
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tbbe20

International Biomechanics

ISSN: (Print) 2333-5432 (Online) Journal homepage: http://www.tandfonline.com/loi/tbbe20

How to choose and interpret similarity indices to
quantify the variability in gait joint kinematics

Roberto Di Marco, Emilia Scalona, Alessandra Pacilli, Paolo Cappa, Claudia
Mazzà & Stefano Rossi

To cite this article: Roberto Di Marco, Emilia Scalona, Alessandra Pacilli, Paolo Cappa, Claudia
Mazzà & Stefano Rossi (2018) How to choose and interpret similarity indices to quantify the
variability in gait joint kinematics, International Biomechanics, 5:1, 1-8

To link to this article:  https://doi.org/10.1080/23335432.2018.1426496

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

View supplementary material 

Published online: 01 Feb 2018.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tbbe20
http://www.tandfonline.com/loi/tbbe20
https://doi.org/10.1080/23335432.2018.1426496
http://www.tandfonline.com/doi/suppl/10.1080/23335432.2018.1426496
http://www.tandfonline.com/doi/suppl/10.1080/23335432.2018.1426496
http://www.tandfonline.com/action/authorSubmission?journalCode=tbbe20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tbbe20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/23335432.2018.1426496
http://www.tandfonline.com/doi/mlt/10.1080/23335432.2018.1426496
http://crossmark.crossref.org/dialog/?doi=10.1080/23335432.2018.1426496&domain=pdf&date_stamp=2018-02-01
http://crossmark.crossref.org/dialog/?doi=10.1080/23335432.2018.1426496&domain=pdf&date_stamp=2018-02-01


InternatIonal BIomechanIcs, 2018
Vol. 5, no. 1, 1–8
https://doi.org/10.1080/23335432.2018.1426496

How to choose and interpret similarity indices to quantify the variability in gait 
joint kinematics

Roberto Di Marcoa‡  , Emilia Scalonab‡  , Alessandra Pacillib, Paolo Cappab†  , Claudia Mazzàa   and 
Stefano Rossic 
aDepartment of mechanical engineering and InsIGneo Institute for in silico medicine, the University of sheffield, sheffield, UK; bDepartment 
of mechanical and aerospace engineering, ‘sapienza’ University of rome, rome, Italy; cDepartment of economics, engineering, society and 
Business organization (DeIm), University of tuscia, Viterbo, Italy

ABSTRACT
Repeatability and reproducibility indices are often used in gait analysis to validate models and assess 
patients in their follow-up. When comparing joint kinematics, their interpretation can be ambiguous 
due to a lack of understanding of the exact sources of their variations. This paper studied four indices 
(Root Mean Square Deviation, Mean Absolute Variability, Coefficient of Multiple Correlation, and 
Linear Fit Method) in relation to five confusing-factors: joints’ range of motion, sample-by-sample 
amplitude variability, offset, time shift and curve shape. A first simulation was conducted to test the 
mathematics behind each index. A second simulation tested the influence of the curve shape on the 
indices using a Fourier’s decomposition. The Coefficient of Multiple Correlation and the Linear Fit 
method Coefficients were independent from the range of motion. Different Coefficients of Multiple 
Correlation were found among different joints, leading to misinterpretation of the results. The 
Linear Fit Method coefficients should not be adopted when time shift increases. Root Mean Square 
Deviation and Mean Absolute Variability were sensitive to all the confusing-factors. The Linear Fit 
Method coefficients seemed to be the most suitable to assess gait data variability, complemented 
with Root Mean Square Deviation or Mean Absolute Variability as measurements of data dispersion.

Introduction

Human joint kinematics and dynamics assessed with 3D 
gait analysis have been proven to be suitable for clinical 
decision-making, thanks also to repeatability and repro-
ducibility studies that validate relevant measurements 
and modelling techniques (Carson et al. 2001; Arnold et 
al. 2013; Benedetti et al. 2013; Leigh et al. 2014). According 
to metrological standards (JCGM 2012), the repeatability is 
the measurement precision associated with the same oper-
ator performing the same procedure on the same group 
of subjects that in gait analysis quantifies the within- and 
between-subject variability. The reproducibility, instead, 
is the measurement precision associated with different 
operators performing the same procedure on the same 
group of subjects that quantifies the between-operator 
variability of the data. Several indices have been proposed 
and used as summarised in (Chau 2001a, 2001b) with some 
of these, including standard deviation (SD), coefficient 

