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Summary: Motivated by a cutting edge problem related to the shape of α−helices in proteins, we formulate a

parametric statistical model, which incorporates the cylindrical nature of the helix. Our focus is to detect a “kink”,

which is a drastic change in the axial direction of the helix. We propose a statistical model for the straight α−helix

and derive the maximum likelihood estimation procedure. The cylinder is an accepted geometric model for α−helices,

but our statistical formulation, for the first time, quantifies the uncertainty in atom-positions around the cylinder.

We propose a change point technique “Kink-Detector” to detect a kink location along the helix. Unlike classical

change point problems, the change in direction of a helix depends on a simultaneous shift of multiple data points

rather than a single data point, and is less straightforward. Our biological building block is crowdsourced data on

straight and kinked helices; which has set a gold standard. We use this data to identify salient features to construct

Kink-Detector, test its performance and gain some insights. We find the performance of Kink-Detector comparable to

its computational competitor called “Kink-Finder”. We highlight that identification of kinks by visual assessment can

have limitations and Kink-Detector may help in such cases. Further, an analysis of crowdsourced curved α−helices

finds that Kink-Detector is also effective in detecting moderate changes in axial directions.

Key words: Change point; Crowdsourced data; Helix fitting; Kink detection; Membrane protein; Protein structure.
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1. Introduction

Proteins are considered the workhorses of life. There have been recent studies into the

statistical aspects of the 3D atomic configuration of protein structures (see Mardia, 2013).

The shape of a protein plays an important role in its function, and proteins contain some

specific shapes (secondary structures) such as helices. Among helices, the most common is

the α−helix, which is of a right-handed spiral shape. In membrane proteins, it is known

that α−helices appear frequently with a “kink”. These are called kinked helices in contrast

to straight helices. These kinked helices are often functionally important (see Sansom and

Weinstein, 2000), particularly in cellular processes and drug targets. Figure 1 shows a plot

of a straight helix and a kinked helix (for a schematic diagram of a membrane protein with

kinked and straight helices, see Web Figure 1 Web Appendix A). Kinks have been commonly

studied in soluble proteins, for which more structural data is available (see Yohannan et al.,

2004; Meruelo et al., 2011; Bansal et al., 2000). In this paper, we use data on α−helices for

membrane proteins originally from Kneissl et al. (2011).

A large number of methods exist to identify kinks in α−helices in proteins. Such structure-

based kink identification methods use the three-dimensional atomic coordinates of the Cα

atoms as a basis for kink identification. Wilman, Ebejer, Shi, Deane, and Knapp (2014)

have given an overview together with what softwares are available. To name a few softwares:

ProKink (Visiers et al., 2000), TMkink (Meruelo et al., 2011), Helanal (Bansal et al., 2000),

Helanal-Plus (Kumar and Bansal, 2012), McHelan (Langelaan et al., 2010) and Kink-Finder

(Wilman, Shi, and Deane, 2014). These methods identify the α−helices within a protein

using a variety of approaches and then analyze these α−helices to identify kinks. They differ

in a number of areas, but the main differences are in the way they fit helix axes, the length

and the segments of the helix to which they fit the axes. In general, they identify the position

of the kink based on the residue with the largest angle.
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Crowdsourced Data: Wilman, Ebejer, Shi, Deane, and Knapp (2014) have carried out a

comparison of competitive methods after creating a gold standard data based on crowd-

sourcing. The crowdsourced data has 300 helices, which have been drawn randomly from

the manually annotated data of 1014 helices in Kneissl et al. (2011). Kneissl annotation

uses three classes: Straight, Kinked and Curved. Web Table 1 in Web Appendix B shows

the Kneissl classification together with the crowdsourcing classification. We note that 48 of

the 300 helices remained unclassified in the crowdsourcing exercise, thus leaving 252 helices

classified: 129 straight, 64 kinked and 59 curved helices. Wilman, Ebejer, Shi, Deane, and

Knapp (2014) have chosen three competitive methods for a comparison with Kink-Finder,

viz. McHelan, Helanal-Plus and manual annotation by Kneissl et al. (2011). They concluded

that the Kink-Finder and Kneissl et al. (2011) classifications are more consistent with the

crowdsourced classifications than the other two methods. Note that the Kneissl classification

is based on manual annotation and crowdsourcing “refines” the classification of the 300

helices, leading to the gold standard data or crowdsourced data, and therefore we are left

with Kink-Finder as our benchmark.

Blundell et al. (1983) and Barlow and Thornton (1988) initiated the work using curvatures

of the helices and used main classification as Straight, Kinked and Curved. There are several

ways to define these classifications but it is better to recall how Wilman, Ebejer, Shi, Deane,

and Knapp (2014) formulated these for their experiments.

• Kinked: There is a clear location where the direction of the helix changes. Only a small

part of the helix is involved in this.

• Curved: There is a slow but steady change of the direction of the helix. This can happen

over a large part or even all of the helix.

• Straight: There is no change in the overall direction of the helix.

