is that

it only allows estimation of one cointegrating relationship every time, and the

specification of the regression form is somewhat arbitrary. Hence alternatively,

the Johansen procedure, an efficient maximum likelihood (ML) estimator, is

adopted in dealing with engineering data; successful applications can be found

in [7], [9] and [10].

The Johansen procedure offers an efficient framework that not only esti-

mates multiple cointegrating vectors at the same time, but also produces a test

statistic for determining the number of cointegrating vectors. In the SHM con-

text, it is more of interest to estimate the cointegrating vectors than to perform

tests on the number of cointegrating vectors, because it is the most stationary

combination that one looks for to eliminate the EOV-induced nonstationary

components in the data. For the sake of simplicity, this paper will only give

details of the estimation part of the procedure, readers who are interested in

the cointegration statistical test can find reviews and details from [22].

To perform the Johansen procedure, one starts from a vector autoregressive

(VAR) model, which has the form:

Xt = Φ1Xt−1 +Φ2Xt−2 + ...+ΦpXt−p + ut =

p
∑

j=1

ΦjXt−j + ut (8)

10



whereXt is am−dimensional vector time series, Φj is am×m coefficient matrix,

ut is am−dimensional vector Gaussian noise series, and the autoregressive order

p can be determined via information criteria. From a VAR(p), there will always

exist a corresponding vector error correction (VEC) model (by substituting

Xt = Xt−1 + ∆Xt,Xt−1 = Xt−2 + ∆Xt−1, ...,Xt−p = Xt−p−1 + ∆Xt−p into

(8) and a few rearrangements), which has the following expression:

∆Xt = ΠXt−1 +

p−1
∑

j=1

Ψj∆Xt−j + ut = ABTXt−1 +

p−1
∑

j=1

Ψj∆Xt−j + ut (9)

where Π = −(I−Φ1−...−Φp), Ψj = −(Φj+1+...Φp), and ut is am−dimensional

vector Gaussian noise series, ut ∼ N(0,Ω). A and B are two m × r matrices,

where r is the rank of the matrix Π. Matrix B is the cointegration vector matrix

to be found, consisting of r cointegrating vectors. Matrix A is the adjustment

matrix. Expression (9) is also referred to as the Granger representation theo-

rem, which explicitly depicts the dynamics between the long run equilibrium

(cointegration) and short term adjustments. Because ∆Xt, ∆Xt−j and ut are

stationary, in order to make both sides of (9) equivalent, ΠXt−1 has to be sta-

tionary as well. When the matrix Π is full rank, r = m, Xt will be a stationary

vector series, which violates the preassumption of nonstationarity; When Π is

zero rank, then Π = 0, which means Xt has no cointegration. Consequently,

matrix Π has to be rank deficient such that 0 < r < m [18].

To find B, Johansen proposed a maximum likelihood method. One can first

break the VEC regression in (9) into the following three smaller regressions:

∆Xt =

p−1
∑

j=1

Cj∆Xt−j + r0t (10)

Xt−1 =

p−1
∑

j=1

Dj∆Xt−j + r1t (11)

r0t = Πr1t + ut = ABT r1t + ut (12)

where A and B are equivalent to those in (9). Based on the regression in (12)

and the assumption that ut is iid Gaussian noise ut ∼ N(0,Ω), one can have
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the logarithm likelihood function:

lnL(A,B,Ω | Xt) = −
mN

2
ln(2π)−

N

2
ln |Ω| −

1

2

N
∑

t=1

uT
t Ω

−1ut (13)

= −
mN

2
ln(2π)−

N

2
ln |Ω| −

1

2

N
∑

t=1

(r0t −ABT r1t)
TΩ−1(r0t −ABT r1t)

(14)

where N is the sample size.

The next step is to find the parameters that maximise the log likelihood

function (14) and to estimate the residuals r0t and r1t. However, the details

of derivation are omitted here, one can find the theory and proofs behind it in

[22].