of variation (CV), Intraclass Correlation Coefficient (ICC) 
(Shrout and Fleiss 1979), Standard Error of Measurement 
(SEM) (Stratford and Goldsmith 1997), Technical Error of 
Measurement (TEM) (Curtis et al. 2009), and Minimum 
Detectable Changes (MDC) (Klejman et al. 2010), have been 
used to quantify the data dispersion around the reference 
value at specific instants of the gait cycle. Other indices, 
instead, including the Root Mean Square Deviation (RMSD) 
(Picerno et al. 2008), Mean Absolute Variability (MAV) 
(Ferrari et al. 2010), Coefficient of Multiple Correlation 
(CMC) (Kadaba et al. 1989), and the Linear Fit Method (LFM) 
coefficients (Iosa et al. 2014), have been used to describe 
the whole within-stride variability, needed to quantify the 
similarity of the curve patterns along the whole gait cycle.

Repeatability and reproducibility indices (RI) are influ-
enced by various factors, which lead to limited interpre-
tation of the relevant results. These factors, here indicated 
as confusing-factors, are: (a)  the range of motion of the 
considered joint (Steinwender et al. 2000); (b) the sample 
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strides were retained for the analysis. During the second 
session, the treadmill was set at the same speed of the 
first data collection session. Sagittal lower limb kinemat-
ics (available at dx.doi.org/10.15131/shef.data.3502712 
(Di Marco et al. 2016)) were extracted and post-processed 
within MATLAB (R2015b, The MathWorks, Inc. – Natick, MA, 
USA).

The ranges of variation and the magnitude of variation 
of: joint range of motion (ROM), joint ROM fluctuations 
(α), offset between curves (O), and time shift (τ) were cal-
culated from the within- and the between-subject analyses 
performed on the experimental data. The obtained ranges 
of variations were then used for the Sine-curve and the 
Fourier-based data simulations.

Repeatability and reproducibility indices

Four indices that attempt to quantify the data similarity 
over the whole gait cycle were considered: RMSD, MAV, 
CMC and LFM coefficients. RMSD represents the root 
square of the variance, evaluated sample by sample, 
between the curves and the averaged curve over the gait 
cycle (JCGM 2008a, 2012). Similarly, MAV measures the 
average of the sample by sample difference between max-
imum and minimum values among the compared curves 
(Ferrari et al. 2010; Palermo et al. 2014). CMC is the widest 
used index to evaluate the repeatability of waveforms and 
it represents the root square of the adjusted coefficient of 
multiple determination as reported in (Kadaba et al. 1989). 
CMC is expected to return values between 0 and 1, and can 
be stratified as: (i) ‘poor similarity’ when 0 < CMC < 0.60; (ii) 
‘moderate similarity’ when 0.60 ≤ CMC < 0.75; (iii) ‘good 
similarity’ when 0.75 ≤ CMC < 0.85, (iv) ‘very good simi-
larity’ when 0.85  ≤  CMC  <  0.95; and (v) ‘excellent’ when 
0.95 ≤ CMC ≤ 1 (Garofalo et al. 2009). LFM calculates the 
linear regression between a set of curves and a reference 
averaged curve, returning separate information about 
the scaling factor (a1), the weighted averaged offset (a0), 
and the trueness of the linear relation between them (R2). 
When R2 > 0.5, the assumption of linearity is considered 
valid, and a1 and a0 can be interpreted as meaningful 
(Iosa et al. 2014). The coefficients a1 and a0 tend to their 
ideal values (i.e. 1 and 0, respectively) when comparing n 
curves with their averaged pattern (Iosa et al. 2014). Thus, 
to have a measure of the variations, it is worthy to report 
and observe the standard deviations for both a1 and a0 
(SD − a1 and SD − a0).

Data analysis

Sine-curve data
Following the methodology proposed in (Røislien et al. 
2012), groups of five curves (kj(t) with j is the number of 

by sample amplitude variations from the averaged pat-
tern, which is typical for each joint and representative for 
the within-subject variability (Winter 1984); (c) the offset 
among curves, mostly depending on marker reposition-
ing (Leardini et al. 1999); (d) the time shift due to physio-
logical and/or pathological gait phases variability (Mileti  
et al. 2016); and (e) the different curve shapes among joints 
and planes (Røislien et al. 2012). The effects of each confus-
ing-factor on the RI have not been tested, and a compara-
tive analysis that aims to clearly interpret the relationship 
between RI and the confusing-factors is still lacking in 
literature. Therefore, this research aims to fill this gap via 
simulations on both synthetic and experimental data gath-
ered from healthy adults, providing also a guide on how to 
choose the most suitable repeatability and reproducibility 
indices, and how to interpret the results when dealing with 
joint kinematic curves.