The main point to note is that so far there is no method based on a statistical model. We
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will take Kink-Finder as the main benchmark, noting that the comparison of a model–based

versus a computational method is gratifying but our novel statistical model stands on its

own and provides additional insights.

[Figure 1 about here.]

This paper has two main methodological objectives: the first is to fit a curve (helix) on a

cylinder and another is to find the ‘change point’ on the curve. Fitting a curve on a manifold

(namely fitting a small circle on a sphere) has been studied initially by Mardia and Gadsden

(1977) and very recently by Jung et al. (2011) among others. There are some similarities,

but here we are dealing with a curve on a cylinder, where the data points are ordered.

The data here consists of three coordinates; so it can be thought of as a change point problem

in multivariate analysis. In multivariate analysis, the change point problem using a Gaussian

model has been studied initially by Srivastava and Worsley (1986) and recently by Siegmund

et al. (2011) among others. While their focus is on shifting of mean, our problem is in the

non-Euclidean setting relating to change in the axial direction of a cylinder. The problem

of a change point on a manifold is not straightforward, see for example, change point on a

circular manifold in Rueda et al. (2016). Furthermore, our problem is not simply a change

point problem on a manifold, in the sense that the change point is not a single point, but

changes in the direction of the helix axis (which depends on multiple points). So, we can

describe our problem as a “regional change point problem”.

In Section 2, we describe our statistical model for a straight helix and give the maximum

likelihood estimation procedure in Section 3. Using this procedure, we train our model on

a crowdsourced data of straight helices (Wilman, Ebejer, Shi, Deane, and Knapp, 2014) in

Section 4; this data provides a “gold standard”. Thus we have the parameter values of the

model for straight helices and hence a full specification of the distribution under the null

hypothesis of a straight helix. We propose to detect the presence and position of a kink based
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on a particular departure from the null model, where there is a definite gradual change point.

The proposed method, which we call “Kink-Detector”, is discussed in Section 5. In Section 6,

we test the Kink-Detector on the crowdsourced data and find its performance comparable to

Kink-Finder. Here, we also demonstrate an interesting finding that identification of straight

or kinked helices by visual assessment in the experimental data has some limitation when the

kink angles are small, and our method provides some insight into such cases. Further, based

on an analysis of curved helices we find that Kink-Detector is more accurate in detecting

moderate changes in axial directions than Kink-Finder. We conclude with a discussion in

Section 7. The web supplement included with this paper provides supporting details relating

to the helix structure, estimation procedure and output from Kink-Detector when applied

to crowdsourced data. We use some specific helices (numbered Helix 1 to Helix 9) from

the crowdsourced data in this paper and its web supplement. Helices 1 to 7 are cases of

misclassification by Kink-Detector while classifying helices into “kinked” versus “straight”.

Helices 8 and 9 are used as examples in the web supplement to illustrate the estimation

procedure and its application. For ease of reference, Table 1 lists these helices and provides

a brief description of the context in which they are discussed.

[Table 1 about here.]

2. The Straight Helix Model

Let (xi, yi, zi), i = 1, . . . , n be n consecutive points on a helix. For the α−helix, we take these

n points for our study here to be Cα atoms which are the key atoms of a protein chain (see

for example Mardia, 2013). The Cα is the central atom of each residue and is commonly used

to trace an α−helix in display programmes. It is easier to first formulate the straight helix

model for an “aligned α−helix”, i.e. where the axis of the helix is aligned with the z−axis.
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We then extend it to an “unaligned α−helix”, i.e. where the axis direction is not aligned

with z−axis.

Aligned α−helix: We begin with a model formulation for a straight helix where its axis is

known. Without any loss of generality, we take it to be the z-axis. For the aligned straight

helix, our model formulation with random errors is as follows.

xi = a cos ti + ǫ1i, yi = a sin ti + ǫ2i, zi = cti + ǫ3i; i = 1, . . . , n; a > 0, c > 0, (1)

where the axis of the aligned straight helix is the z–axis, a is the radius of the cylinder, and

2πc is the pitch (i.e. the vertical distance between consecutive turns of the helix). Further, we

assume the errors {ǫ1i, ǫ2i, ǫ3i} to be independent and normally distributed, i.e. N(0, σ2
I),

where I is the 3-dimensional identity matrix. Web Figure 2 in Web Appendix C plots an

aligned helix with the model parameters given in equation (1).

For the aligned α−helix, based on previous empirical studies, the “ideal” (accepted) value

for a is taken as 2.3 Å and for the pitch 5.4 Å (see for example Dickerson and Geis, 1969, pp

26–28), where we note that the distance between two atoms is measured in Ångström (Å)

and 1Å= 10−10m. Note that the {ti} are in radians and for the ideal α–helix, the coordinates

on the cylinders move in steps of 100 degrees or 2π
3.6

radians. In other words, there are 3.6

atoms for every full turn of 2π radians. Hence, it follows that ti =
2πi
3.6

and c = 5.4
2π

= 0.86Å.