Finally, the optimisation problem turns into solving the following character-

istic equation:
∣

∣λiS11 − S11S
−1

10 S01

∣

∣ = 0 (15)

where Shk = 1

N

∑N

t=1
rht · rkt, (h, k = 0, 1). Assuming that (λ1, λ2, ...λr) are the

r eigenvalues of equation (15), and they are arranged in the order λ1 ≥ λ2 ≥

... ≥ λr, then the corresponding eigenvectors v1,v2, ...,vr can form the estimate

of the cointegrating vector matrix as follows:

B̂ = (v1,v2, ...,vr) (16)

As the first cointegrating vector v1 corresponds to the largest eigenvalue λ1, so

it is natural to select v1 as the “most stationary” cointegrating vector, so as to

make the stationary residual series.

So far, the background theory of cointegration has been reviewed. Although

it is far from thorough, it is sufficient for the method that will be proposed

shortly, which will largely be built around the theories above. As they are al-

ready relatively mature methods in the field of econometrics, the implementation

of the unit root test and the Johansen procedure is fully integrated in various

software platforms, such as Matlab (Econometric Toolbox), R and Eviews.
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3. Illustration of the regime-switching cointegration method with a

simulated example

As discussed in the introduction, the conventional cointegration method may

sometimes fall short because of the involvement of nonlinearity. To illustrate

the issue more specifically, a simple system is simulated, and the proposed new

method will be illustrated with it.

Consider a four degree of freedom (DOF) spring-mass system, where four

lumped masses (2kg each) are in a chain with both ends connected to ground, as

shown in Figure 3. To mimic the effect of EOVs, temperature particularly in this

case, a changing thermal field is applied to the system. 10000 real temperature

measurement data from the SHM campaign of the Tamar Bridge are used as the

thermal field. The temperature data ranges approximately from -10◦C to 20◦C,

which is fully displayed in the lower panel of Figure 4, representing readings

from about one year [8]. To introduce artificial nonlinearity to the system, the

springs in the system are all set to have nonlinear influences from temperature,

the third spring is set to have a slightly different effect from temperature. The

explicit expressions of their stiffness versus temperature T are given as follows:

k1 = k2 = k4 = k5 =







−0.15× T + 4, if T < 0

−0.05× T + 4, if T ≥ 0
(17)

k3 =







−0.15× T + 5, if T < 0

−0.25× T + 5, if T ≥ 0
(18)

Because of the different behaviour of k3, the nonlinear effect is introduced into

the vibration modes in which the third spring is participating - the second and

the fourth mode to be specific. Damage is simulated by letting the stiffness

of the second spring k2 decrease by 20%, at datapoint 5000 in the simulation.

The four natural frequencies of the system are obtained at each time instant

by solving the equations of motion. Additionally, a small amount of Gaussian

white noise N(0, 0.02) is added, to simulate measurement errors.

13



Figure 3: A four-DOF spring mass system.

Figure 4: Upper panel: the four natural frequency series of the system in Figure 3 plotted

as a function of time; Lower panel: temperature series plotted against time. Red dashed line

indicates damage introduction.

14



Figure 5: Residual series obtained using the conventional cointegration method, the red dashed

line indicates where damage occurs.

The upper panel of Figure 4 shows the identified four natural frequency se-

ries, plotted as a function of time. The dashed vertical line indicates where

damage is introduced. It is clear from Figure 4 that the effect of temperature

is significant. When the damage level is not high enough, damage information

may be overwhelmingly masked by the changes caused by temperature. Follow-

ing the conventional cointegration procedures proposed in [7], the data points

ranging from point number 2000 to 4000 are used for establishing the cointe-

grating vector. From this data one can obtain the residual series as shown in

Figure 5; here one can clearly see that the residual series is not very sensitive

to the damage occurrence - the underlying cointegration relationship has not

been accurately modelled and any conclusion drawn from this may therefore

be misleading. Because of the nonlinear effect of the third spring, the mutual

correlation between the four natural frequencies will shift from one regime to

another, as soon as the temperature crosses the zero degree point. This regime

switching may be evidently observed from Figure 6, which shows that the mu-

tual correlations among the four natural frequencies have a distinct bilinear

relationship, the knee points in the images correspond to the zero temperature

points.
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Figure 6: Mutual relationship between natural frequency series.
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Regime switching is not an uncommon issue in the economic world, for in-

stance, cointegrated stock indexes might change their inner dynamics from a

“bull market” to a “bear market” because of external influences, for example

monetary policy intervention, financial crisis or the latest unexpected event e.g.