Materials and methods

To test the mathematical formulation of the indices, tests 
were initially conducted on generic sine-curve data, which 
were parametrised according to the aforementioned con-
fusing-factors. This allows to easily impose changes to one 
factor at a time, while leaving the curve shape unvaried, 
and to observe the relevant variations in the RI values. 
Then, to test the effect of changing the shape of the curves, 
keeping the focus on gait analysis applications, sagittal 
hip, knee and ankle joint kinematics gathered from exper-
imental data were decomposed with a Fourier’s analysis. 
The so obtained Fourier’s coefficients were then modified 
to simulate the confusing-factors on the joint kinematics 
(Fourier-based data).

Experimental setup

Ten healthy adults (males, age: 27.0 ± 1.9 years, body mass: 
76.7 ± 13.8 kg, leg length: 85.3 ± 4.6 cm), with no reported 
pathologies influencing their walking, were enrolled in this 
study after having signed an informed consent form (ethi-
cal approval granted by The University of Sheffield).

One operator performed the marker placement on the 
right lower limb of each participant (Di Marco et al. 2016). 
Gait data were recorded with a 10-camera stereophoto-
grammetric system (T-160, 100 Hz, Vicon Nexus 1.8.5, Vicon 
Motion System Ltd – Oxford, UK). Pre-processing was con-
ducted within Nexus (smoothing with a Woltring routine, 
size 30 (Woltring 1986)).

Participants walked barefoot for two minutes on a 
treadmill (ADAL3D-F, TECMACHINE HEF Groupe – France) 
at their self-selected speed, which was chosen during 
the first test session (0.82 ± 0.15 m/s). Two experimental 
sessions were performed one month apart, and five right 
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the simulated strides from 1 to 5 and t is the number of the 
time samples, i.e. 100) were generated from the following 
mathematical model:

where ROM, α, O and τ are the previously described param-
eters. To obtain the desired ROM to be imposed, the ampli-
tude of the sine-terms in Equation (1) was normalised by 
dividing term in the square brackets by its amplitude. 
Groups of five curves, equally spaced with respect to the 
single confusing-factor, were obtained by modifying each 
parameter once at time, generating four data-sets. ROM 
was set equal to 5° when varying α, O and τ. The imposed 
values of the confusing-factors, as well as the magni-
tude of their variations, were calculated as described in 
the Experimental setup section and are shown in Table 
1. Examples of the generated curves are available in the 
Supplementary materials.

The four selected RI were then calculated for each group 
of the generated curves. For RMSD and LFM, each jth curve 
was compared to the mean of the five curves from the 
same group, taken as a reference value.

Fourier-based data
Fourier decomposition (Equation (2)) was performed ana-
lysing the averaged sagittal hip, knee and ankle kinematics 

(1)

kj(t) = O + (1 + �)
ROM

1.76

[

0.5 sin
2�(t − �)

100
+ 0.5 sin

4�(t − �)

100

]

obtained from all the participants. The Fourier decompo-
sition of each mean curve is:

The decomposition order (n) was stopped when the 
RMSE between the averaged pattern and the curve recon-
structed with the Fourier series was lower than 1/100 of 
the precision of the technical measurement procedure (1° 
(Della Croce et al. 1999)). Three simple simulations were 
obtained changing the Fourier coefficients (A0, Ak and Bk) 
in order to simulate the variation of α, O, and τ on the 
curves. A mixed simulation (MS), accounting for all the pre-
vious parameters, was then performed to verify whether 
it is possible to resolve the different confusing-factors 
among curves. Specifically, a Monte Carlo procedure was 
used to perform 1000 simulations, generating groups of 
five curves for each simulation (JCGM 2008b). A uniform 
probability density function was considered for α, O, and 
τ, whose ranges of variations were chosen based on the 
experimental data, accounting for both within- (WS) and 
between-subjects (BS) variability (Table 2). Further details 
are available in the Supplementary materials. Finally, aver-
aged values and standard deviations for CMC and MAV 
among the values obtained from the 1000 simulations 
were calculated for the WS and BS analyses. Whereas, the 
averages and the standard deviations of the LFM coeffi-
cients, and RMSD were firstly calculated among the five 
curves of each group. Then, the average among the 1000 
simulations of the obtained averages and standard devia-
tions were reported as results for the LFM coefficients and 
RMSD. The adopted procedure is summarised in Figure 1.