This means that here ti = βi with the “ideal” value of β is 1.75 radians or 100◦. So, the ideal

values of α−helix parameters in (1) are:

a = 2.3, c = 0.86, β = 1.75, ti = βi, i = 1, . . . , n; (2)

so {ti} are known except for the parameter β. Later, in Section 4, we show that the estimates

for (a, c, β) obtained by applying our statistical model on the crowdsourced data for straight

helices provide support for the aforementioned ideal values. Furthermore, based on our

statistical model, for the first time, we provide additional insight on the uncertainty around

the parameter σ2.
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Unaligned α−helix: If the axis of the helix is not already aligned, then one needs to work

with the unaligned data, say, (x0i, y0i, z0i), i = 1, . . . , n. We write

X = (X1,X2, . . .Xn),X0 = (X01,X02, . . .X0n) (3)

where Xi = (xi, yi, zi)
T and X0i = (x0i, y0i, z0i)

T , i = 1, . . . , n. Then the 3× n data matrices

X and X0 are related by a rigid transformation, say,

X = AX0 +B, (4)

where A is a 3× 3 rotation matrix and B = b1T
n where 1n is an n dimensional vector of 1’s

and b is a translation vector. Further, we write the parameter matrices ∆ and D as follows:

∆ = diag(a, a, c),D = (d1,d2, . . .dn). (5)

where di = (cos ti, sin ti, ti)
T , i = 1, . . . , n, Then, the model for the unaligned helix becomes

AX0 +B = ∆D+ ǫ, (6)

where ǫ is 3× n matrix with its elements ǫij. Equivalently, we have

X0 = −ATB+AT∆D+ ǫ1, (7)

where ǫ1 = AT
ǫ. Since the matrixA is orthonormal and each column vector of ǫ isN(0, σ2

I),

each column vector of ǫ1 will also be N(0, σ2
I).

3. Maximum Likelihood Estimation

We now obtain the maximum likelihood estimates (MLE) (â, ĉ, b̂, Â, {t̂i}, σ̂2) for the parame-

ters (a, c,b,A, {ti}, σ
2) of the general model given in (7). There are no closed form expressions

for the parameters and hence the estimation involves iterations. Here, we derive the system

of mathematical equations required for the iterations, and defer the implementation details

to Web Appendix D.

The −2× log likelihood function (except for a constant) for the data matrix X0 is given by

3n log σ2 + Trace(X0 +ATB−AT∆D)T (X0 +ATB−AT∆D)/σ2.
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First we note that given all other estimates except σ2 and the aligned coordinates as X =

ÂX0 + B̂, we have

σ̂2 =
n∑

i=1

{(
xi − â cos t̂i

)2
+
(
yi − â sin t̂i

)2
+
(
zi − ĉ t̂i

)2}
/(3n). (8)

This is the mean squared deviation of the aligned coordinates from the expected helix

position. Next, for the remaining parameters, rotation matrix A, translation vector b, helix

parameters ∆ (equivalently a, c) and {ti}
n
i=1, we solve the following minimization problem.

min
(a,c,b,A,{ti},σ2)

Trace(X0 +ATB−AT∆D)T (X0 +ATB−AT∆D). (9)

Since A is an orthonormal matrix, this is equivalent to solving the following problem.

min
(a,c,b,A,{ti},σ2)

Trace(AX0 +B−∆D)T (AX0 +B−∆D). (10)

Further, we have X = AX0 +B, so (10) reduces to

n∑

i=1

{
(xi − a cos ti)

2 + (yi − a sin ti)
2 + (zi − cti)

2} . (11)

Differentiating this with respect to a, c and ti gives the equations for the respective MLE as

â =
n∑

i=1

(
xi cos t̂i + yi sin t̂i

)
/n, (12)

ĉ =

∑n

i=1 zit̂i∑n

i=1 t̂
2
i

, (13)

â xi sin t̂i − â yi cos t̂i + ĉ2 t̂i = ĉzi. (14)

The estimates for ∆̂ and D̂ can now be obtained substituting â, ĉ, {t̂i} in equation (5). For

the α−helix, we have pointed out that ti = βi; so {ti, i = 1, 2, . . . , n} are known except for

the parameter β. Substituting ti = βi in equation (11) and differentiating with respect to β,

we obtain the equation for the MLE of β as

â

n∑

i=1

i xi sin(β̂i)− â
n∑

i=1

i yi cos(β̂i) + ĉ2β̂
n∑

i=1

i2 = ĉ
n∑

i=1

izi. (15)

Furthermore, substituting ĉ from equation (13) into equation (15), we get

n∑

i=1

i xi sin(β̂i) =
n∑

i=1

i yi cos(β̂i). (16)



8 Biometrics, NA NA

We need to iterate between (12), (13) and (16) to obtain (â, ĉ, β̂) and these values are

substituted in (8) to obtain σ̂2. To obtain Â and b̂, we go back to equation (10). By

minimizing this equation with respect to b, we find that

b̂ =
(
∆̂D̂− ÂX0

)
× 1n/n, and B̂ = b̂× 1T

n . (17)

