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Abstract

Several natural phenomena are known to exhibit a spatio-temporal evolution
process. The study of such processes, which is pivotal to our understanding
of how best to predict and control spatio-temporal systems, has motivated
researchers to develop appropriate tools that infer models and their parame-
ters from observed data. This paper reviews this active area of research by
providing an insight into the fundamental ideas spanning the development of
spatio-temporal models, dimensionality reduction methods and techniques for
state and parameter estimation. Recent advances are discussed in the context
of novel spatio-temporal approaches proposed for applications in three specific
domains – engineering, healthcare and social science. They illustrate the wide
applicability of estimation and identification of spatio-temporal processes as
novel advances in sensor systems and data collection are used to observe them.

1. Introduction

Spatio-temporal systems are systems with variables whose evolution spans
both space and time (Hoyle, 2006). Consequently, they are ubiquitous in sev-
eral science and engineering disciplines including environmental science (Pirani
et al., 2014; Moradkhani et al., 2005; Hooten and Wikle, 2008; Bocquet et al.,
2010), bacterial and viral infection spread (Bhatt et al., 2013; Brooks-Pollock
et al., 2014), biology (de Munck et al., 2002; Matani et al., 2003; Dewar and
Kadirkamanathan, 2007), neuroscience (Aram et al., 2013), conflict dynamics
(Zammit-Mangion et al., 2012a), mobile sensor networks (Gu and Hu, 2012) and
video image processing (Kokaram and Godsill, 2002). This widespread interest
has fuelled several research efforts over recent decades in an attempt to ob-
tain mathematical models that best describe the behaviour of spatio-temporal
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phenomena, where space and time data should not be treated as statistically
independent variables (Cressie and Wikle, 2011). Such models form the funda-
mental building blocks for system simulation, design and analysis.

Whilst several spatio-temporal models are apparent in literature, these may
be mainly grouped into two classes: geostatistical models (Gneiting et al., 2007)
and dynamic models (Cressie and Wikle, 2011, Chapters 7-9). The former ap-
proach to modelling data makes use of a statistical description, typically in
terms of mean and covariance functions (Guttorp and Sampson, 1994; Gneit-
ing et al., 2007), such as an underlying Gaussian random function. On the
other hand, dynamic models typically comprise difference or differential equa-
tions that would explicitly describe the temporal or spatio-temporal evolution.
Dynamic models therefore usually allow for a mechanistic approach to systems,
where parameters inferred typically constitute a physical meaning or a direct
relation to the system behaviour (Duan et al., 2009) such as partial differential
equations. The two modelling strategies may occasionally be interchangeable
descriptions of the same process (Lindgren et al., 2011). Storvik et al. (2002)
highlight numerous advantages of dynamic models over geostatistical models,
including the more computationally efficient parameter estimation process when
using signal processing tools with dynamic models and the employed covariance
functions that could correspond to models that represent unnatural features.
Furthermore, inference mechanisms associated with dynamic models are capa-
ble of readily handling missing or incomplete data. Due to their amenability to
control and engineering applications (Zammit-Mangion et al., 2011), dynamic
models shall be the main focus of this paper.

In several situations, most spatio-temporal processes can only be partially ob-
served and an estimation problem naturally arises. The estimation of internal
states is crucial for control, monitoring and fault diagnosis of several engineering
processes. A cost-effective approach to monitor such variables employs model-
based state estimation methods to estimate unmeasured and/or infrequently
measured variables quickly and regularly. With ever-increasing computation
speeds, state estimation is increasingly being performed for on-line monitoring
and control in various application domains such as robotics, digital commu-
nications, computer vision and process control (Chen, 2003; Soroush, 1998).
Historical developments in this state estimation are excellently introduced by
Sorenson (1970). The seminal publications by Kalman (1960) and Luenberger
(1966) spurred great research efforts in the area of dynamic model online state
estimation. While such initial developments used only linear dynamic models,
their nonlinear counterpart was the main topic of research in later years. It is
noteworthy that despite significant advances employing dynamic models consid-
ering continuous observations (Stroud et al., 2001; Dewar et al., 2009; Freestone
et al., 2011), very few efforts have considered the problem of having observations
available as isolated events, i.e. point-process observations (Zammit-Mangion
et al., 2012a).

State estimators may be developed using deterministic (Dochain, 2003; Mi-
sawa and Hedrick, 1989) or stochastic (Bayesian) approaches, with the latter
approach being our principal focus throughout this article. A detailed exposure
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to nonlinear Bayesian state estimation is provided in various books (Jazwinski,
1970; Gelb, 1974; Maybeck, 1979; Sorenson, 1985; Söderström, 2003), while more
recent advances are described in (Ristic et al., 2004; Simon, 2006; Patwardhan
et al., 2012; Särkkä, 2013). Recent works also include the emergence of de-
terministic and random sampling-based estimation approaches as part of the
unconstrained sequential estimation algorithm development efforts. Overviews
of considerable achievements in sigma point and particle filters are given in (Aru-
lampalam et al., 2002; Chen, 2003; Ching et al., 2006; Daum, 2005; Rawlings
and Bakshi, 2006).

All state estimation algorithms assume the accurate knowledge of the cor-
responding model parameters. However, if in addition to the states, a number
of unknown parameters must be estimated, a joint state-parameter estimation
algorithm is needed (Soroush, 1998). Inferring and constructing system models
from experimental data is known as system identification and is paramount for
the emulation of the system, prediction of the system response for particular
inputs and investigation of different design situations (Billings, 2013). Conse-
quently, the accuracy of such system representation would affect the validity
of all the analysis, design and simulation and has therefore formed the basis
of numerous efforts to develop and improve joint state-parameter estimation
methods, namely the Markov Chain Monte Carlo (MCMC) methods (Robert
and Casella, 2004), expectation-maximization (EM) algorithms (McLachlan and
Krishnan, 1997) and their variants.

The objective of this article is to review methods that dominate the spatio-
temporal estimation and identification literature with the scope of providing a
window over current and future avenues of research that lie within important
application areas. This paper is organised in seven sections. Section 2 presents
a review of existing spatio-temporal models and accompanying theoretical prop-
erties from the literature that allow for its use in practical applications. Model
reduction methods are discussed to show how the spatio-temporal field may
be adequately represented by a finite-dimensional model which, in turn, allows
for a state-space representation for which a number of estimation schemes may
be readily applied. State estimation and joint state and parameter estima-
tion methods are discussed in Section 3. Recent advances in the application of
spatio-temporal estimation and identification methods for engineering, health
and social science are presented in Sections 4, 5 and 6, respectively. Finally,
Section 7 gives final remarks and outlines potential future research directions.

2. Spatio-temporal Models

Several dynamic spatio-temporal models have been proposed, however we
shall only be reviewing the most common models appearing in the literature,
namely, the space-time auto-regressive moving-average (STARMA) model, the
coupled map lattice (CML), the integro-difference equation (IDE), the partial
differential equation (PDE) and the spatio-temporal descriptor system formu-
lation. Along the way, the strengths and weaknesses of each modelling schemes
are highlighted and compared. These developments will be employed in Section
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3 in conjunction with dimensionality reduction schemes typically used for the
aforementioned spatio-temporal models, a brief review of which is provided in
this section.

2.1. Space-Time Auto-Regressive Moving-Average (STARMA) Models

Following the successful introduction of the auto-regressive moving-average
(ARMA) class of models for stochastic temporal processes (Box and Jenkins,
1970), extensions to the ARMA models were proposed in the 1970s to consider
spatial dynamics in the time series evolution, leading to the development of
space-time ARMA (STARMA) models (R. L. Martin, 1975; Pfeifer and Deutrch,
1980).