Results

Sine-curve data

Table 3 shows the results obtained for the simulations on 
the sine-curve data. When varying ROM (Case 1), as the 
ROM increased, the distances between the generated 
curves increased and consistently did MAV and RMSD, 
whereas CMC and the LFM coefficients did not detect these 
changes. CMC, a0, and R2 did not notably change with the 
variations of α (Case 2), whereas standard deviation of a1, 
MAV and RMSD increased. Increasing the offset between 
the curves O (Case 3), CMC dramatically decreased from 
>0.99 to a complex value, indicating a complete loss of cor-
relation among the compared curves. The standard devi-
ation of a0 increased with the imposed O, whereas a1 and 
R2 reached their ideal values (i.e. 1). MAV returned exactly 
the maximum imposed O, and the mean and standard 

(2)

y(t) =
A
0

2
+

n
∑

k=1

[

Ak cos (kt) + Bk sin (kt)
]

, t from 0 to100

Table 1. Variations imposed in the simulations based on the sine-
curve for: (1) amplitude (ROM); (2) amplitude variability (α); (3) 
offset (O); and (4) time shift (τ). each case (i.e. each row) repre-
sents single set of 5 curves, equally spaced with respect to the 
single confusing-factor.

ROM (°) α (%ROM) O (%ROM) τ (%GaitCycle)
case 1 I 5 ±2.5 0 0

II 15 ±2.5 0 0
III 30 ±2.5 0 0
IV 40 ±2.5 0 0
V 50 ±2.5 0 0
VI 60 ±2.5 0 0

case 2 I 5 ±2.5 0 0
II 5 ±5.0 0 0
III 5 ±7.5 0 0
IV 5 ±10.0 0 0
V 5 ±12.5 0 0
VI 5 ±15.0 0 0

case 3 I 5 0 ±5 0
II 5 0 ±20 0
III 5 0 ±40 0
IV 5 0 ±60 0
V 5 0 ±80 0
VI 5 0 ±100 0

case 4 I 5 0 0 0–5
II 5 0 0 0–10
III 5 0 0 0–15
IV 5 0 0 0–20
V 5 0 0 0–25
VI 5 0 0 0–30
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values among the joints. This was more evident looking 
at the CMC-WS for Hip (0.99 ± 0.01), Knee (0.99 ± 0.01), 
and Ankle (0.98 ± 0.03). The SD − a1 changed with α for 
each joint, whereas the ̄R2 always reached its ideal value 
with null SD − R2.

Comparing the within- and between-subjects, CMC 
decreased more explicitly when increasing the offset: 
e.g. for the hip, CMC-WS was higher than 0.99, whereas 
CMC-BS was equal to 0.90 ± 0.05. Even though less evi-
dent than in the sine-curve data, the SD − a0 varied with the 

deviation of RMSD values increased. The variation of the 
time shift τ (Case 4) highlighted a decrease in both CMC 
and R2, and consequently the coefficients a1 and a0 were 
not further interpreted. MAV and RMSD increased with τ.

Fourier-based data

The obtained results testing the RI on the Fourier-based 
data are shown in Table 4. When varying α, means and 
standard deviations of CMC displayed slightly different 

Table 2. maximum range of variations imposed to amplitude variability (α), offset (O), and time shift (τ) for the simulations performed 
on Fourier-based data.

Within-subjects (WS) Between-subjects (BS)

α (%ROM) O (%ROM) τ (%GaitCycle) α (%ROM) O (%ROM) τ (%GaitCycle)

hip 5 5 5 10 30 10
Knee 5 5 5 5 15 10
ankle 5 5 5 10 20 10

Figure 1. simulation procedure based on a Fourier’s decomposition of the lower limb joint kinematics gathered from a sample of healthy 
adults (Fourier-based data). In the present study the number of simulations (N) was set equal to 1000.



INTERNATIONAL BIOMECHANICS   5

Coherently with the results obtained in the sine-curve 
data, the increment in the imposed time shift from 5% 

imposed O, whereas ā
1
 and ̄R2 reached their ideal values 

with null standard deviations.