Let M̂ = ∆̂D̂−B̂ and now it remains to obtain Â by minimizing Trace(AX0−M̂)T (AX0−

M̂) with respect to A. This is the standard orthonormal Procrustes problem (see for example

Mardia et al. 1979, pp 416-417 and Dryden and Mardia 2016, pp 125-132) . Suppose the

singular value decomposition of X0M̂
T = UΛVT , where U,V are orthonormal and Λ is a

diagonal matrix. Then, the solution to the problem is given by

Â = VUT . (18)

In summary, the MLE of (σ2, a, c, β,b,A) are obtained by iteratively solving (8),(12), (13),

(16),(17), and (18) respectively. In particular, since the axis for the aligned straight α−helix

is just the z−axis, the estimated axis line for the unaligned α−helix is given by:

âxis = [0 0 z]× Â− b̂T × Â, z ∈ R
1. (19)

The above procedure estimates 10 unknown parameters: 4 for the aligned α−helix (viz. a, c,

β, σ), and additional 6 for the unaligned α−helix (namely, 3 for the translation vector b and

3 for the rotation matrix A). The implementation details along with an illustrative example

are provided in Web Appendix D. We make some remarks on identifiability, existence of

solutions and properties of the MLE in Web Appendix E.

4. Crowdsourced Data and the Null Distribution for Straight Helices

We now implement the estimation procedure for the α−helix on the crowdsourced data

of straight helices. This data has set a “gold standard” and Wilman, Ebejer, Shi, Deane,

and Knapp (2014) have given a comparative study for various computational methods. The

crowdsourced data has 129 straight, 64 kinked and 59 curved helices. Helices with different
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lengths are represented in the data (length = number of Cα atoms). Web Tables 3, 4 and 5

in Web Appendix F give the frequency distribution of lengths of helices.

In this section, we will concentrate on the straight helix data. We train our model on 129

straight helices and thus estimate the parameters of the null distribution, i.e. when the helix

is straight. Since we will be interested later on in the angle between successively computed

axes for the kink detection, which is invariant under rotation of the co-ordinate system, it

suffices to work with the null model for the aligned helix (i.e. with the helix-axis aligned

with the z−axis), as in equation (1). Therefore, we need a set of parameters a, c, β and

σ2 that describe the aligned null distribution as in equation (1), with ti = βi. That is, we

need to compute the MLE of the parameters a, c, β and σ2 for these helices as in Section 3.

The estimation procedure (see Web Appendix D) was applied to the 129 straight helices and

estimates for a, c, σ2 and β were obtained. The values for c and β were more well-behaved

and distributed around 0.86 and 1.75 respectively. However, while most of the values obtained

for a were distributed around the expected ideal value 2.3, there was a visible set of outliers

taking values less than 0.5. Similarly, while most values of σ2 happened to be clustered near

0.05, there were many outliers as well. For reference, the plots of the 129 estimated values

for a, c, σ2 and β are given in Web Figure 5 in Web Appendix G.

On further investigation of the outliers, we found that these were caused by some single

outlier atom positions, typically atoms at each of the end points of the helices. To obtain

“robust” maximum likelihood estimates, for each helix of length n, we computed the MLE

with three different sequences of atoms (i) by considering atoms 1 to (n-2), (ii) atoms 2 to

(n-1) and (iii) atoms 3 to n. Then among these three sets we picked the set of that MLE

corresponding to the smallest value of estimated σ2. Figure 2 shows the plot of estimates

obtained through this robust MLE procedure. We note that the cluster of the outliers is now

not seen and all the estimates are well behaved. Table 2 gives the mean and standard errors
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calculated using the 129 different values of these robust MLE for all the four parameters a,

c, σ2 and β.

We note from Table 2 that the estimates of a, c and β are close to the ideal values. Further,

they have small standard errors. Therefore, for the null distribution, we set a = 2.3Å,

c = 0.86Å and β = 1.75, i.e. the ideal values in equation (2). While there is no such known

ideal value for σ2, we set the estimate based on crowdsourced data on straight helices of

σ2 = 0.056 for the null distribution. We note that for σ̂2, the standard error is relatively

larger than that of other parameters. The large value is expected for the α−helix since it

is well known that the atoms do not strictly sit on the cylinder (see for example Wilman,

2014). Although the cylinder is an established geometric model for α−helices, an important

point to note is that our statistical formulation, for the first time, quantifies the uncertainty

about σ2. To sum up, the parameter values of our null distribution for the straight α−helix

are fixed as follows:

a = 2.3, c = 0.86, β = 1.75, σ2 = 0.056. (20)

Further in the following,when we treat the unaligned case, the axis under this null distribution

will be estimated from (19).

[Figure 2 about here.]

[Table 2 about here.]

5. “Kink-Detector”: A Procedure for Detecting Kinks

We name our proposed method for detecting kinks in an α−helix as the “Kink-Detector”.