A STARMA model is described by a linear relationship lagged in both space
and time. To obtain a STARMA formulation, a number of observations yi,k of
the random variable Yi,k are required at each of the N sites (or fixed locations)
located in the spatial field, over K time instants of the discrete time k. The
spatio-temporal auto-regressive form expresses yi,k as a linear combination of
past observations at site i (Pfeifer and Deutrch, 1980) and neighbouring sites.
Spatial stationarity or homogeneity would exist if an identical relationship holds
for every site.

In the classical STARMA formulation by Pfeifer and Deutrch (1980), a spatial
lag operator of order l is first defined such that

L(0)yi,k = yi,k, (1)

L(l)yi,k =
N
∑

j=1

w
(l)
ij yi,k, (2)

where w
(l)
ij are a set of weights such that

N
∑

j=1

w
(l)
ij = 1 (3)

for all i and w
(l)
ij 6= 0 if sites i and j are lth order neighbours. STARMA model

are generally represented in vector form, where the observations are given by
the vector yk = [y1,k y2,k · · · yN,k]

⊤. The superscript ⊤ denotes the transpose

operator. Representing the weights w
(l)
ij in matrix form as W(l) ∈ R

N×N , the
spatial lag operator for stacked observations may be written as

L(0)yk = W(0)yk = INyk, (4)

L(l)yk = W(l)yk, for l > 0, (5)

where IN denotes the N × N identity matrix. The STARMA model may now
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be expressed in vector form as

yk =

p
∑

τ=1

λτ
∑

l=0

φτlW
(l)yk−τ −

q
∑

τ=1

mτ
∑

l=0

φτlW
(l)ǫk−τ + ǫk, (6)

where ǫk is a random normal error vector. This formulation is known as a
STARMA (p,q) model.

Frequently used neighbourhood definitions were described by Besag (1974),
typically assuming a local interaction hypothesis which results in fewer parame-
ters to estimate. Although unrestricted models were proposed (Bennett, 1979),
such spatio-temporal models required a significantly larger parameter space,
forcing smaller spatial dimensions and fewer observation locations to be em-
ployed (Di Giacinto, 2006). Even though STARMA models were shown to
outperform univariate ARMA models in forecasting applications (Pfeifer and
Bodily, 1990), the researchers’ interest in this class of models grew weaker over
time, largely due to their inadequate treatment of spatial dependence and het-
erogeneity of observations (Anselin, 1988; Cressie, 1993).

Over the last decade, however, the potential of STARMA models was revis-
ited as a consequence of increased computational power. Di Giacinto (2006)
addressed the issue of instantaneous spatial correlation by starting the first
summation in both terms of equation (6) from τ = 0 so that innovations may
represent a spatial spread within one sampling instant. Furthermore, heteroge-
neous model definitions became possible with model modifications that allowed
the use of larger data sets, such as the toroidal space definition proposed by
Glasbey and Allcroft (2008). The STARMA models’ limitations, including that
of having model dimension depending on the number of observation locations,
however, still stand and alternative models were proposed in the 1980s where
the coupled map lattices became particularly popular for their ability of repre-
senting spatio-temporal dynamics of systems that are too complex or not well
understood.

2.2. Coupled Map Lattices

The complex and chaotic spatio-temporal behaviour exhibited by various
natural phenomena (Kaneko, 1992, 1993) was the main motivation for the de-
velopment of Coupled Map Lattices (CML) (Kaneko, 1985, 1986, 1989). The
wide applicability of CMLs is evidenced by the plethora of uses reported in
the literature and has been the modelling paradigm for studying chemical and
physical processes, including modelling the physics of boiling (Yanagita, 1992),
describing cloud dynamics (Yanagita and Kaneko, 1997), modelling reaction-
diffusion dynamics (Levine and Reynolds, 1992), studying Bénard convection
(Yanagita and Kaneko, 1993, 1995), modelling open fluid flow (Deissler, 1987;
Deissler and Kaneko, 1987; Kaneko, 1985) and modelling crystal growth (Kessler
et al., 1990; Levine and Reynolds, 1992). The use of CMLs for the analysis of
complex spatio-temporal interactions occurring in ecology is reported in several
works (Ikegami and Kaneko, 1992; Marcos-Nikolaus et al., 2002; Sole et al.,
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1992). Other application areas include computer theory (Holden et al., 1992),
image processing (Price et al., 1992) and electroencephalography (EEG) signal
processing (Shen et al., 2006, 2008).

A subset of the more general class of lattice dynamic systems (Billings and
Coca, 2002), CMLs are closely related to cellular automata (CA), with the
relaxed constraint that the system states may not necessarily be discrete (Pan
and Billings, 2008). CMLs are defined to be in discrete time and discrete space.
Denoting a set of lattice points by i = 1, . . . , N , where each element identifies a
discrete location in space, and letting the field be zi,k at discrete-time instant k,
the temporal evolution at site i is given by the nonlinear mapping Mi : R

N → R,
so that zi,k+1 = Mizk, where zk = [z1,k z2,k . . . zN,k]

⊤. Although a few works
consider spatial heterogeneity (Parekh et al., 1998), a spatially homogeneous
process is usually assumed so the standard nonlinear evolution equation becomes
zi,k+1 = Mzk, where the mapping dependence on i has been omitted.

The behaviour of the CML is clearly governed by the mapping M . The
most commonly used mapping is the nearest neighbour coupling map (Kaneko,
1992; Bunimovich, 1995; Kaneko, 1989; Richter, 2008) that comprises a spatial
coupling function fc and a local interaction term fl, as follows:

zi,k+1 = fc(zi−1,k, zi+1,k) + fl(zi,k)

=
ǫ

2
(f(zi−1,k) + f(zi+1,k)) + (1− ǫ)f(zi,k) , (7)

where ǫ ∈ [0, 1] and f(·) represents a pre-defined nonlinear function, for instance
the logistic map f : zi,k → 1 − az2i,k. This logistic map (May, 1976) is the
most commonly used local map (Kaneko, 1989), however several other mappings
can represent chaotic behaviour (Jost and Joy, 2001). Other mappings which
consider larger neighbourhoods result in significantly different output patterns
and are referred to as ‘global coupling’ (Jost and Joy, 2001).

A CML is generally derived through the natural laws obeyed by the system
under study. However, if the mapping M is undetermined or cannot be de-
rived, model structure detection and parameter estimation may be carried out
(Coca and Billings, 2001; Pan and Billings, 2008; Billings et al., 2006; Coca
and Billings, 2003; Guo et al., 2007). Although most CMLs described in the
literature are deterministic, a stochastic CML was reported to use randomly
perturbed lattice points (Coca and Billings, 2003).

Despite being dynamic, capable of representing systems exhibiting large un-
certainties and highly representative of the system’s underlying processes, CMLs
are built bottom-up on a discrete grid. This means that observations must be
taken on a regular lattice, which may be impossible in certain situations, such
as control scenarios involving mobile agents. Although heterogeneous CMLs
may provide a spatially varying mapping, proceeding with parametrising the
heterogeneity and choosing the appropriate inference mechanism to cater for
the heterogeneity in parameter estimation is unclear.
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2.3. Integro-difference Equation Models

The discrete spatial lattice construction is the main weakness of the CML and
the integro-difference equation (IDE) (Wikle, 2002; Kot et al., 1996) remedies
the situation by employing a continuous-space representation. The determin-
istic IDE was first proposed by Kot and Schaffer (1986); Kot et al. (1996) to
model the spread of invading organisms. The IDE was formulated by modelling
a population in two separate stages. The first stage is referred to as the seden-
tary stage and is represented by a nonlinear map f(·) that determines local
growth. The second stage, known as the dispersion stage, is described through
an integral operator which represents physical diffusion or migration effects in
a population. Based on such applications, the IDE was shown to model these
systems better than the reaction-diffusion equation proposed by Fisher (1937).
Since then, IDEs have been employed to model different phenomena such as
cloud dynamics (Christopher K. Wikle and Berliner, 2001; Wikle, 2002) and
precipitation nowcasting (Xu et al., 2005).