Table 3. Values of coefficient of multiple correlation (cmc), linear fit method (lFm) coefficients, mean absolute variability (maV) and root 
mean square deviation (rmsD) obtained from the simulations performed on the sine-curve, changing its amplitude (ROM), amplitude 
variability (α), offset (O) and time shift (τ).

note: – has to be intended as the method has given complex values.

CMC

LFM coefficients

MAV (°) RMSD (°)a1 a0 (°) R2

case 1 rom (°) I >0.99 1.00 ± 0.04 0.0 ± 0.0 1.00 ± 0.00 0.1 0.0 ± 0.0
II >0.99 1.00 ± 0.04 0.0 ± 0.0 1.00 ± 0.00 0.3 0.1 ± 0.1
III >0.99 1.00 ± 0.04 0.0 ± 0.0 1.00 ± 0.00 0.7 0.3 ± 0.2
IV >0.99 1.00 ± 0.04 0.0 ± 0.0 1.00 ± 0.00 0.9 0.3 ± 0.2
V >0.99 1.00 ± 0.04 0.0 ± 0.0 1.00 ± 0.00 1.1 0.4 ± 0.3
VI >0.99 1.00 ± 0.04 0.0 ± 0.0 1.00 ± 0.00 1.3 0.5 ± 0.4

case 2 α (%rom) I >0.99 1.00 ± 0.04 0.0 ± 0.0 1.00 ± 0.00 0.1 0.0 ± 0.0
II >0.99 1.00 ± 0.08 0.0 ± 0.0 1.00 ± 0.00 0.2 0.1 ± 0.1
III >0.99 1.00 ± 0.12 0.0 ± 0.0 1.00 ± 0.00 0.3 0.1 ± 0.1
IV >0.99 1.00 ± 0.16 0.0 ± 0.0 1.00 ± 0.00 0.5 0.2 ± 0.1
V >0.99 1.00 ± 0.20 0.0 ± 0.0 1.00 ± 0.00 0.6 0.2 ± 0.2
VI 0.99 1.00 ± 0.24 0.0 ± 0.0 1.00 ± 0.00 0.7 0.3 ± 0.2

case 3 O (%rom) I >0.99 1.00 ± 0.00 0.0 ± 0.2 1.00 ± 0.00 0.5 0.2 ± 0.1
II 0.87 1.00 ± 0.00 0.0 ± 0.8 1.00 ± 0.00 2.0 0.6 ± 0.4
III 0.61 1.00 ± 0.00 0.0 ± 1.6 1.00 ± 0.00 4.0 1.2 ± 0.8
IV 0.37 1.00 ± 0.00 0.0 ± 2.4 1.00 ± 0.00 6.0 1.8 ± 1.3
V 0.04 1.00 ± 0.00 0.0 ± 3.2 1.00 ± 0.00 8.0 2.4 ± 1.7
VI – 1.00 ± 0.00 0.0 ± 4.0 1.00 ± 0.00 10.0 3.0 ± 2.1

case 4 τ (%Gaitcycle) I 0.98 1.00 ± 0.01 0.0 ± 0.0 0.97 ± 0.03 0.6 0.2 ± 0.1
II 0.92 1.00 ± 0.06 0.0 ± 0.0 0.89 ± 0.10 1.2 0.4 ± 0.3
III 0.84 1.00 ± 0.13 0.0 ± 0.0 0.77 ± 0.20 1.7 0.6 ± 0.3
IV 0.73 1.00 ± 0.23 0.0 ± 0.0 0.65 ± 0.28 2.1 0.8 ± 0.4
V 0.60 1.00 ± 0.35 0.0 ± 0.0 0.53 ± 0.33 2.5 1.0 ± 0.3
VI 0.46 1.00 ± 0.47 0.0 ± 0.0 0.43 ± 0.33 2.8 1.1 ± 0.3

Table 4. Values of coefficient of multiple correlation (cmc), linear fit method (lFm) coefficients, mean absolute variability (maV) and root 
mean square deviation (rmsD) obtained from the simulations performed on the Fourier-based data, changing amplitude variability (α), 
offset (O) and time shift (τ) of the curves.

note: MS stands for the simulations performed mixing the effects of α, O, and τ. WS and BS address the within- and between-subject analysis, respectively.