“Brexit”. A large body of the econometric literature concerning this falls in

the extension to threshold cointegration, first proposed by Balke and Fomby

in 1997 [23]. In their framework, the adjustment term in the cointegrating re-

gression is allowed to shift once some indication variable exceeds a threshold.

Furthermore, there are several other variants built on the vector error correction

(VEC) model, as expressed above in (9); in [24] and [25] for example, they allow

a threshold effect on the lag terms and the intercept term respectively. Gregory

and Hansen [26], however, take the opposite direction for allowing a cointegrat-

ing relationship change, or in their terms, shift regime. More specifically, the

cointegrating vector can change its value after a certain breakpoint, after which

the system will stabilise itself at another long term equilibrium. The position

of the breakpoint is unlikely to be determined in advance, thus they calculate

the unit root statistic for each possible regime shift, and evaluate the smallest

values across all possible breakpoints. The situation in the four-DOF system

above is very similar to their case, as it enters another regime as soon as the

temperature drops below zero degrees. Inspired by Gregory and Hansen’s work,

a regime-switching cointegration method will be adopted to address the issue

above. Different from their method however, instead of using the Engle-Granger

framework, the more efficient Johansen procedure is implemented to estimate

cointegrating vectors.

Coming back to the problem of the four-DOF system, firstly only a small

amount of the data are needed for estimating the model, data points from point

2000 to 4000 are extracted for establishing the cointegrating vectors and break-

points. The training series are rearranged according to the order of temperature,

the shuffled series ft = (f1t, f2t, f3t, f4t), t = 1, 2, ...N , where N is the sample

size, is shown in the upper panel of Figure 7 , indexed by the temperature in the

lower panel. Even though a breakpoint was simulated to occur at zero degrees

17



Figure 7: Upper panel: natural frequency series rearranged in the order of temperature; Lower

panel: temperature series rearranged in the order of magnitude.

(around point number 900 in Figure 7), there is no clear sign of a shifting regime

in the figure. The next step is to ascertain the position of the break point from

the training data with the help of a unit root statistic, the ADF t−statistic.

Assume the current breakpoint is at position τ , then ft(1 : N) is split into two

sets: f1τ (1 : τ), f2τ (τ +1 : N). One then uses the Johansen procedure presented

earlier to estimate the cointegrating vector of each set, say β1τ and β2τ , and

to construct the residual series at this breakpoint, eτ = (β1τ f1τ ;β2τ f2τ ), where

“;” is used to concatenate these two vector series; the subscript τ denotes the

fact the residual series depends on the position of the breakpoint. From the

residual series eτ , the ADF statistic can be calculated using (4). Note that

not all positions are valid for τ because calculating the ADF statistic demands

a small number of samples, therefore in practice, the data sets in the inter-

val ([0.15N ], [0.85N ]) are used to evaluate the possible breakpoint. Following

the procedures above, the ADF statistic of the four-DOF system is plotted in

Figure 8, as a function of the training sample points. The blank space in the
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Figure 8: ADF statistics plot of the training sample points, the lowest point position deter-

mines the breakpoint position for the regime switch.

beginning and the end of the figure represents the fact that ADF statistics

are only evaluated in the interval ([0.15N ], [0.85N ]). The smallest value of the

curve is at data point 976, corresponding to the temperature 0.4767◦C, which is

quite close to the simulation assumption. Furthermore, with the estimated best

breakpoint and cointegrating vectors correspondingly, one can have the follow-

ing regime-switching cointegration relationship which is indexed by the value of

temperature:

εt =







147.90× y1t − 107.29× y2t − 122.96× y3t + 10.69× y4t − 3.54, if T ≤ 0.4767

−4.51× y1t − 84.87× y2t − 127.87× y3t − 165.07× y4t − 24.19, if T > 0.4767

(19)

