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Abstract 15 

Understanding the geomorphology left by waxing and waning of former glaciers and ice sheets 16 

during the late Quaternary has been the focus of much research. This has been hampered by the 17 

difficulty in dating such features. Luminescence has the potential to be applied to glacial sediments 18 

but requires signal resetting prior to burial in order to provide accurate ages. This paper explores the 19 

possibility that, rather than relying on light to reset the luminescence signal, glacial processes 20 

underneath ice might cause resetting. Experiments were conducted on a ring-shear machine set up 21 

to replicate subglacial conditions and simulate the shearing that can occur within subglacial 22 

sediments. Luminescence measurement at the single grain level indicates that a number (albeit 23 

small) of zero-dosed grains were produced and that these increased in abundance with distance 24 

travelled within the shearing zone. Observed changes in grain shape characteristics  with increasing 25 

shear distance indicates the presence of localised high pressure grain-to-grain stresses caused by 26 
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grain bridges. This appears to explain why some grains became zeroed whilst others retained their 27 

palaeodose. Based on the observed experimental trend, it is thought that localised grain stress is a 28 

viable luminescence resetting mechanism. As such relatively short shearing distances might be 29 

sufficient to reset a small proportion of the luminescence signal within subglacial sediments. Dating 30 

of previously avoided subglacial sediments may therefore be possible. 31 

 32 
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 35 

1. Introduction 36 

 37 

As the Quaternary is typified by growth and decay of ice sheets and glaciers it is hardly 38 

surprising that much research has focussed on using geomorphology to reconstruct and model these 39 

through time (e.g., Jenson et al., 1995; Dyke et al., 2001; Clark et al., 2012; Toucane et al., 2015; 40 

Hughes et al., 2016).  Unfortunately, many of the difficulties and controversies stemming from this 41 

can be traced back to uncertainties associated with age either through problematic stratigraphic 42 

correlation or through methods attempting to provide specific ages (e.g., Hamblin et al., 2005; Pawley 43 

et al., 2008; Gibbard et al., 2009; White et al., 2010, 2016; Lee et al., 2011).  Radiocarbon is of 44 

limited use as it covers only part of the last glacial-interglacial cycle, and organic preservation within 45 

glacial sediments is limited and has a high potential for carbon recycling/contamination (Briant and 46 

Bateman, 2009).  Uranium series dating and amino-acid racemisation often cannot be applied through 47 

lack of suitable material within glacial sequences.  As a result, Quaternary scientists largely apply 48 

cosmogenic and luminescence dating.  The application of cosmogenic exposure dating, although 49 

relatively new, has been making a significant contribution to the understanding of ice-sheet 50 



fluctuations (e.g., McCormack et al., 2011; Anjar et al., 2014; Davis et al., 2015). However, exposure 51 

dating is largely limited to glacially eroded boulders on, for example, moraines and crag-and-tails 52 

(e.g., Livingstone et al., 2015a) and is complicated by the presence of cold-based ice (Ballantyne, 53 

2010).  54 

Luminescence dating has potential to date events within the last two glacial-interglacial cycles 55 

(e.g., Bateman et al., 2011) and is applicable to quartz and feldspars that are almost ubiquitous within 56 

preserved glacial landforms and sediments. As such, the method is attractive for gaining glacial 57 

chronological frameworks.  However, the technique relies on the fundamental premise that at some 58 

point between erosion, transport, or deposition, glacial sediment must be exposed to sunlight for a 59 

sufficient duration to remove antecedent stored luminescence. Godfrey-Smith et al. (1988) showed 60 

that for quartz the optically stimulated luminescence (OSL) signal is reduced to <1% of its original 61 

level within 10 seconds of sunlight exposure.  It therefore might be viewed that this is not too hard a 62 

criterion to meet, and indeed, King et al. (2014a, 2014b) showed that sediment redistribution in 63 

proglacial settings has a number of opportunities to reset.  However, many of the events/sediment 64 

requiring dating pertain to subglacial processes and associated landforms in which light exposure is 65 

unlikely (e.g., Lamothe, 1987; Rhodes and Pownall, 1994; Fuchs and Owen, 2008).  As a result, age 66 

overestimation (e.g., Duller et al., 1995; Houmark-Nielsen, 2009) and ages in saturation or highly 67 

variable ages (e.g., Thrasher et al., 2009) can occur. 68 

It has long been established that electrons trapped in defects within the crystal lattice of quartz or 69 

feldspar can also be stimulated into releasing luminescence by heat (thermoluminescence or TL) from 70 

natural or anthropogenic fires. What is less well established is a third environmental luminescence 71 

stimulation mechanism that relies on frictional effects or pressure (McKeever, 1985), which is known 72 

to cause triboluminescence or piezoluminescence.  In this, as electrons recombine and give off 73 

luminescence, so the stored charge depletes, eventually leading to resetting (see Dreimanis et al., 74 