Joints ROM (°) CMC

LFM coefficients

MAV (°)

RMSD

ā
1

SD - a
1

ā
0
 (°)

SD - a
0
 

(°) ̄
R
2

SD - R
2 ̄RMSD (°)

SD − RMSD 
(°)

α (%rom) Hip WS 30 ± 2 0.99 ± 0.01 1.00 0.09 0 1 1.00 0.00 2 ± 1 1 0
BS 43 ± 6 0.98 ± 0.02 1.00 0.10 0 2 1.00 0.00 6 ± 4 2 1

Knee WS 64 ± 6 0.99 ± 0.01 1.00 0.08 0 2 1.00 0.00 6 ± 5 2 1
BS 64 ± 6 0.99 ± 0.01 1.00 0.08 0 2 1.00 0.00 6 ± 5 2 1

Ankle WS 14 ± 1 0.98 ± 0.03 1.00 0.12 0 0 1.00 0.00 1 ± 1 0 0
BS 19 ± 1 0.99 ± 0.02 1.00 0.10 0 0 1.00 0.00 1 ± 1 0 0

O (%rom) Hip WS 31 ± 0 >0.99 1.00 0.00 0 1 1.00 0.00 3 ± 1 1 1
BS 31 ± 0 0.90 ± 0.05 1.00 0.00 0 5 1.00 0.00 12 ± 3 4 2

Knee WS 51 ± 0 >0.99 1.00 0.00 0 2 1.00 0.00 4 ± 1 1 1
BS 51 ± 0 0.96 ± 0.02 1.00 0.00 0 4 1.00 0.00 11 ± 3 3 2

Ankle WS 18 ± 0 >0.99 1.00 0.00 0 1 1.00 0.00 1 ± 0 0 0
BS 18 ± 0 0.91 ± 0.04 1.00 0.00 0 2 1.00 0.00 5 ± 1 2 1

τ (%Gaitcycle) Hip WS 31 ± 0 0.99 ± 0.01 1.00 0.01 0 0 0.99 0.01 3 ± 1 1 1
BS 31 ± 0 0.97 ± 0.01 1.00 0.02 0 0 0.95 0.04 5 ± 1 2 1

Knee WS 51 ± 0 0.99 ± 0.01 1.00 0.01 0 0 0.98 0.02 5 ± 1 2 1
BS 51 ± 0 0.95 ± 0.02 1.00 0.04 0 0 0.92 0.07 9 ± 2 4 2

Ankle WS 18 ± 0 0.97 ± 0.01 1.00 0.02 0 0 0.96 0.04 2 ± 1 1 1
BS 18 ± 0 0.91 ± 0.03 1.00 0.07 0 0 0.87 0.11 4 ± 1 2 1

ms Hip WS 34 ± 1 0.99 ± 0.03 1.00 0.01 0 0 0.99 0.01 2 ± 1 1 1
BS 45 ± 5 0.97 ± 0.01 1.00 0.02 0 0 0.96 0.04 7 ± 3 3 2

Knee WS 51 ± 1 0.98 ± 0.01 1.00 0.01 0 0 0.97 0.02 5 ± 2 3 1
BS 52 ± 1 0.95 ± 0.02 1.00 0.04 0 0 0.92 0.08 10 ± 3 5 3

Ankle WS 17 ± 1 0.97 ± 0.01 1.00 0.02 0 0 0.96 0.04 2 ± 0 1 0
BS 18 ± 1 0.91 ± 0.03 1.00 0.07 0 0 0.87 0.11 4 ± 1 2 1
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2010). In that paper complex CMCs were reported even for 
smaller offsets, most likely due to a simultaneous presence 
of offset and time shift between the investigated curves, 
rather than offset only. The data here presented showed 
low CMC values also when imposing a large time shift 
between the curves. When dealing with confusing-fac-
tors having ranges comparable with the variability of kin-
ematics of healthy subjects, as in Fourier-based simulation 
(Table 4), the effect of the time shift on the CMC resulted 
to be predominant on the effect of the offset. The only 
exception was found for the CMC-BS of the hip, but it could 
be ascribed to the highest value of imposed offset (10°) 
with respect to the other cases. This trend was confirmed 
by the results obtained from the ‘mixed simulations’ (MS) 
that produced a decrease in the CMCs. The dependence 
of CMCs on these confusing-factors highlighted the diffi-
culty of interpreting whether low values of CMC are due 
to a large offset or a high time shift between the curves. 
Our findings recommend the CMCs to be interpreted only 
after having established, at least via a visual inspection of 
the curves, the presence or absence of large offsets and 
time shifts.