The IDE, which is continuous in space and discrete in time, represents the
evolution of the spatio-temporal field z given by

zk(s) =

∫

S

κk(s, r)f(zk−1(r))dr, (8)

where k ∈ Z
+ is discrete time, s ∈ S ⊂ R

n represents the spatial location in
an n-dimensional space and κk(s, r) : R

n ×R
n → R is a time-varying, heteroge-

neous spatial convolution kernel that controls the spatio-temporal interactions
of the system.

Equation (8) represents a heterogeneous IDE model with nonlinear growth.
In environmental literature, however, this is usually simplified and linear growth
and homogeneity is assumed, yielding the following model:

zk(s) = f ′(0)

∫

S

κk(s− r)zk−1(r)dr, (9)

where f ′ represents the first derivative of f . Such simplification was desirable for
the development of spatio-temporal methods such as spatio-temporal Kalman
filtering (Cressie and Wikle, 2002; Wikle and Cressie, 1999) and new classes
of non-separable covariance functions for geostatistical models (Brown et al.,
2000, 2001; Storvik et al., 2002). In time, IDEs were recognized for the ability
of representing complex spatio-temporal behaviour spanning several fields such
as ecology (Kot et al., 1996), signal processing (Dewar et al., 2009; Scerri et al.,
2009) and environmental applications (Cressie and Wikle, 2002; Xu et al., 2005;
Wikle, 2002; Wikle and Cressie, 1999; Wikle and Hooten, 2005; Christopher
K. Wikle and Berliner, 2001).

Most of the research, particularly in ecological literature, has focused on
analysing the effect of the shape and growth term of the convolution kernel
on the spatio-temporal process stability (Kot and Schaffer, 1986) and the shape
and speed of the invading waves generated (Kot et al., 1996; Kot, 1992; Neubert
et al., 1995; Billings et al., 2004; Veit and Lewis, 1996; Wang and Kot, 2001).
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More recent efforts in modelling population dynamics using IDE models have
been aimed at improving the basic representations given by equations (8) and (9)
by employing the Allee effect (Kot et al., 1996; Veit and Lewis, 1996; Wang and
Kot, 2001) and by analysing the effect of environmental variables and population
structure on propagation (Neubert and Caswell, 2000; Billings et al., 2004).
Other works report the estimation of the travelling wave shape (Medlock and
Kot, 2003), the numerical estimation of the invading wave speed (Wang and Kot,
2001) and the prediction of the future invasion speed (Billings et al., 2004).

The IDE was put into a stochastic framework by Wikle (2002) who in-
cludes additive spatial noise using spatial Gaussian processes (GP) (Rasmussen
and Williams, 2006). At each time instant of this stochastic IDE, the prop-
agated field is superimposed by draws from a zero-mean spatial GP, ǫk(s) ∼
GP(0,Σ(s, r)). This stochasticity enables the modelling of uncertainties and
caters for any random forcing functions or model mismatch. The set generated
ǫk(s) is typically assumed to be independently and identically distributed (i.i.d.)
over time, so that the behaviour of the model is largely dictated by the mixing
kernel and the form of f(·). For instance, in EEG studies, f(·) is set to be a
sigmoid function (Freestone et al., 2011), whilst in ecology, the Ricker growth
models or the standard logistic models are frequently used (Kot and Schaf-
fer, 1986). The function f(·), however, may also be taken to be of Gompertz,
Beverton-Holt or Malthusian form (Hooten et al., 2007).

Dewar et al. (2009) derived a novel basis function decomposition for the
IDE, where a state-space representation that decouples the number of states
from the number of observation locations or parameters is presented. By us-
ing a state-space representation for the IDE, Scerri et al. (2009) employ ideas
from multidimensional sampling theory to develop a method that provides the
minimum model and parameter vector dimensions needed for an adequate sys-
tem representation using the spatial bandwidth of the system and the frequency
support of the redistribution kernel of the IDE.

When modelling systems using the IDE, the kernel provides an intuitive in-
sight into the system dynamics. Several works have estimated basis functions
which shape κk(s, r) (Scerri, 2010; Freestone et al., 2011; Zammit-Mangion et al.,
2011; Dewar et al., 2009). However, as discussed in (Zammit-Mangion, 2011),
a key limitation of the IDE is its inability to describe the evolution process
at a physical level. The IDE may obscure the physical mechanism and conse-
quently also presents significant challenges in describing heterogeneity. A more
mechanistic approach to modelling is therefore required if a principled way of
representing spatially varying systems is required. This leads to the considera-
tion of another class of models, the partial differential equations (PDEs).

2.4. Partial Differential Equation Models

PDEmodels, which are continuous in both space and time, enjoy a widespread
interest due to their extensive range of natural phenomena that they describe.
These include fluid dynamics, mechanics, elasticity, quantum physics, thermo-
dynamics and electromagnetic theory (Farlow, 1993; Helling, 1960; Mitchell and
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Wait, 1973; Smith, 1967). Applications are as diverse as oceanography (Ben-
nett, 2002), ecology (Holmes et al., 1994), wildfire control (Asensio and Ferragut,
2002) and flexible structures (Banks and Kunisch, 1989).

The formal definition of a PDE is any equation that involves an unknown
function of two or more independent variables and one or more of its partial
derivatives (Evans, 1998, Section 1.1). The independent variables for the case
of spatio-temporal systems are restricted to be space and time. Letting space
s ∈ S ⊂ R and time t ∈ T ⊂ R

+ and considering a single-dimension spatio-
temporal field z(s, t) : S × T → R, we have the following general form of the
PDE:

F

(

s, t, z,
∂z

∂s
,
∂z

∂t
,
∂2z

∂s2
,
∂2z

∂t2
,
∂2z

∂s∂t
, . . .

)

= 0. (10)

The PDE is said to be linear if F (·) is a linear function, otherwise it is said
to be nonlinear or quasilinear. Furthermore, the system is said to be space and
time invariant if F (·) is independent of s and t. The study of linear PDEs has
been quite extensive given the breadth of applicability to several areas of mathe-
matical physics including vibrations, heat flow (Hill, 1987; Helling, 1960; Smith,
1967) and so on. However, several other phenomena modelled using nonlinear
PDEs include fluid pressure effects solved using Navier-Stokes equations, su-
perconductivity based on the Ginzburg-Landau equation and general relativity
described by Einstein’s field equations and the Dym equation (Debnath, 2005;
Logan, 2008).

Despite the fact that PDEs represent spatio-temporal dynamics of physical
phenomena, for which experiments prove the existence of a stable unique solu-
tion, their mathematical representation might not yield such a solution. While
for the ODE case the general solution to an nth-order equation is described by
a family of functions with n independent arbitrary constants, this is certainly
not the case for PDEs. In fact, even the solution space for linear homogeneous
PDEs is infinite dimensional. In systems literature, such systems resulting in
an infinite dimensional solution space are referred to as distributed parameter
systems (Omatu and Seinfeld, 1989).

PDEs are generally defined on some bounded domain. In such situations, the
PDE formulation must include some prescribed conditions for z that must be
satisfied on the domain boundary ∂S. The conditions are either Dirichlet (first-
type), whereby z takes on fixed values on ∂S, or Neumann (second-type), where
z is required to have fixed derivatives on ∂S. If both boundary conditions and
initial conditions are specified, the problem of determining field z which satisfies
the PDE is referred to as the initial/boundary-value problem.