Plotting the residual series from (19), as shown in Figure 9, it is clear that the

series is stationary before damage introduction, any effect from temperature is

effectively eliminated, and the nonlinear behaviour of the frequency response is

precisely captured. After 5000 data points, the magnitude of the residual sees a

sudden jump, which indicates strongly the occurrence of damage; the overlaid
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Figure 9: Residual series of the cointegration model, the vertical red dashed line indicates

damage introduction, the two horizontal red lines represent the three standard error bars; the

grey shaded areas show where cointegration switches regimes.

grey areas show where cointegration switches from one regime to the other. The

result can be interpreted by the fact that the regime-switching cointegration

is estimated with training data under normal condition, the healthy state of

the system has been accurately modelled. Whenever damage occurs, the long

term relationship of the variables no longer holds, thus the residual series turns

nonstationary immediately.

Despite the fact that the method suggests very good results, one may still

argue that shuffling the original series may break the underlying cointegrating

relationship, therefore the estimation procedure might be ill-conditioned. This

argument is partly true, that rearranging the order of series will surely break

the underlying error correction mechanism (as expressed in (9)), but the long

term relationship stays the same, or in other words, the rearranged series have

the same cointegrating vectors as the original series, because the cointegrating

relationships are stacking pointwise in time. One should bear in mind that the

final goal here is fundamentally different from the aim of the econometricians,

the concern is more about the long term relationship between variables, the

short term adjustments are less of interest for the moment. Therefore, it is
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legitimate to use temperature as a reference series to rearrange the original

series, and estimate the cointegrating vectors of the yielded series.

Next, the proposed method will be briefly summarised and then a real engi-

neering example will be used to examine the effectiveness of this method.

4. A brief summary of the regime-switching cointegration method

The procedure of the method is summarised as follows:

1. Rearrange the monitored series in the order of environmental or opera-

tional variable.

2. Insert a breakpoint at a position ranging from ([0.15N ], [0.85N ]), where

N is the sample size.

3. At each possible breakpoint, split the series into two halves, use the Jo-

hansen procedure to estimate the cointegrating vectors for each half.

4. With the estimated cointegrating vectors, calculate the residual series of

both halves and then merge them into one series, and determine the ADF

t−statistic of the merged residual series.

5. Repeat procedures from step 2 to 4 at each point from [0.15N ] to [0.85N ],

and construct a plot of all ADF statistics with respect to the breakpoint

positions. Pick the minimum value of the curve; the corresponding posi-

tion represents the optimal breakpoint.

6. With the optimal results from 5, using the environmental or operational

variable as an index variable, construct a switching cointegration relation-

ship and a stationary residual series, which should be purged of EOVs and

still have the power to detect damage.

This regime switching cointegration method is suitable for dealing with non-

stationary SHM data corrupted by EOVs, where system response may have

two distinct behaviours with respect to EOVs. For example, bridges may have

very different dynamic responses in hot and cold weather because of change

of stiffness or boundary conditions. The current approach however, assumes
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Figure 10: Upper panel: the first four natural frequency series of the Z24 Bridge, the red

dashed line indicates damage introduction; Lower panel: the air temperature measurement

during this time period.

that the measurements of the EOVs are accessible and only one kind of EOV is

driving the nonlinear behaviour of the structure. Likewise, any engineering sys-

tem with similar behaviour may be suitable for the proposed method, systems

that accommodate more regimes can be possibly addressed by inserting more

breakpoints in the proposed model.

5. An application to the SHM of the Z24 Bridge

The Z24 Bridge is now a benchmark study in the SHM community. The

monitoring campaign spanned one year before the bridge was dismantled, before

dismantling, several damage scenarios were implemented [4]. The monitoring

campaign also recorded various environmental parameters including tempera-

ture, wind speed and humidity. In order to obtain the dynamic properties of the

bridge, the natural frequencies were identified from acceleration measurements.

The upper panel of Figure 10 illustrates the first four natural frequency series,

f1 to f4, plotted with respect to time history; the vertical dashed line indicates
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Figure 11: Mutual relationships of the first four natural frequencies.

the position where the first damage scenario was implemented. The tempera-

ture readings for this time period are plotted in the lower panel. Note that there

are some missing data in the original dataset, thus the points corresponding to

time instants when data missing occurs are all removed as a data pre-processing

procedure.