1978; Aitken, 1985; Lamothe, 1988; Toyoda et al., 2000). Studies of sediment found in deep faults 75 

have shown that luminescence resetting does occur during earthquake events, but in such cases the 76 

ambient temperature is elevated and pressures induced by overburden as well as during movement on 77 

the fault are high (Zöller et al., 2009; Spencer et al., 2012). Subglacial temperatures and general 78 

confining pressures are much lower than this.  Nonetheless, the existence of resetting at the ice-bed 79 

has been proposed (e.g., Morozov, 1968; Dreimanis et al., 1978; Lamothe, 1988). More recently, 80 

empirical work from the Haut Glacier d’Arolla, Switzerland, by Swift et al. (2011) appeared to 81 

show a lowered luminescence signal from subglacial samples when compared to supraglacial 82 

sediments. This they suggested was caused by the resetting of sediment during subglacial crushing 83 

and grinding (specifically, bedrock erosion and debris comminution).   84 

Laboratory studies of the effects of mechanical crushing on sediment luminescence have 85 

generally failed to see an effect (e.g., Sohbati et al., 2011; Rittenour et al., 2012). However, 86 

Bateman et al. (2012) reported initial results from a ring-shear experiment in which changes to 87 

palaeodose (De) were monitored as shearing distance increased. This demonstrated for the first time 88 

that changes in stored palaeodose are possible when sediment was placed under a modest pressure 89 

(100 kPa) and sheared.  They suggested that the average confining pressure applied within the ring-90 

shear apparatus was insufficient alone to cause these changes. Instead, they concluded that stress 91 

induced during grain bridging (grain stacks or forced chains consisting of several aligned grains) 92 

events was important. They therefore suggested that geomechanical luminescence signal reduction 93 

may be a viable alternative mechanism for resetting (referred to as ‘bleaching’ when performed by 94 

light) of glacial sediments. However, the experiment on its own was not conclusive as it was 95 

hampered by low quantities of grains showing signs of resetting and high levels of palaeodose 96 

scatter. It was also impossible to discern, because of the low palaeodose (~4 Gy) of the sediment 97 

used, whether grains were being fully reset or their stored dose just depleted. Finally, the 98 



experiment was unable conclusively proved whether the observed changes in palaeodose were 99 

caused by  pressure (normal stress), shear stress, or other mechanical changes such as localised 100 

recrystallization (or the causation and migration of defects within grains). 101 

The aims of this present study were twofold.  First, to test the results of Bateman et al. (2012) 102 

using an annealed gamma irradiated sample with much higher dose, increased sensitivity, and lower 103 

initial De scatter.  It was hoped such an approach would provide the opportunity to see more 104 

effectively whether OSL signal resetting is actually taking place or just that palaeodose is being 105 

reduced.  Second, using new surface texture and shape data from the Bateman et al. (2012) 106 

experiment and the new experiment to better understand the potential mechanisms causing any 107 

signal removal.   108 

 109 

2. Experimental details 110 

 111 

2.1. Sample preparation  112 

 113 

The experiment of Bateman et al. (2012; experiment 1) and the new experiment (experiment 2) 114 

were based on sediment sampled from a dune field at Lodbjerg, Denmark, studied by Murray and 115 

Clemmensen (2001) and Clemmensen et al. (2009). This sediment was originally derived from 116 

local, sand-rich glacial till.  Actual glacial sediment was not used because of its complex transport 117 

history (e.g., Fuchs and Owen, 2008), sometimes poor OSL sensitivity (e.g., Preusser et al., 2007), 118 

and mixed lithologies that may be associated with different luminescence properties and behaviour 119 