Despite several methods that exist for finding an analytical solution to PDEs
(Mitchell and Wait, 1973; Farlow, 1993), most practical physical systems cannot
be solved analytically and therefore numerical methods are adopted. Two main
techniques are described in the literature, namely the finite element (Mitchell
and Wait, 1977) and the finite difference methods (Smith, 1969).

The solution of PDEs is further complicated when the model parameters,
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such as the thermal conductivity of a material in a heat flow equation, are un-
known. The system identification community has focused significant research
efforts towards obtaining models of spatio-temporal systems directly from data
obtained by measurement, oftenly assuming little or no knowledge of the un-
derlying physical processes (Guo and Billings, 2006; Guo et al., 2009; Coca and
Billings, 2000; Niedzwecki and Liagre, 2003). This problem was first tackled
by Travis and White (1985) by developing tests for the identifiability of PDE
model parameters. Assuming identifiability, an estimation method based on
alternating conditional algorithms was later proposed by Voss et al. (1998) and
shown to estimate the Swift-Hohenberg equation successfully.

More recent works progressively allowed more assumptions to be relaxed.
The assumption of a known structural form of the PDE taken by Coca and
Billings (2000) is relaxed by Guo and Billings (2006); Guo et al. (2009), where
PDE estimation is performed using the orthogonal least squares algorithm and
Adams integration.

Whenever the initial or boundary conditions are stochastic (Carmona, 1998,
Section 1.1) or where the forcing term is random in nature (Dalang and Frangos,
1998) or when the physical system is not fully known, stochastic PDEs (SPDEs)
become the required form of representation. This intricate model can be used
to describe all kinds of dynamics having a stochastic influence in nature or man-
made complex systems (Prévôt and Röckner, 2007). This is clearly evidenced by
several works reporting the use of SPDEs for modelling purposes in a vast array
of application areas including hydrology (Unny, 1989), neurophysiology (Walsh,
1981), geophysics (Duan and Goldys, 2001) and signal denoising (Krim and
Bao, 1999). Even though their applicability is extensive, choosing SPDEs for
analysis presents significant challenges in the context of parameter estimation.
Here, most of the literature treats deterministic PDEs observed in noise (Coca
and Billings, 2002; Guo and Billings, 2006; Banks and Kunisch, 1989), whilst
for the stochastic case, fewer works have been published (Solo, 2002). New
estimation and identification tools for SPDEs have been recently explored by
Zammit-Mangion et al. (2012b), where the use of the variational approximation
and the consideration of both continuous and point-process observations where
investigated for SPDEs.

2.5. Partial Differential-Algebraic Equation Models

An even more general class of models to the PDEs are partial differential-
algebraic equation (PDAE) models, which is a descriptor formulation (also
known as an implicit form, singular form or generalised state-space form). The
models of a number of natural processes, such as fluid flow (Stull, 1988) and
electrochemical reactions in a molten carbonate fuel cell (Chudej et al., 2003),
result in a PDAE system of the form

∂zd(s, t)

∂t
= F

(

Dmz(s, t), Dm−1z(s, t), . . . , Dz(s, t), z(s, t)
)

, (11)

0 = G
(

Dmz(s, t), Dm−1z(s, t), . . . , Dz(s, t), z(s, t)
)

, (12)
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where z(s, t) = [z⊤d (s, t) z⊤a (s, t)]
⊤ and zd and za denote the differential and

algebraic states, respectively. For a non-negative integer m, Dmz(s, t) is the set
of all partial spatial derivatives of order m.

It is noteworthy to highlight the difference between a PDAE and a constrained
PDE system. For constrained PDE systems, the evolution of all process states
z(s, t) = zd(s, t) is described by PDEs, subject to algebraic constraints that
confine their evolution. For a PDAE system, there exist some states za(s, t),
known as algebraic, whose evolution is not governed by PDEs, but is completely
dictated by the evolution of differential states zd(s, t), such that all algebraic
constraints are satisfied (Patwardhan et al., 2012). Although numerous re-
searchers convert the descriptor problem to a standard state-space formulation
(e.g. (Towers and Jones, 2016; Soleimanzadeh et al., 2014)), this process may in-
troduce significant numerical errors where ODE solvers are used (Mandela et al.,
2010). The conversion may also lead to the violation of algebraic constraints
and makes measurements that are functions of algebraic states redundant for
state estimation (Mandela et al., 2010). This has motivated a number of re-
searchers to retain a descriptor formulation for estimation purposes (Mercieca
et al., 2015; Mandela et al., 2010; Becerra et al., 2001), as will be described in
Section 3.

2.6. Model Reduction and State-Space Modelling

Since most standard signal processing techniques are generally tailored for
finite-dimensional systems, model reduction methods were developed to reduce
infinite-dimensional spatio-temporal models to a finite-dimensional form. A
common spatial and temporal discretisation scheme is the method of finite dif-
ferences typically employed for PDE-based models (Grossmann et al., 2007).
This method approximates spatial and temporal derivatives of the PDE using
difference quotients.

The method of moments is another model reduction technique usually em-
ployed for spatial dimensionality reduction (Hausenblas, 2003), where a finite
set of linearly independent basis functions {φi(s)}

nφ

i=1 are used to decompose a
spatio-temporal field z(s, t) such that

z(s, t) ≈

nφ
∑

i=1

φi(s)xi(t) = φ⊤(s)x(t), (13)

where x(t) ∈ R
nφ is a state vector that weights the field basis functions φi(s).

The spatio-temporal field is then projected under an inner-product transforma-
tion with respect to a set of test functions {χi(s)}

nφ

i=1 (Hausenblas, 2003). A
popular choice for the test functions sets {φi(s)}

nφ

i=1 = {χi(s)}
nφ

i=1, which is a
special case of the method of moments known as the Galerkin method. The
method of moments has a number of advantages over standard finite-difference
schemes, particularly due to their easier use in complex geometry spaces and
their ability to handle Dirichlet boundary conditions systematically by an ap-
propriate choice of basis functions (Zammit-Mangion et al., 2012b). Since the
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observation process is usually temporally discrete, an Euler step is used to ob-
tain a discrete-time representation for the finite-dimensional system (Freestone
et al., 2011).

By following finite-dimensional reduction, the popular stochastic state-space
model framework is obtained for which several signal processing techniques are
readily available and algorithm development is greatly facilitated:

xk+1 = fk(xk) + qk, (14)

yk = hk(xk) + rk, (15)

where xk := x(k∆t) and yk := y(k∆t) ∈ R
ny are the system state and obser-

vation vectors, respectively, qk and rk are noise sequences, fk(·) is a dynamic
model function, hk(·) is a measurement model function and ∆t is the time step.

3. Estimation and Identification

One critical problem in spatio-temporal systems is reconstructing the field in
some spatial domain at any given time instant from some observation process.
If the data is sufficiently informative, as is the case with data obtained from an
infrared camera for example (Demetriou et al., 2003), then the spatio-temporal
field may be assumed to be entirely known with no need of any further signal
processing. If, however, the field is measured at isolated points, such as in neural
field (Freestone et al., 2011) or ocean (Leonard et al., 2007) sampling, state
estimation for X = x0:K = {x0, . . . ,xK} (for K regularly spaced time intervals)
is performed using observed data Y = y1:K = {y1, . . . ,yK} required for field
reconstruction. The optimal estimation of the states from some data set is
known as the smoothing problem. This problem is generally solved using either
the forward-backward algorithm, where the forward pass represents filtering
and the backward pass represents smoothing, or the two-filter smoother that
combines forward messages (identical to those obtained using filtering) with
backward messages computed in reverse time to get smoothed estimates. Here,
we shall only be reviewing filtering strategies. If, in addition to the states,
the model parameters need to be estimated, the problem is known as a joint
state-parameter estimation problem.