The method is based on detecting statistically significant changes in the axis angle as we

move along the α−helix. Our idea is to estimate the angle, say θ, between axes fitted to

two successive sets of k = 6 Cα atoms, and check whether there is a “critical deviation”,

i.e. whether θ exceeds an “angle-threshold” T = 11 degrees. We found it useful sometimes
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to work with cos θ rather than θ itself. The axes are computed using the null distribution

specified in the last section. Our method is sequential, in that we work with a moving

window of k = 6 successive Cα atoms along the α−helix of length n, thus obtaining a

sequence of angles {θk, θk+1, . . . , θn−k+1}. The angle θk is between axis fitted to Cα atoms

{1, . . . , k} and {k + 1, . . . , 2k}, angle θk+1 is between axis fitted to Cα atoms {2, . . . , k + 1}

and {k + 2, . . . , 2k + 1}, and so on (see Web Appendix H for details on the computation

of angle between axes). We call k the “atom-window size”. Further, since kink detection is

a regional change point problem, we find it important to check not one but a clustered set

of critical deviations. Towards this, we consider every run of critical deviations, i.e. every

maximal set of consecutive angles that exceed the angle-threshold, and we denote F = length

of this run. We set a “critical-deviation-run-threshold” r = 4, and declare the presence of a

kink whenever f > r. If there is no such run, we conclude that there is no kink in the helix.

Kink Location: Since detecting a kink is a regional change point problem, there is strictly

no unique atom position corresponding to a kink. However, if one insists on a kink change-

point as some papers do (for example Wilman, Shi, and Deane 2014; Sansom and Weinstein

2000), we recommend the point with the maximum angle (or minimum cosine value) within

any run of critical deviations with length f > r. See Web Figure 6 in Web Appendix H for

an illustration of changing axis direction, which depends on multiple points rather than a

single point, and Web Table 6 for assigning kink location. Next, we discuss our rationale for

the choice of values for (k, T , r).

5.1 Choice of tuning parameters

The atom-window size (k), the angle-threshold (T ) and critical-deviation-run-threshold (r)

are the tuning parameters required for Kink-Detector. We now describe below how our choice

of tuning parameters is motivated by contextual considerations, or by some experimentation

carried out with a few randomly selected straight and kinked helices from crowdsourced data,
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or by both. The adequacy of these choices is further confirmed by a sensitivity analysis of

classification accuracy on the full crowdsourced data.

Atom-window size (k = 6) – Contextual considerations: The atom-window size k = 6 is

necessary to avoid degeneracy. It is the minimum number of atoms needed for two full turns

of the helix and is therefore required to estimate the axis of the helix. Using larger window

size will necessarily require a larger number of atoms on either side of the kink, thus limiting

the applicability of the procedure to only larger helices. So, we fix the atom-window size

at the smallest meaningful choice of k = 6. Indeed, this value of k = 6 has been used in

Bioinformatics, see for example Kink-Finder by Wilman, Shi, and Deane (2014). Kink-Finder

(2014) is the latest software to estimate kinks and we will give some comparative details in

the next section.

Angle-threshold (T = 11)– Experimentation: The value of cos θ is bounded above by 1,

and this happens when the angle between the axes is zero (i.e. θ = 0). If the helix is

straight then we would expect that the sequence of cos θs will stay close to 1. Since there

will be some randomness in the coordinates of the atoms, the cosine values will not be

exactly equal to 1 and would be subject to some random fluctuations. The aim here is to

obtain a lower cutoff value for the cosine or equivalently an upper threshold T for the angle.

Unlike k, the value of T cannot be contextually fixed. We simulate a large number (100, 000)

straight helices of size 2k from the null model in equation (1) with the parameter values

as specified in (20). For each simulated helix, we compute the angle between the estimated

axis based on the first k atoms and the estimated axis based on atoms k + 1 to 2k, which

gives 100, 000 simulated values of the cosine angle from the null model. We then computed

various percentiles (e.g. 5th, 1st, 0.1th) from this data as possible choices for the lower cutoff

value for cosine. After some experimentation with a few kinked and straight helices data,

we chose the 0.1th percentile of 0.9818 as the lower cut-off value, which corresponds to an
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angle threshold of approximately T = 11 degrees. A typical example of our experimentation

is described in Web Appendix H, in particular see Web Figure 6. The chosen cutoff suggests

that the probability of incorrectly classifying a straight helix (Type I error) is at most 0.1%.

We analyzed the classification accuracy on crowdsourced straight and kinked helices. This is

discussed in Section 6.