On further examining the mutual relationship between the four natural fre-

quencies, as shown in Figure 11, the second natural frequency f2 has a clear

bilinear relationship with the other three. As discussed above, it is a quite sim-

ilar situation to the four-DOF system, the conventional cointegration method

may therefore fail to model this phenomena. Following the cointegration ap-

proach proposed in [7], one out of every two from the first 3000 data points

are used to estimate the cointegration model, and a residual series is obtained,

as demonstrated in Figure 12. Even though the residual becomes largely sta-

tionary, the underlying cointegrating relationships are not accurately modelled,
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Figure 12: Residual series obtained using the conventional cointegration method, the red

dashed line indicates where damage occurs.

therefore the damage information has been smoothed out as well.

The aim is to build a damage indicator based on the healthy state of the

bridge, so only the data before the dashed line are used for estimation; the

same training data set from above (one out of every two from the first 3000

data points) are used for training purpose. Following the procedures in Section

4, firstly the training series are rearranged in the order of the corresponding

temperature series, as exhibited in Figure 13. Then the ADF statistics of all

possible breakpoints are plotted in Figure 14, the lowest point of the curve

is selected as the best breakpoint, the estimate is 0.98◦C, and the estimated

switching cointegration has the following form:

εt =







28.54× f1 + 6.53× f2− 5.56× f3− 9.62× f4 + 13.07, if T ≤ 0.98

23.02× f1− 21.86× f2− 1.00× f3− 12.01× f4 + 161.15, if T > 0.98

(20)

Substituting the original series into (20), creates the residual series, which is

plotted in Figure 15. The effect of EOVs have been mostly eliminated, the

residual series before the dashed line is stationary. Three-sigma error bars are

overlaid in the figure; one can see that the undamaged residual series lies pre-

dominantly within the confidence intervals; immediately after the damage intro-
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Figure 13: Upper panel: natural frequency series rearranged in the order of temperature;

Lower panel: temperature series rearranged in the order of magnitude.

duction, the level of the residual has shifted drastically. To illustrate when the

system enters another regime, the cold regime (when temperature drops below

0.98◦C) is overlaid with shaded areas, the same shaded areas are duplicated

on Figure 10. One can see during winter time that the bridge may switch fre-

quently between two regimes; this may help to explain why conventional linear

cointegration fails to model the relationships between the natural frequencies.

However, note that in Figure 15, there are several blips before the dashed

line, nonetheless they will not affect the global stationarity. Several reasons

may account for these blips. Firstly, as the Johansen procedure is a maximum

likelihood method, the cointegrating vectors are all point estimates, thus it

is naturally prone to outliers. This may be further improved by putting the

cointegration approach in a Bayesian framework, so as to give the posterior

distribution of all the parameters. Another possible reason is the effect of the

missing values referred to earlier; it may be that this has biased the estimation.

Because of sensor faults, a small proportion of the original data are invalid, all

the time instants when missing data occurs have been removed, which might
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Figure 14: ADF statistics plot of the training sample points, the lowest point position deter-

mines the breakpoint position.

bias the estimation of the breakpoint position, causing a small number of data

points to enter the wrong regime.

Moreover, despite the fact that most parts of the residual series manifest

safely within the error bars, there is a potentially upward trend between data

point 3000 to 3500, before damage happens. There may be two main reasons to

explain this trend: firstly, this trend might be a local behaviour of the stationary

residual series, the local mean value may deviate from global mean sometimes,

but it will eventually revert back to the global mean. One may observe that near

data point 3500, the residual series has already started to drop back. Another

possible explanation for this trend is that the training data used above are from

cold seasons, while data point 3000 to 3500 correspond to hot seasons, thus there

might be another regime in the hot season. Unfortunately, due to the limited

length of data (10 months), the behaviour of the regime-switching cointegration

method cannot be evaluated in hotter months.