3.1. State Estimation

The models that shall be considered here are discrete-time state space models
of the form given by equations (14) and (15). In the context of conditional-
density-approximation-based state estimators, when the model is linear, the
analytical solution is the Kalman filter that describes the optimal recursive so-
lution to the problem of sequential state estimation (Kalman, 1960). Combining
the predicted state estimate x̂k+1|k with the measurement yk+1, we obtain the
optimal state estimate which is constructed recursively as follows:

x̂k+1|k+1 = x̂k+1|k + Lk+1ek+1, (16)
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where ek+1 = yk+1 − Ck+1x̂k+1|k is the innovation and Lk+1 is the Kalman
gain matrix given by

Lk+1 = P
(ǫ,e)
k+1 [P

(e,e)
k+1 ]

−1, (17)

where
P

(ǫ,e)
k+1 = E[(ǫk+1|k)(ek+1)

T ] (18)

and
P

(e,e)
k+1 = E[(ek+1)(ek+1)

T ]. (19)

The a priori estimation error is denoted by ǫk+1|k = xk+1 − x̂k+1|k. A fun-
damental feature of the Kalman filter is that whenever qk and rk are additive
Gaussian noise processes and x0 is Gaussian distributed, then the conditional
densities p[xk+1|Y

k] and p[xk+1|Y
k+1], and the innovation sequence ek+1, are

also Gaussian. This is a result of the preservation of the Gaussian distributions
under linear transformations.

When dealing with nonlinear systems, the sequential Bayesian estimation
problem requires the development of approximate and computationally tractable
sub-optimal solutions. This time, when qk, rk and x0 are Gaussian, the con-
ditional densities p[xk+1|Y

k] and p[xk+1|Y
k+1] are non-Gaussian. In this class

of nonlinear stochastic observers, the most popular approach is the extended
Kalman filter (EKF), which uses the Taylor series approximation of the nonlin-
ear function vectors F(·) and h(·) to construct the conditional densities. The
EKF has been a successful solution for many industrial problems (Muske and
Edgar, 1997), however many nonlinear systems remain problematic. A serious
limitation of the first-order EKF formulation is that the prediction step requires
approximating the expected value of a nonlinear function of a random variable
by the propagation of the mean of the random variable through the nonlinear
function (Daum, 2005), as follows:

E[F(xk,uk)] ≈ F(E[xk|Y
k],uk). (20)

Such approximation is certainly invalid in view of Jensen’s inequality (Casella
and Berger, 1990), which states that φ[E(x)] ≤ E[φ(x)]. Although the second-
order EKF attempts to mitigate the significant error involved by correcting esti-
mates of the mean x̂k+1|k and x̂k+1|k+1 using the second-order terms in the Tay-
lor series expansion of F(xk,uk), severe nonlinearities remain a problem. The
algorithm is also computationally expensive particularly for high-dimensional
systems. Moreover, the Taylor series approximation requires smooth and at
least twice differentiable nonlinear function vectors.

This requirement for smooth or differentiable nonlinear functions is relaxed
when using approximations based on statistical linearization (Gelb, 1974), which
is a better alternative for approximating the nonlinear function of a random vari-
able. Furthermore, the state and measurement uncertainties are not required to
be linearly additive signals. This class of nonlinear filters yields better estimates
of the moments of a distribution using samples rather than the Taylor series ap-
proximation of the nonlinear function. This, however, requires the knowledge
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of the probability density function of the random variable. A very popular ap-
proach in this class of filters (that are often referred to as sigma point filters)
is the unscented Kalman filter (UKF) (Julier et al., 2000; Julier and Uhlmann,
2004) for which several application studies have appeared (Romanenko et al.,
2004; Romanenko and Castro, 2004; Vachhani et al., 2006; Wan and Van der
Merwe, 2000). In the unscented transformation, a number of deterministic sam-
ples are chosen such that their weighted mean and covariance would equate the
mean and covariance of the random variable undergoing a nonlinear transforma-
tion. The transformed sample points (or sigma points) are then used to calculate
the a posteriori mean and covariance. The difficulty associated with Jacobian
computations in EKF are therefore alleviated with derivative-free sigma point
filters. In most of the formulations, however, the conditional densities are still
approximated as Gaussian. Due to nonlinear transformations, the conditional
densities are in fact non-Gaussian, thereby requiring other methods to overcome
these simplifying assumptions.

Particle filtering is a new class of filtering techniques that can deal with state
estimation problems arising from non-Gaussian and multi-modal distributions
(Arulampalam et al., 2002; Rawlings and Bakshi, 2006). A particle filter (PF)
uses Monte Carlo sampling to approximate the multi-dimensional integration
involved in the prediction and update steps or the moments of the conditional
distributions. Belonging to the class of particle filters is the ensemble Kalman
Filter (EnKF) (Burgers et al., 1998; Evensen, 2003) which is based on the idea

of obtaining estimates for P
(ǫ,e)
k+1 and P

(e,e)
k+1 using random samples rather than

deterministic ones. Detailed expositions on algorithmic and theoretical aspects
of particle filtering are included in (Chen, 2003; Arulampalam et al., 2002; Rawl-
ings and Bakshi, 2006; Cappe et al., 2007).

In addition to conditional-density-approximation-based estimators, various
nonlinear state estimation methods that use an optimisation approach to solve
nonlinear state estimation problems have been proposed. These techniques were
developed with the specific goal of handling constraints on states and parameters
in estimation (Patwardhan et al., 2012). One estimator that uses an explicit
optimisation-based approach for state and parameter estimation of nonlinear
dynamic processes (described by ODEs) is the moving horizon estimator (MHE)
(Robertson et al., 1996). At every time step, the MHE solves an optimisation
problem, thereby easily handling constraints and bounds on state variables. The
standard MHE formulation considers an arrival cost term that accounts for the
accumulated state estimate uncertainties till the current window of interest.
For general nonlinear constrained state estimation, the arrival cost cannot be
calculated analytically whilst for constrained linear ODE systems, the arrival
cost may be approximated using the one for the unconstrained problem (Qu and
Hahn, 2009). For nonlinear systems, the arrival cost is usually determined by
approximating a constrained nonlinear ODE system as an unconstrained linear
time-varying system (Tenny and Rawlings, 2002).
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3.2. State and Parameter Estimation

All state estimation algorithms assume the accurate knowledge of the corre-
sponding model parameters. If in addition to the states, a number of unknown
parameters θ must be estimated, a joint state-parameter estimation algorithm
is needed (Soroush, 1998). These methods are the subject of the following sub-
sections.

3.2.1. The Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm is a maximum likelihood (ML)
estimation algorithm first introduced by Dempster, Laird and Rubin (Dempster
et al., 1977) to solve incomplete-data or latent-data problems. Its first ap-
plications in identification were linear discrete stochastic state-space systems
(Shumway and Stoffer, 1982), whilst more recent work in a more general setting
is reported in (Gibson and Ninness, 2005). A comprehensive review treating the
algorithm and its extensions is provided in (McLachlan and Krishnan, 1997) and
summaries of the method are given in several sources (Dellaert, 2002; Bishop,
2006). In brief, EM has a dual role; that of estimating the unknown parame-
ters θ and that of estimating the latent states X using an iterative algorithm.
An important point to recall is that in the context of spatio-temporal systems
represented by state-space models, the hidden states X relate to the spatial
field. The parameters θ govern the statistics and dynamics of the evolution and
observation processes. It is noteworthy that in the state-space formulation, the
E-step requires solving the smoothing problem. Denoting the observed data as
Y, the EM algorithm can be summarized in the following four steps:

1. An initial guess is chosen for the parameter vector, θ(0). i is set to 0.

2. E-step: given the parameter vector and the measurements, the states are
estimated using the joint log-likelihood function of the states and the
measurements (Q-function), as follows:

Q(θ(i),θ) =

∫

log[p(X,Y|θ)]p(X|Y,θ(i))dX. (21)

3. M-step: Q(θ(i),θ) is maximized with respect to θ. The maximizing value
is θ(i+1).

4. The steps 2 and 3 are repeated until the change in parameter vector is
within specified tolerance limits.

Note that the Q-function is the lower bound on the marginal likelihood log[p(Y|θ)].
The EM algorithm may be slightly modified to become a semi-Bayesian ap-
proach to parameter estimation, known as the Maximum-a-posteriori (MAP)-
EM algorithm. This involves including a parameter prior distribution p(θ) in the
M-step. The resulting algorithm is only considered semi-Bayesian since at each
step the posterior distribution probability mass is focused at its mode, thereby
still being treated as a point estimate. In many cases, this is unrepresentative of

15



the true distribution. This problem is overcome using the variational Bayesian
expectation-maximization (VBEM) algorithm, where the distributional proper-
ties of the parameter estimates are maintained throughout the E-step.