Critical-deviation-run-threshold (r = 4) Experimentation and contextual considerations:

The presence of the kink at a position not only causes the cos θ at that position to significantly

deviate from 1, but also has a similar effect on the cos θ computations at the neighboring

positions near the kink. For example, if there is a kink at position j, the estimated axis

obtained with Cα atoms {j − 3, j − 2, j − 1, j, j + 1, j + 2} also is influenced by the presence

of the kink and is not going to be aligned with the axis computed from Cα atoms {j+3, j+

4, j+5, j+6, j+7, j+8}. As a result the cos θ at position j+2, computed based on the two

estimated axes, is also going to deviate from 1. In effect, when a kink is present, we would see

a cluster of cosine values that significantly deviates from 1, with the maximum dip in cosine

value (or maximum peak in angle) happening close to the kink position. This is illustrated

with a typical example in Web Appendix H (see Web Table 6 part (b) and Web Figure 6). To

see a clear dip in cosine values, one needs to check at least 3 consecutive deviations. Based

on our experimentation with a few kinked and straight helices, we determined r = 4 as a

reasonable choice.

5.2 Sensitivity analysis of choice of tuning parameters

To check the sensitivity of Kink-Detector to the choice of tuning parameters,we first record

the accuracy of classification of crowdsourced 129 straight and 64 kinked helices, based on the

chosen values of the tuning parameters viz. (k = 6, T = 11, r = 4), and then study the change

in accuracy if we change the tuning parameters away from the chosen values. In particular,

we study the impact on classification accuracy, when we increase the atom-window size from
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the minimum value of k = 6 to k = 7, increase (decrease) the angle-threshold from T = 11

to T = 12 (T = 10) degrees, and increasing (decreasing) the critical-deviation-run-threshold

from r = 4 to r = 5 (r = 3). While changing each tuning parameter, we keep the other

two parameters fixed at the chosen values. The detailed results of this analysis are described

in Web Appendix I and Web Table 7. To sum up, our choice of (k = 6, T = 11, r = 4)

is driven by contextual considerations and experimentation. The sensitivity analysis on the

crowdsourced data further confirms that these choices are indeed reasonable as any change

leads to significant deterioration in the classification accuracy either for kinked or for straight

helices.

6. Testing of Kink-Detector on the Crowdsourced Data

In this section, we test the performance of Kink-Detector on the crowdsourced data. Table

3 shows the summary of results from the testing. Of the 129 crowdsourced straight helices,

Kink-Detector classified 124 helices as “straight”. Of the 64 crowdsourced kinked helices,

Kink-Detector classified 62 as “kinked”. The overall performance of Kink-Detector is satis-

factory as only 7 helices are misclassified.

The performance compares well with its competitor Kink-Finder (details are given below).

The detailed output of Kink-Detector including the kink position and angle for the 64 kinked

helices of crowdsourced data is provided in Web Table 8 of Web Appendix J. We next analyze

the misclassified cases in detail.

Misclassified Helices: Seven straight and kinked helices were misclassified by Kink-Detector,

namely, Kinked Helices 1-2, and Straight Helices 3-7. We have further examined these helices,

and it seems that these misclassifications could be a result of some limitation of visual

perception. Table 1 (see cases 1 to 7) provides a brief description of these helices.

We first discuss Kinked Helices 1 and 2, which were classified as straight by Kink-Detector.

Web Figure 8 in Web Appendix J shows a plot of the 2 kinked helices. On visual inspection, it
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may appear that the kink is present near to one of the extreme positions for both helices (near

position 4 for Helix 1 and near position 3 for Helix 2). However, we note that visual inspection

could be misleading, for the visual appearance of a kink can be considerably weakened by

a perturbation of just a single atom position. In Web Figure 8 of Web Appendix J, we also

illustrate how a perturbation of a single atom position (position 4 in Helix 1 and position

3 in Helix 2) weakens the appearance of a kink. The points are further elaborated in Web

Appendix J.

Next, we discuss Straight Helices 3, 4, 5, 6 and 7, which are classified as kinked by Kink-

Detector. For these five helices, Table 4 (parts (c) to (g)) shows the cosine angles computed

between axes based on the atom-window size of 6. Web Figure 9 in Web Appendix K shows a

plot of the 5 helices. The change in axis direction near the kink is also shown in Web Figure 9.

A visual inspection after marking the kink position and axis change based on Kink-Detector

suggests that the method seems to identify the position of the kinks correctly (Web Appendix

H: Web Figure 6 provides another example where the method identifies kinks correctly). It

may therefore be argued that these five cases (i.e. Helices 3, 4, 5, 6 and 7) have kinks that are

perhaps not prominent enough to be easily detected by visual inspection. The kink positions

as detected by Kink-Detector for helices 3, 4, 5, 6 and 7 are near positions 13, 7, 7, 10 and 13

respectively. The corresponding angles (in degrees) are 18.69, 15.87, 22.82, 20.39 and 20.04

respectively. So, the angles of the kinks detected in all these four cases happen to be not

as large. Visual identification of a kink is subject to some limitation when the angle change

is small. Web Table 8 in Web Appendix J, which contains all the 64 helices identified as

kinked in crowdsourcing, suggests that kinks are visually identified when the angle is above

23.66 degrees (the minimum shown in the table). The points are further expanded in Web

Appendix K. The most important message here is that there is some limitation to what we

can see visually, therefore we can miss out moderately-kinked helices.
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[Table 3 about here.]