It is straightforward to apply the proposed method to a three-regime case, it

26



Figure 15: Residual series of the cointegration model, the red vertical dashed line indicates

damage introduction, the two horizontal red lines represent the three standard error bars; the

grey shaded areas show where cointegration switches regimes.

is attempted here as at least one of the relationships shown in Figure 11 could

be described as being more complex than bilinear (particularly that between

f1 and f2). In the procedures of Section 4, one should insert two breakpoints

instead of one breakpoint in step 2; and then make the first breakpoint fixed and

evaluate the second breakpoint at every possible position; subsequently, move

the first breakpoint to the next position, and evaluate the second breakpoint

again at every possible position; repeat the previous steps until every possible

breakpoint position is evaluated. This is essentially an exhaustive search; it is

feasible in the situation considered here as the size of the training set is not too

large. In general problems, it would be necessary to use a more sophisticated

optimisation/search routine.

Data points 1 to 3000 shown in Figure 10 are used as training samples to

estimate the two breakpoints, results are presented in Figure 16, where the

vertical and horizontal axes represent the positions of the first and the second

breakpoints, the colour indicates the magnitude of the ADF statistic evaluated
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at the corresponding breakpoints. The darkest point is selected as the optimal

breakpoint position. According to Figure 16, two breakpoints are selected at

2.36◦C and 3.95◦C, and the estimated regime-switching cointegration has the

following form:

εt =



















−4.80× f1 + 1.14× f2 + 11.31× f3− 9.27× f4− 1.12, if T ≤ 2.36

27.76× f1 + 13.35× f2 + 8.26× f3 + 7.82× f4− 348.94, if 2.36 < T < 3.95

−20.41× f1 + 14.40× f2 + 19.28× f3− 5.64× f4− 127.03, if T ≥ 3.95

(21)

Substituting the original series into (21), one can obtain a residual series,

as shown in Figure 17. The blue and grey areas shown the first and second

regimes respectively, and the left areas are the third regime. As expected,

the three-regime-switching cointegration produces a stationary residual series

which is still sensitive to damage. Interestingly, the residual shown in Figure 17

appears more stationary during the undamaged period than the results from one

switching point. The two breakpoints estimated in this model coincide well with

the switching response surface model estimated in [27], where a Bayesian treed

linear model is fitted. Comparing to the previous work where Gaussian process

regression is used to build the nonlinear cointegration relationship [15] using an

Engle-Granger approach, this paper implements a cointegration method using

the more powerful framework of the Johansen procedure. A more stationary

residual is obtained in this paper; a more interpretable model is presented; and

the model itself is even easier to implement in practice.

6. Discussions and conclusions

The contents of this paper are mainly about an exploratory approach aiming

to enhance the conventional cointegration method in the context of structural

health monitoring. Conventional cointegration methods can be used to remove

the common trends in SHM data induced by environmental and operational

effects, however, in some circumstances, nonlinearity in the system may under-

mine the cointegrating relationship; as such, a regime-switching cointegration
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Figure 16: ADF statistic plot of the training sample points, the vertical axis represents the

positions of the first breakpoint, the horizontal axis represents the positions of the second

breakpoints; the colours in the plot indicate the value of the ADF statistic evaluated at the

corresponding breakpoints.

Figure 17: Residual series of the regime-switching cointegration model, the red vertical dashed

line indicates damage introduction, the two horizontal red lines indicate the three standard

error bars; the grey and blue shaded areas show where cointegration switches regimes.
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method has been introduced in this paper to address both nonlinearity and non-

stationarity in SHM data. System responses may become nonstationary because

of the effect of environmental variation, while sometimes the effect can simulta-

neously induce a nonlinear relationship between features. The proposed method

allows the cointegrating relationship to switch according to the variation of envi-

ronmental variables, the switching point is called a breakpoint. The position of

the breakpoint is not likely to be known beforehand, thus all possible positions

are evaluated by inserting a breakpoint at a time and assessing the global non-

stationarity property of the residual series, the procedure is repeated throughout

all possible breakpoint positions, and the test statistics are compared to find the

most probable breakpoint position. The proposed method is employed here in

two case studies, a simulated four-DOF system and the benchmark study of the

Z24 Bridge; they both give very promising results, showing that all the benign

environmental effects have been successfully removed. Once damage occurs,

the underlying cointegration relationship no longer holds, therefore the residual

series shows a very significant indication of damage, as the residual series be-

come nonstationary again. However, it is important to note that there are still

some restrictions of the current approach, which will be future directions for the

authors:

• The Johansen procedure implemented is a maximum likelihood method,

which gives a crisp estimate of the cointegrating vector. It is known that

the maximum likelihood approach can be greatly affected by outliers and

dependent on the selection of training data. A possible solution to this

issue might be using cross validation to ascertain the model, but the vari-

ation of noise level and data missing can be difficult to deal with. Another

possible direction would be to put the Johansen procedure in a Bayesian

framework, instead of giving point estimates of cointegrating vectors, one

could ideally have the whole posterior distribution of them; however the

complexity of Johansen procedure will present a big challenge.

• In this paper, environmental measurements of temperature have been used
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to direct the regime shift of the system. One of the main benefits from

the previous cointegration framework is that the measurements of EOVs

are unnecessary. However, conventional cointegration is linear in nature,

and may not suffice to account for the nonlinear behaviour observed in

this paper. To address this, the measurement of temperature is taken into

account to build a nonlinear model which still maintains a simple form. In

this situation, temperature is the main driving variable of the nonlinear

relationship between the natural frequencies, and other EOVs including

wind speed, humidity are unnecessary in the analysis.

Strictly speaking, the method presented here should be considered a hy-

brid regression/cointegration approach. In using measurements of the

temperature in order to construct the cointegration regimes, the approach

represents a step forward, followed by a small step back; however, there

are overall advantages. It is important to note that, if a linear switching

behaviour is present, any global model polynomial or otherwise is likely

to be input-dependent, and may not generalise well away from the train-

ing data. On a related issue, global models may need more parameters to

explain piecewise-linear behaviour and will be less parsimonious.

An ideal enhancement here would be to allow the choice of a switching

point without measurement of the environmental variable. One possible

direction would fall in the domain of change point detection, a good refer-

ence can be found in [28], where a Bayesian online change point detection

algorithm is developed, which might be helpful to identify a switching

point purely based on data. Another interesting possibility is provided by

the idea of inferential parametrisation [29]. As in [29] one could in princi-

ple, infer a proxy for the temperature measurement directly from the nat-

ural frequencies themselves. In fact, a preliminary study has shown that

this can be accomplished for the Z24 data; however, there is an impor-

tant issue to overcome before those results can be shown with confidence.

The point is this; if the switching parameter (temperature) in this case
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is learned from data, it has to be learned from training data unaffected

by damage. This means that there is no guarantee that, when damage

occurs, the previously learned inferential parameter is still accurate. The

Z24 data itself is not sufficient to validate the approach because the full

range of environmental conditions were not available for any of the dam-

age states of the bridge. The inferential parameterisation approach is a

work in progress.

• Another possible enhancement of this method is to incorporate more

regimes in the cointegration. In the current method, only two and three

regimes are used, which captures well the nonlinear property of icing of the

bridge. However in many other cases, there are possibly more than three

regimes. The approach itself can be easily extended to the multiple regime

context, however the difficulty is how to determine the number of regimes.

More specific hypothesis test methods can be developed accordingly.

• Away from the example presented here, it is possible, or indeed likely, that

a structure may be influenced by multiple EOVs at the same time. How-

ever, not every EOV may induce nonlinear (regime-switching) behaviour

in the features of interest. Observing the phenomena of stiffening of the

asphalt in the Z24 case, this paper assumes that temperature is the main

EOV driving the regime-switching behaviour of that particular structure.

This assumption, however, may be violated in more of an operational

environment, if, for example, the bridge had been opened to traffic. A

challenging scenario in this context would be if multiple EOVs with mul-

tiple regimes induced a nonlinear relationship between features of interest.

In such a case, an entire embedded submanifold of switching points might

be present within the space of EOVs. A possible solution to this issue may

be to put the model in the framework of decision tree learning [30], where

a high-dimensional input space can be partitioned into finite discrete do-

mains, each domain representing a class of features determining the regime

in which the structure is behaving. Again, research is in progress on this
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matter.
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