3.2.2. The Variational Bayesian Expectation-Maximization Algorithm

The elegant framework of the variational Bayesian expectation-maximization
(VBEM) algorithm carries out analytic computations of approximate posterior
distributions over parameters and latent variables (Attias, 1999, 2000). The
posterior distributions are calculated iteratively (termed Iterative VB in (Šmı́dl
and Quinn, 2005)), as in the EM algorithm, with guaranteed convergence. This
technique inherits the advantages of a Bayesian approach whilst being deter-
ministic with no sampling required. The approximate posterior distribution is
unique for a given set of data, likelihood and prior distribution, making the
VB method much faster than Markov chain Monte Carlo (MCMC) techniques
such as that discussed in Section 3.2.3. It has therefore been widely applied to
a vast range of problems that include vision tracking (Vermaak et al., 2003),
neuroimaging (Penny et al., 2003), blind source separation (Cemgil et al., 2007)
and the modelling of the cell’s regulatory network (Beal et al., 2005; Sanguinetti
et al., 2006).

The VBEM method yields a convenient functional form for approximating
the joint posterior distribution p(X,θ|Y). This is usually obtained using the
conditionally independent distributions p̃(X) and p̃(θ) (also referred to as vari-
ational posterior distributions) so that p(X,θ|Y) ≈ p̃(X)p̃(θ). The algorithm
operates by taking a parameter distribution p̃(θ)(i) into consideration and then
determining p̃(X)(i+1) such that the lower bound is maximised. This VBE-step
is given by

p̃(X)(i+1) ∝ exp(Ep̃(θ)(i) [ln p(X,θ,Y)]) (22)

Next, p̃(X)(i+1) is fixed and p̃(θ)(i+1) is calculated such that the lower bound
is maximised. This VBM-step is given by

p̃(θ)(i+1) ∝ exp(Ep̃(X)(i+1) [ln p(X,θ,Y)]) (23)

As in the EM algorithm, convergence may be monitored by observing the change
in the mean of the parameter posterior distributions through the iterations.
The VBEM algorithm shares most of its framework with its conventional EM
counterpart. In fact, the EM algorithm may be viewed as a special case of
VBEM, referred to as functionally constrained VB (Šmı́dl and Quinn, 2008;
Beal, 2003). A significant difference worth noting is that p̃(X)(i+1) is obtained
using expectations of θ rather than only its ML point estimate. Whenever
the posterior mode differs from the posterior mean, the two techniques will
differ considerably. The advantage of the VBEM algorithm is therefore that
through averaging, the method does not give excessive consideration to the
mode of the parameter posterior distribution. In classical control terminology,
the EM algorithm takes advantage of a certainty equivalence property, while
the VBEM technique is more cautious and incorporates knowledge of second
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and higher order moments in state estimation (Milito et al., 1982; Fabri and
Kadirkamanathan, 2001).

3.2.3. Gibbs Sampling

With guaranteed convergence to the target posterior distributions (Robert
and Casella, 2010), their simple implementation and wide applicability to most
models, MCMC methods have been the most popular class of distributional
approximation methods. The advent of parallel computing and several novel
technologies has rendered MCMC techniques applicable to large-scale inference
problems (Suchard et al., 2010; Lee et al., 2010). MCMC techniques obtain the
desired posterior distribution from the stationary distribution of a generated
Markov chain (a detailed overview is given in (Robert and Casella, 2004, Section
7.1)). Two of the most popular methods are the Gibbs sampler (Gelfand et al.,
1990) and the Metropolis-Hastings algorithm (Hastings, 1970). The former
strategy is ideal whenever the functional form of the joint posterior distribution
p(X,θ|Y) is unknown, or difficult to sample from, but where the conditional
densities p(θ|X,Y) and p(X|θ,Y) are known, or easy to sample from. Since
this is usually true for state-space models, the Gibbs sampling algorithm has
been extensively used in this scenario (Carter and Kohn, 1994; Geweke and
Tanizaki, 2001).

Considering a parameter sample θ(i), a basic two-state Gibbs sampler gener-
ates a state sample X(i+1) from Xi+1 ∼ p(X|θ(i),Y). Next, θ(i+1) is sampled
from θ(i+1) ∼ p(θ|X(i+1),Y). The procedure is repeated until some termination
criterion is met.

Despite the advantages of MCMC methods, they are all stochastic approxi-
mation techniques where the final distributional approximation is obtained from
Markov chain paths, which are random in nature. Associated methods ex-
hibit computational inefficiency and it is difficult to establish chain convergence
with acceptable error. Such limitations become even more pronounced in high-
dimensional systems (Mackay, 1998), such as spatio-temporal systems, thereby
driving research efforts into approximate deterministic inference techniques such
as EM and VBEM.

4. Applications in Engineering

Several engineering problems require the monitoring and control of spatio-
temporal systems. Problems arising in spatio-temporal contamination (e.g. oil
spills and contaminating fluid leaks), spatio-temporal monitoring and identifica-
tion (such as monitoring the carbon footprint), search and rescue missions and
wildfire control (Demetriou and Hussein, 2009) lead to an estimation problem
that must be addressed.

The spatio-temporal monitoring problem is oftenly treated in the context of
scheduling mechanisms that ensure adequate field monitoring by sensors (Gupta
et al., 2006; Choi, 2009). Since practical situations involve sensors that cannot
operate simultaneously, such as sonars occupying the same frequency band,
or mobile sensors covering a limited geographical area, an optimal estimation
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strategy is desired. Most of the associated monitoring problems are therefore
formulated as an optimal control problem minimising the expected error covari-
ance and is usually solved using dynamic programming techniques. A sensor
planning strategy that minimises the field estimation error using Lyapunov tech-
niques was proposed by Demetriou and Hussein (2009); Demetriou (2010). Sen-
sor trajectory design and measurement strategies for the parameter estimation
problem has been considered by Uciński (2005); Tricaud et al. (2008).

One spatio-temporal application in engineering is a smart structure system,
where a number of sensors and actuators are installed into a structure such that
this is able to interact with the external environment (Anderson et al., 2014).
Apichayakul and Kadirkamanathan (2011) show how a spatio-temporal model
may be constructed as an alternative way of modelling the structure. A robust
EM algorithm is used for the estimate the parameters of the the spatio-temporal
state-space model from experimental data.

An important spatio-temporal system is fluid flow which has been a topic of
increased recent interest due to its part in acting as the main disturbance in the
control system of wind turbines. Maximising energy production and mitigating
structural loads using the knowledge of oncoming wind is deeemed essential for
this renewable energy source. Such information is critical for the preview control
of wind turbines, as described by Schlipf and Pao (2014) in one of the current
control research challenges documented in The Impact of Control Technology
report published by the IEEE Control Systems Society. The accurate prediction
of wind flow is further required for strategic placing of wind farms which should
be located in regions of optimal potential load factor (Jefferson, 2008).