Comparison with Kink-Finder: We now compare the performance of Kink-Detector to Kink-

Finder (Wilman, Shi, and Deane, 2014), which is the most competitive algorithm for finding

Kinks as pointed out in Section 1, and further details on Kink-Finder are givenWeb Appendix

L. Kink-Finder misclassified 3 of the 129 straight helices from crowdsourced data as kinked

and 2 of the 64 kinked helices from crowdsourced data as straight. The set of misclassified

helices is not exactly the same for Kink-Detector and Kink-Finder. Helix 5 is misclassified as

kinked by both Kink-Finder and Kink-Detector. Helix 1 is misclassified as straight by both

Kink-Finder and Kink-Detector. We conclude that the accuracy of statistical model based

Kink-Detector is comparable to that of computational approach based Kink-Finder.

We note that the higher accuracy of Kink-Finder in classifying straight helices (126 out

of 129) is perhaps at the cost of over-classifying helices with moderate changes in axial

directions as straight. We noted earlier in this section that the straight Helices 3-7 that

were classified as kinked by Kink-Detector had been estimated with an angle close to 20

degrees. A further support to this observation is obtained when we study the classification

accuracy of Kink-Finder and Kink-Detector on curved helices. As noted in the introduction

of this paper, curved helices have a slow but steady change in axial direction; so they are

not straight. We expressly clarify that neither Kink-Detector nor Kink-Finder are designed

to differentiate curved from kinked helices. However, the methods can at least be used to

check whether curved helices are correctly classified as “not straight”. In addition to 129

straight and 64 kinked helices, the crowdsourced data includes 59 curved helices. Again,

from Table 3, we note that Kink-Detector provides good power in classifying curved helices

when compared to Kink-Finder. Namely, Kink-Detector classifies 71% as not straight while

Kink-Finder classifies only 51% of the 59 curved helices as not straight. Web Table 9 in Web

Appendix L summarizes these findings in the form of confusion matrices and some standard
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classification measures (viz. sensitivity, specificity, accuracy and precision). In Web Appendix

L, we provide several differences between Kink-Finder and Kink-Detector methods, some of

which help explain the above results. In summary, Kink-Detector is the first approach based

on a statistical model, that can provide further insights into helical structures and perhaps

is more guarded against classifying helices with moderate angular changes as straight. Kink-

Finder on the other hand is a purely computational approach, and some features of the

method can lead to over-classification of helices with moderate change in axial directions,

into straight helices.

7. Discussion

In this paper, we have developed a kink detection algorithm “Kink-Detector” based on a plau-

sible statistical model for a straight α−helix. Our estimation of the model on crowdsourced

straight α−helices confirms previous empirical findings on the radius and pitch of α−helices.

Further, for the first time, it provides a quantification of variability in atom positions around

the cylinder. The effectiveness of Kink-Detector in detecting the presence or absence of kinks

has been demonstrated using the “gold standard” crowdsourced data on straight and kinked

helices. In particular, we indicate how the visual identification of kinks in helices can have

some limitations. Furthermore, the performance of statistical model based Kink-Detector is

comparable to its computational competitor Kink-Finder. While our discussion is only for

α−helix, this work should be applicable to other types of helices. A natural future extension

of our work will be to explore a direct statistical model formulation for kinked and curved

helices. A potential approach is to extend the exploratory work of Mardia et al. (1999) on

torsion and curvature of curves including helices.
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8. Supplementary Materials

Web Appendices, Tables and Figures referenced in Sections 2, 3, 4, 5.1, 5.2 and 6 are available

with this article at the Biometrics website in Wiley online library. The R codes implementing

the proposed approach are available with this paper at the Biometrics website in Wiley Online

Library.
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(a) Straight Helix

(0,0,0)

(b) Kinked Helix

(0,0,0)

Figure 1. A diagram showing (a) a straight helix and (b) a kinked helix with their atoms
(shown as dots) and axis/axes. This figure appears in color in the electronic version of this
article.
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Figure 2. Parts (a), (b), (c) and (d) plot the robust MLE for a, c, σ2 and β based on 129 straight helices of

the crowdsourced data. In comparison to Web Figure 5, all the estimates are well behaved and there are no clustered

outliers. Note that this figure uses a different scale on the y-axes compared to Web Figure 5.
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Table 1

Summary of different helix examples discussed in the paper and the web supplement. Helices 1 to 7 are cases of
misclassification by Kink-Detector while classifying crowdsourced helices into “kinked” versus “straight”. Helices 8
and 9 are used to illustrate the estimation procedure and its application. Section 6 in the paper and Web Appendices

J-K deal with Helices 1-7, and Web Appendices H deals with Helices 8 and 9.

Case Reference PDB name (chain) Atoms Length Context in which discussed
Helix 1

Section 6, Table 4
parts (a)-(b), Web
Appendix J: Web
Figure 8.