(Rhodes and Bailey, 1997; Rhodes, 2000). Sampling consisted of driving 50+ opaque 20-cm-120 

diameter PVC tubes into the exposed dune face (Fig. S1). The tubes were transported to the 121 

laboratory, where the outer 2–3 cm of sand from each tube-end was discarded (thus excluding any 122 



grains that may have been exposed to light). Sand was then sieved through a 500 µm sieve to 123 

remove extraneous organic material (mostly small rootlets) and homogenised by mixing. 124 

Mineralogy was confirmed to be dominantly quartz by mineral-mapping ~100 grains using a Zeiss 125 

Sigma field emission analytical SEM equipped with an Oxford Instruments INCAWave detector. 126 

Further, laser granulometry confirmed the size distribution to be well-sorted medium sand (Md = 127 

295 µm, d10 = 197 µm, d50 = 319 µm, d90 = 543 µm). 128 

For the new experiment (experiment 2), sediment was additionally annealed to 500
o
C for 1 129 

hour to remove any naturally acquired palaeodose and to improve the quartz sensitivity to dose.  130 

The sediment was then given a 38.1 ± 1.2 Gy dose using the Cobalt
60

 gamma source at Risø, 131 

Denmark. This dose was selected to be of a similar magnitude to what would be expected for a 132 

relict glacial deposit from the Last Glacial Maximum (~21 ka). As the annealing and gamma dosing 133 

was undertaken in batches, all were thoroughly remixed prior to ring-shear experimentation. 134 

 135 

2.2. Shearing in the ring-shear 136 

 137 

For both experiments, sediment was loaded under dark room conditions into the Aarhus 138 

University ring-shear apparatus (Fig. 1A).  The ring-shear consists of a large (sample surface of 139 

1800 cm
2
) circular shearing chamber with a trough for the sediment 120 mm wide and depth of 80 140 

mm (see Larsen et al., 2006, for further details). It has two plates between which the shearing gap in 141 

the sample is located. Ribs 6 mm in length are attached to both plates to fix the sample, and 142 

shearing is created by rotating the lower plate at a constant velocity (Fig. 1B). A uniform normal 143 

stress is applied hydraulically to the sample through the normal-load plate, which is free to move 144 

vertically according to sample compaction or expansion during shearing. Shear stress is measured 145 

by two sensors mounted on the normal-load plate, and sediment compaction is monitored by three 146 



sensors attached to the normal-load plate at equal distances around the shearing chamber whereby 147 

average data recorded by each group of sensors are considered further. The approximate shearing 148 

zone position was determined during test runs conducted using glass beads as strain markers, which 149 

showed the zone of deformation to be around 2.5 cm thick (Fig. S3). During the shearing, the sand 150 

had a preexisting moisture content making it cohesive but not saturated. 151 

For experiment 1, the ring shear apparatus was run at a uniform normal stress of 100 kPa and a 152 

shearing velocity of 1 mm min
-1

 (i.e. parameters that are in the range of typical conditions beneath 153 

glaciers and ice sheets; Paterson, 1994) to a distance of 1280 cm.  During the experiment, sediment 154 

compaction, shear stress, and normal stress were recorded in 30 second intervals. Experiment 1 was 155 

periodically paused to allow sampling after shearing displacements of 10, 20, 40, 80, 160, 320, 640, 156 

and 1280 cm. At each pause, two opaque 20-mm-diameter tubes were inserted vertically into the 157 

sand in the middle of the shearing chamber, marked at the level of the shearing chamber sand, and 158 

then slowly pulled out and sealed. The mark was subsequently used to infer the location of the 159 

shearing zone in each sample. The space in the shearing chamber left after sampling was naturally 160 

backfilled by lateral sediment creep while the tube was removed so that the original stratification 161 

was reinstated as closely as possible. This formed the basis of the samples used for sediment and for 162 

OSL characterisation. Before the start of the shearing and after each sampling, the sediment was 163 

consolidated under the normal stress of 100 kPa. Experiment 2 was run with the same parameters as 164 

above except that after shearing displacement of 1280 cm, normal stress was increased to 150 kPa 165 

and velocity to 2 mm min
-1

 and a final sample was collected after a total shearing displacement of 166 

1920 cm.  167 

 168 
[Fig. 1 here] 169 
 170 



2.3. Luminescence measurements 171 

 172 

All OSL sample preparation and analyses of samples from experiment 2 were carried out in the 173 