Although sampling an oncoming wind field has become possible with recent
advances in flow measurement, such as light detection and ranging instrumen-
tation (LiDAR), we are still left with the compelling questions of how best to
use such sparse measurements to predict wind gusts and to incorporate such
knowledge within a preview control scheme (Wang et al., 2012; Schlipf et al.,
2013). These controllers will rely upon the accuracy of wind field prediction,
which therefore calls for wind velocity estimation tools that predict wind tur-
bine gusts using limited spatio-temporal wind velocity measurements (Angelou
et al., 2010), thereby mitigating the possible blade damage due to severe wind
gusts if the blade pitch is altered in a timely manner (Dunne et al., 2011; Wang
et al., 2012; Kragh et al., 2013). This would of course link measurements to
regions of flow which are not directly observed. Figure 1 shows a visual com-
parison of a typical generated and estimated atmospheric boundary layer wind
flow field at a single time instant, based on wind velocity data obtained from
49 wind velocity sensors arranged over a regular grid.

The Navier-Stokes equations that govern fluid flow have a PDAE formulation,
which for viscous incompressible flow is given by

∂U(s, t)

∂t
= −∇P (s, t)−U(s, t) · ∇U(s, t) +

1

Re
∇

2
U(s, t), (24)

0 = ∇ ·U(s, t), (25)
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(a) (b)

Figure 1: A typical result for wind velocity estimation is visualised here by showing a single
time instant of (a) the generated wind data and (b) the estimated flow field, based on data
obtained from 49 wind velocity sensors arranged on a regular grid. The contours represent
the wind velocity magnitude in ms−1 within a 240m square domain at a height of 100m above
sea level.

where U(s, t) and P (s, t) denote the velocity and pressure fields, respectively,
evolving over domain Ω ∈ R

d for d-dimensional flow, with time t ∈ R+ and
s ∈ Ω. The term Re denotes Reynolds number and the superscript ⊤ is the
transpose operator. A notable feature of equations (24) and (25) is that no
explicit equation exists for the pressure P . Also, since the pressure P is only
determined up to an additive constant, the system is said to be undetermined
and the concept of the differentiation index (Brenan et al., 1996) cannot be
readily applied (Weickert, 1997).

Owing to the intractable nature of the Navier-Stokes equations in their orig-
inal PDAE form, the state estimation of spatio-temporal systems governed by
these equations remains a challenging task since the majority of established
estimation techniques are designed for finite-dimensional systems in ordinary
differential equation form. Retaining the full DAE formulation is a very at-
tractive consideration due to the resulting pressure field description that would
become essential for yet another wind flow application: flow control for reduced
drag in transport vehicles. A pressure difference across a vehicle amounts to
pressure drag (Bertin and Cummings, 2013), which constitutes 80% of ground
transportation drag (Wood, 2004). It is estimated that 16% of the total energy
consumed in the United States is used to overcome aerodynamic drag (Wood,
2004).

We note that a simplified wind model has been proposed by Soleimanzadeh
et al. (2014), however this is derived as the spatial discretisation of the linearised
incompressible Navier-Stokes equations. A recent work reported by Towers and
Jones (2016) has derived a simplified deterministic state-space model of atmo-
spheric boundary layer flow but is based on spatial discretisation and excludes
pressure. If the spatio-temporal descriptor formulation of the Navier-Stokes
equations is to be retained, an appropriate estimation framework is needed to
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overcome the problems highlighted here.

5. Applications in Healthcare

The human brain is a highly sophisticated system which exhibits complex
spatio-temporal dynamics. The electrical activity in the brain can be observed
across space and through time via different electrographic modalities such as
electroencephalography (EEG) using scalp or subdural array of electrodes. The
underlying mechanisms of spatio-temporal pattern formation associated with
normal and abnormal neural activities are normally hidden in electrophysiolog-
ical recordings.

Theoretical brain models have been designed to explain brain’s function and
to predict complex neural rhythms. These are defined based on known biophys-
ical principles which enables a physiologically relevant interpretation of model
parameters.

The neural activity of the cortex at the mesoscopic scale can be represented
by neural field models which describe spatiotemporal neurodynamics on a con-
tinuous cortical sheet. These mean-field models can be used in a data-driven
framework where the patient-specific clinical measurements are incorporated
into the model to estimate unmeasured system properties or parameters. Esti-
mation of patient-specific parameters has the potential to transform understand-
ing and treatment of neurological diseases. Here we briefly review data-driven
approaches for neural field modeling using intracranial EEG (iEEG) recordings.
Alternative mean-field approximations are neural mass models which have also
been used in model-based frameworks using electrophysiological data (Freestone
et al., 2013, 2014).

The stochastic IDE formulation of the Amari neural field model is given by
Freestone et al. (2011)

zk (s) = ξzk−1(s) + ∆t

∫

S

κ (s− r) f (zk−1 (r)) dr+ ek−1 (s) , (26)

where ξ is the time constant parameter of the membrane, and ∆t is the sampling
time step. The index k ∈ Z0 is discrete time and s ∈ R

2 are spatial locations in
two-dimensional cortical surface, S.

The field of postsynaptic potentials at time k and location s is denoted by
zk (s) and is mapped through time via its convolution with the connectivity
kernel, κ (s− r), and f (zk (s)) is a sigmoidal firing rate function. The connec-
tivity kernel is commonly assumed to have a Mexican-hat shape with central
excitation and surrounding inhibition (see Fig. 2). The disturbance ek (s) is a
zero-mean normally distributed noise process.

The measurement equation is given by

yk(sn) =

∫

S

m (sn − s) zk (s) ds+ εk(sn), (27)
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Figure 2: Mexican-hat connectivity kernel with central excitation and surrounding inhibition.
The spatial mixing kernel governs the spatiotemporal dynamics of the neural field.

where m (·) models the intracranial sensor at spatial location sn and εk(sn)
denotes a zero mean Gaussian white noise.

A state-space representation of (26) and (27) can be derived by decomposing
the spatial field, zk (s), and the connectivity kernel, κ (s), using a basis function
decomposition. This can be done by writing the field and the kernel as sums
of weighted basis functions. The weights on the field basis functions and the
connectivity kernel form the states and the parameters of the state-space model
respectively. The spacing and the width of basis functions can be determined
using spatial spectral analysis (Aram et al., 2015b).

In (Freestone et al., 2011) Gaussian radial basis functions were used for the
decomposition, allowing analytic computations of the model terms in a reduced
state-space form. Alternatively B-spline scaling and wavelet functions can be
adopted for simultaneous reconstruction of the neural field at different spatial
scales (Aram et al., 2013). In addition to muitiresolution approximation (MRA)
property, other advantages of B-splines scaling and wavelet functions include
partition of unity and compact support (Goswami and Chan, 1999). However,
the increase in computational requirements for the estimation of the state-space
model will be significant.

The state-space formulation of the model allows the application of standard
techniques for iterative estimation of the states (spatial fields) and the param-
eters (connectivity kernel). The resulting state equation will be non-linear due
to the non-linear sigmoidal firing rate in (26), and therefore non-linear filtering
or smoothing techniques are required for the state estimation step. Although
the resulting state equation is non-linear the parameters of the system, connec-
tivity weights, are linear with respect to the state. Therefore, a least squares
method can be used for the parameter estimation step. By assuming a linear
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form for the activation function, f (zk (s)), one can utilise the standard EM
algorithm, applying the smoothing for the E-step and forming and maximizing
the expected log-likelihood in the M-step (Aram et al., 2013). The results in
these works showed that it is theoretically plausible to estimate the neural field,
connectivity kernel and the membrane dynamics.