The LFM yielded three coefficients, which did not vary 
when changing the ROM of the sine-curve. The scaling 
factor (a1) reflected the changes in the sample by sam-
ple amplitude variations (α). This emerged clearly look-
ing at SD − a1, where null a0 and R2 equal to 1 were found. 
Results in Table 4 (α = 5%, WS) showed equal ̄R2 and SD − R2 
for different joints, indicating that R2 is not dependent 
from the curve shape. Variations of the imposed offset 
reflected onto the SD − a0, whereas a1 and R2 remained 
equal to their ideal values. The a0 represents directly the 
offset when comparing only two curves (Iosa et al. 2014). 
However, increasing of the number of curves under inves-
tigation led to a mismatch between the obtained ā

0
 and 

SD − a0, and the offset. In fact, the ā
0
 is always equal to 

zero even if the offset among curves increased, and the 
SD − a0 is only an estimate of the offset variation. The only 
confusing-factor that invalidated the assumption of a lin-
ear relationship between the compared curves was the 
time shift (τ). Indeed, when LFM is adopted in gait studies, 
the decrease in R2 should be interpreted as presence of 
time shift between the curves, and the other coefficients 
should not be further used. Thus, variations of the scaling 
factor a1 cannot be directly interpreted as variations in the 
ROM fluctuations (α). In fact, when R2 is not equal to 1, 
the effects of both time shift and ROM fluctuations might 
be confused. Moreover, SD − a1 and SD − a0 obtained for 
the mixed simulation were equal to those obtained for 
time shift simulation, despite the range of variations of 
amplitude variability and offset were the same of those 
imposed in α and O simulations. This suggests that the 
time-shift affects the LFM coefficients more than the other 

(WS) to 10% (BS) resulted in a decrease in the CMC val-
ues for all joints and both comparisons. Concerning the 
LFM coefficients, ̄R2 decreased and SD − R2 increased with 
the increase of τ, and the even lower values were found 
for the BS comparison of the ankle joint ( ̄R2  =  0.87  and 
SD − R2 = 0.11).

The mixed simulation (MS) from WS to BS provided 
similar results of those obtained via the time shift simula-
tion. Comparing the within- and between-subjects, MAV 
and RMSD increased following the increment of all the 
imposed variations.

Discussion

This study presented a comparative analysis of four indi-
ces used to assess gait data repeatability and reproduc-
ibility, aiming to differentiate the effect of the defined 
 confusing-factors (i.e. joint range of motion (ROM),  joint 
ROM fluctuations (α), offset between curves (O), time shift 
(τ), curve pattern). To this purpose, the sensitivity of the 
RI to each of the confusing-factors has been highlighted 
using two simulated data-sets. The first data-set is based 
on simulations conducted on sine-curves aiming to test the 
mathematical formulation of the indices. The second one 
is based on gait data reconstructed via a Fourier’s decom-
position of sagittal lower limb kinematics of healthy adults.

CMC was insensitive to the range of motion as it did 
not change when varying only the ROM of the sine-curve 
from 5° to 60° (Table 3). Small variations in CMC values 
could be observed when varying the sample by sample 
amplitude (α). Same results were obtained also for the 
Fourier-based simulations. This seems to be in contrast 
with (Røislien et al. 2012), which reports low CMC values 
obtained from a data-set characterised by small range of 
motion. Differently from the approach adopted here in 
which the parameters were varied one at a time, the CMC 
calculated in (Røislien et al. 2012) accounted for simul-
taneous variations of offsets, time shift and ROM fluc-
tuations. Looking at the results from the within-subject 
analysis on the Fourier-based data, when the same ROM 
fluctuations were imposed to hip, knee and ankle kine-
matics, CMC values within the range of ‘excellent similar-
ity’ were obtained for both hip and knee, whereas lower 
CMCs, which could be classified as ‘very good similarity’, 
were obtained for the ankle. Thus, CMC is sensitive to the 
curve shape (Growney et al. 1997; Steinwender et al. 2000), 
and when different joints are considered, a stratification 
of CMC values (Garofalo et al. 2009) should be carefully 
adopted to avoid misinterpretation of the results even if a 
within-subject comparison is performed. The CMC was also 
affected by the time shift and offset variations, with some 
of the latter even causing the coefficients to reach complex 
values (Table 3), as reported also in (Ferrari, Cutti, Cappello 
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