1v54 B (16-46) 1 to 31 31 These two helices were identified
as kinked helices in
crowdsourced data but were
classified as straight by
Kink-Detector. We observe that
the visual appearance of kink for
these helices is weakened just by
perturbation of a single atom
position (see Web Appendix J:
Web Figure 8). Thus,
Kink-Detector is cautious in
classifying them as kinked.

Helix 2 2gfp A(322-345) 1 to 24 24

Helix 3

Section 6, Table 4
parts (c)-(g), Web
Appendix K: Web
Figure 9.

1c3w A (38-61) 1 to 24 24 These 5 helices were identified as
straight helices in crowdsourced
data, but were identified as
kinked by Kink-Detector. It may
be argued that some of these
cases actually have kinks but
that these are perhaps not
prominent enough to be easily
detected by visual inspection
(see Table 4 , Web Appendix K:
Web Figure 9).

Helix 4 1rc2 A(37-53) 1 to 17 17

Helix 5 1wpg A(965 to 988) 1 to 24 24

Helix 6 3mp7 A(148 to 170) 1 to 23 23

Helix 7 2fyn A(362 to 380) 1 to 19 19

Helix 8 Web Appendix D :
Web Figure 4, Web
Table 2, Web Ap-
pendix H: Web Table
6 part (a)

3bz1 B(203-217) 1 to 15 15 A straight protein helix in crowd-
sourced data selected to demonstrate
estimation of model parameters and
axis. Web Table 6 part (a) shows the
values of cosine between successive axes
based on 6-atom moving window.

Helix 9 Web Appendix H:
Web Figures 6 and 7,
Web Table 6- part (b)

2a65 A(44-70) 1 to 27 27 A kinked protein helix in crowdsourced
data selected to highlight kinks along
with changing axis direction. Due to
the helical structure, the kink change
point is not a specific point but is a
change in the direction of the helix
axis, which depends on multiple points
(see Web Appendix H: Web Figure 6
for an illustration). Web Table 6 part
(b) shows the values of cosine between
successive axes based on a moving 6-
atom window. Our method looks for
four consecutive critical deviations to
detect a kink.
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Table 2

Mean and standard error (SE) for the robust MLE of the parameters (a, c, β, σ2) obtained across 129 straight helices
of the crowdsourced data. Also shown are the ideal values of the parameters and our final choice of the parameter

values of the null model.

a c β σ2

Mean 2.29 0.87 1.72 0.056
SE 0.04 0.01 0.02 0.041
Ideal value 2.3 0.86 1.75 Unknown

Null Model 2.3 0.86 1.75 0.056
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Table 3

Comparison of classification of crowdsourced straight, kinked and curved helices by Kink-Detector and Kink-Finder.

Kink-Detector Kink-Finder
Crowdsourcing Total Straight Kinked Straight Kinked
Straight 129 124 5 126 3
Kinked 64 2 62 2 62
Curved 59 17 42 28 31

Table 4

Cosine values between successive axes based on 6-atom windows for crowdsourced helices misclassified by
Kink-Detector. Helices 1 and 2 are identified as kinked in crowdsourcing but classified as straight by Kink-Detector.
Helices 3 to 7 are straight in crowdsourcing but classified as kinked by Kink-Detector. The cosine values that fall
below the cutoff value 0.9818 (i.e. angle > 11 degrees) are highlighted in bold and the value at the kink position is
underlined. For Kink-Detector, at least 4 consecutive values in bold indicate the presence of a kink, and the kink
position is taken to be the one with minimum cosine value. Web Figures 8 and 9 in the Web Appendices J and K

respectively, show plots of these helices.

(a) Helix 1

Cα position 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
cos angle 0.97 0.96 0.98 1.00 0.97 0.97 0.97 1.00 0.97 1.00 1.00 1.00 0.99 1.00 0.97 1.00

(b) Helix 2

Cα position 6 7 8 9 10 11 12 13 14 15 16 17 18
cos angle 0.90 0.96 1.00 0.99 1.00 1.00 0.98 0.98 0.99 0.97 0.99 0.99 0.99

(c) Helix 3

Cα position 6 7 8 9 10 11 12 13 14 15 16 17 18
cos angle 0.95 0.97 0.98 0.99 1.00 0.97 0.97 0.95 0.97 0.96 1.00 0.98 1.00

(d) Helix 4

Cα position 6 7 8 9 10 11
cos angle 0.98 0.96 0.98 0.97 0.97 0.99

(e) Helix 5

Cα position 6 7 8 9 10 11 12 13 14 15 16 17 18
cos angle 0.98 0.92 0.94 0.92 0.99 0.99 0.99 0.94 0.93 0.99 0.98 0.99 1.00

(f) Helix 6

Cα position 6 7 8 9 10 11 12 13 14 15 16 17
cos 1.00 0.99 0.98 0.97 0.94 0.98 1.00 1.00 1.00 0.99 0.99 0.99

(g) Helix 7

Cα position 6 7 8 9 10 11 12 13
cos 1.00 0.99 1.00 0.97 0.95 0.97 0.97 0.94