Using complicated iterative algorithms to estimate spatiotemporal character-
istics of the neural field equation can potentially limit its application in practice.
An efficient approach for computing a closed-form estimation of the connectivity
kernel from average (over time) spatial correlations of iEEG recordings were de-
veloped by Aram et al. (2015a). The proposed method was then used to monitor
the connectivity changes during normal activity and an epileptic seizure. The
estimates of the connectivity kernel provided a plausible description for differ-
ences in seizure spread in different epilepsy patients. In particular it was shown
that the loss of surround inhibition in the connectivity structure can contain
epileptic events.

The estimated algorithm based on spatial correlation technique was further
developed to solve general IDE model of the form described in equation (8)
(Aram and Freestone, 2016). This work does not provide an estimate of the
spatial field, however, if one is interested in the field reconstruction, the kernel
estimate can be used as an initialisation for state-space estimation frameworks
developed by Dewar et al. (2009); Scerri et al. (2009), improving the speed and
the convergence of the estimation procedure.

The importance of data-driven neural models is increasing with technological
advances in neural recording devices with enhanced spatial and temporal resolu-
tions. These models provide patient-specific insight into normal and abnormal
cortical functions by estimating the spatial field and physiologically meaningful
parameters. Furthermore, such models can be potentially used to facilitate the
application of therapeutic electrical stimulation where the feedback from the
model will allow for closed-loop brain stimulation to control epileptic seizures.

6. Applications in Social Science

Social phenomena are being increasingly analysed for their spatio-temporal
behaviour (King, 2011). The Arab springs, which is a revolutionary wave of
demonstrations in the Arab world, represent one such social pattern which is
affected by social media and global spatial interactions. Another social phe-
nomenon is armed conflict (Johnson et al., 2011). These spatio-temporal inter-
actions may not only be studied to describe but also predict future activity with
confidence measures.

Social processes are typically investigated in terms of spatio-temporal point
processes, which are stochastic processes where samples are described by a
countable collection of space-time points. Such events having random loca-
tions and times may be assumed to be generated by a non-homogenous (with
respect to a spatio-temporally varying intensity) Poisson process described by
an intensity function λ(s, t), which is usually a function of a secondary contin-
uous stochastic process z(s, t) (Smith and Brown, 2003). The intensity func-
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tion is commonly represented by a log-Gaussian Cox process (LGCP), where
the logarithm of the event intensity is taken to be a Gaussian process, i.e.
lnλ(s, t) ∼ GP(·, ·) (Møller et al., 1998). Although this approach is advanta-
geous due to the simplicity of its parameter inference scheme, known as the
method of contrast (Diggle et al., 2005), this spatio-temporal intensity function
does not allow for appropriate parametrisation that reveals an adequate inter-
pretation of the underlying physical mechanism, rendering it less convenient for
control purposes (Zammit-Mangion, 2011).

A dynamic systems approach solves this issue by having the intensity gov-
erned by a stochastic state-space model (Smith and Brown, 2003; Eden et al.,
2004), which provides the added benefit of generally having unimodal state
and parameter probability densities facilitating the use of approximative tech-
niques (Yuan and Niranjan, 2010). The dynamic systems approach is adopted
by Zammit-Mangion et al. (2012a) for predicting armed conflict and dynamic
spatio-temporal modelling tools are proposed for the identification of complex
underlying conflict processes including volatility, diffusion, relocation and het-
erogeneous escalation. Since conflict data is typically available in discrete-
time form specifying the event date, rather than time, a discrete-time series
of the continuous-space LGCP is considered. For each discrete-time index
k ∈ K, K = {1, 2, . . . ,K}, the point-process intensity function employed is
λk(s) = exp(a⊤b(s) + zk(s)), where zk(s) is a spatial Gaussian process, b is a
vector of spatially referenced covariates and a is the associated regression param-
eter vector. This allows the mean function of zk(s) to be related to descriptive
variables such as population density, that enhance prediction accuracy.

To model the complex conflict dynamics, Zammit-Mangion et al. (2012a)
make use of the stochastic IDE (SIDE), which is of the form given by equation
(8) with the inclusion of an additive disturbance ek(s) assumed to be a Gaus-
sian process. The study analyses the correlation between conflict events by
determining probabilities of having a conflict occurrence at r given that another
occurrence happened at s at time frame k or k − 1. Such quantities are calcu-
lated using pair auto-correlation functions (PACFs). The bayesian inference of
the SIDE-driven LGCPs requires a finite-dimensional reduction method which
Zammit-Mangion et al. (2012a) carry out using a basis function decomposition
method that follows the form given by equation (13). A general basis function
selection method required for LGCPs is proposed by providing a relationship
between the point-process frequency content and the PACF, following the ideas
presented by Scerri et al. (2009); Freestone et al. (2011) which were discussed
in Section 2.3.

The SIDE is then represented as a standard linear state-space model of the
form

xk+1 = A(ηI)xk + qk(ϑ,ηQ), (28)

where A(ηI) ∈ R
nφ×nφ , nφ is the number of basis functions and qk ∈ R

nφ

denotes a Gaussian coloured noise term having mean E[qk] = ϑ and covariance
cov[qk] = ηQ. The joint state and parameter estimation problem that arises

23



is to estimate the states XK = {xk}
K
k=0 and the unknown parameters Θ =

{ηI ,ϑ,η
−1
Q } given the data YK = {yk}

K
k=1 which take the form of a set of

coordinates for a logged event occurring at the kth time frame. A variational
Bayes method is used to approximate the full posterior distribution

p(XK ,Θ,a|YK) ≈ p̃(Xk)p̃(ϑ)p̃(ηI)p̃(η
−1
Q )p̃(a), (29)

with the variational marginals (Beal, 2003; Šmı́dl and Quinn, 2005) each reveal-
ing critical properties of conflict progression.

Zammit-Mangion et al. (2012a) show how their methods successfully model
and predict conflict using data from the WikiLeaks Afghan War Diary (AWD),
which contains around 77,000 logs of conflict events (such as gunfights or secu-
rity checks) complete with their time and location. In particular, XK is used for
spatio-temporal field reconstruction and state inference therefore provides infor-
mation about where and how the conflict intensity changes over space and time.
The regression parameter a associated with population density and proximity
to the closest major city revealed how most of the AWD logs were located in
urban areas and regions of high population. Conflict escalation in Afghanistan
was possible to identify using the parameter ϑ, which describes the spatially
varying conflict escalation. This feature further allows the user to distinguish
between isolated events or increasingly alarming situations. The parameter ηQ

represents conflict volatility and is therefore used to determine the predictability
of conflict. In other words, a large diagonal value in ηQ is a sign of significant
volatility in the region, meaning that any future predictions made will be highly
uncertain.

The developed dynamic point process modelling strategy further allows sta-
tistical predictions of the system’s behaviour. By using the obtained generative
spatio-temporal model, it is shown that the predictions made are statistically
accurate, that is, a close match across Afghan provinces is obtained for the pre-
dicted and observed distribution of the armed opposition groups growth. A key
result is the statistically accurate prediction of conflict dynamics for a whole
year following the end of the available AWD data used to train the model.

7. Concluding remarks

This paper has reviewed estimation and identification methods for spatio-
temporal systems. The inference techniques considered adopt a dynamic sys-
tems approach that make them amenable to control applications. Advances in
sensor systems are enabling novel spatio-temporal processes to be partially ob-
served and leading to new estimation and identification problems in a variety of
applications. Three classes of applications, in engineering, healthcare and social
science, were briefly reviewed. The examples serve to highlight the breadth of
applicability of estimation and identification of spatio-temporal processes. Such
recent advances have paved the way for future work that may potentially an-
swer questions that we could not answer before. The ideas presented for the
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unconventional application of predicting armed conflict, for instance, may pro-
vide predictive abilities that could influence decisions in peace-keeping efforts.
This and several other applications may be better served by further advances
in this area of research.
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