University of Sheffield luminescence laboratory under controlled lighting conditions.  For each 174 

ring-shear sample, subsamples were taken by cutting 1-cm sections of tube with a pipe-cutting tool. 175 

This avoided any mechanical damage to grains that sawing would have caused. The position of the 176 

shearing zone was determined based on a prior test experiment using glass beads as strain markers 177 

that showed a 2.5-cm-thick shearing zone located in the middle of the sample tube (see 178 

supplementary information for more details). Two sets of subsamples were collected: (i) from 1 cm 179 

below the shearing zone (referred to herein as unsheared), and (ii) centred on the shearing zone 180 

(referred to herein as sheared). The former samples were taken for the purpose of investigating the 181 

effects of pressure alone and the latter for the combined effects of shear stress and pressure.  182 

The OSL measurements focussed on quartz rather than feldspar as quartz dominanted in terms 183 

of grain numbers within these small samples and feldspar grains have potential anomalous fading 184 

issues. The quartz from all subsamples was extracted and cleaned for OSL dating (see Bateman and 185 

Catt, 1996, for details). Given the limited sample size, prepared quartz between 90 and 250 µm 186 

dimeter was used. Single grain OSL measurements were made on a TL-DA-15 Risø reader with a 187 

green laser single grain attachment (Duller et al., 1999). In principle, with the grain size used, more 188 

than one grain could have been mounted in the 300 µm Risø grain holder and measured 189 

simultaneously. However, given that <10% of grains were smaller than 197 µm and that most 190 

grains emitted insufficient OSL, the chances of more than one grain contributing to a stored dose 191 

(De) was considered extremely low.  Luminescence was filtered with a 2.5-mm-thick Hoya U-340 192 

filter (as per Ballarini et al., 2005) and irradiation was provided by a calibrated 
90

Sr/
90

Y beta source. 193 

The OSL stimulation was for 0.8-s, whilst the sample was held at 125
o
C.  The De values within 194 



grains were measured using a single aliquot regeneration (SAR) protocol with a 10-s, 260
o
C preheat 195 

experimentally determined from a dose recovery preheat plateau test (Murray and Wintle, 2003).  196 

The SAR growth curves for each grain were based on an integral of OSL measured between 0.08 197 

and 0.11 s and background on an integral of OSL measured between 0.64 and 0.8 s. When 198 

analysing the SAR data, grains were only accepted where the recycling ratio was 1 ± 0.2 of unity; 199 

recuperation was <5%; the error on the test dose was <20%; the naturally acquired OSL was 200 

significantly above background; and SAR regeneration points could be fitted by a growth curve. To 201 

demonstrate the appropriateness of this measurement protocol, dose recovery tests were undertaken 202 

with two samples (Shfd12089 and Shfd12090), which both returned measured palaeodoses within 203 

unity of those given (1.03 ± 0.03 and 1.02 ± 0.03 respectively), low overdispersion (7% and 5%), 204 

and normal De distributions (Fig. S5). Importantly, given the subsequent results from the ring-shear 205 

experiment samples, no zero-dose grains were measured during these dose recovery tests. 206 

 207 

[Table 1 here] 208 



The natural sediment used in Bateman et al. (2012) required 3000-5000 grains to be measured 209 

per sample to meet a minimum of 35 accepted grains. Annealing clearly improved the sediment 210 

sensitivity as only between 400 and 1300 grains per sample needed to be measured for a minimum 211 

of 50 De values to meet the acceptance criteria (Rodnight, 2008). Data shown in Tables 1 and 2 212 

represent the measurement of over 21,000 grains.  As it was key to find potentially small numbers 213 

of reset (i.e. zero-dose) grains and grains with depleted De values, two subsamples (see samples 214 

Shfd12089 and Shfd12090 in Table 1) were measured independently three times to evaluate the 215 

reproducibility of results. For the purposes of this experiment, zero-dose grains were defined as 216 

those with De values within uncertainty of 0 Gy and their numbers were recorded as a percentage of 217 

the accepted grains. Results were analysed using the central age model (CAM; Galbriath et al., 218 

1999), which also allowed calculation of overdispersion (OD; percentage of uncertainty greater than 219 

can be explained by the errors calculated around the central value). As the data sets were non-220 

normally distributed results were also analysed with the finite mixture model (FMM; Galbraith and 221 

Green 1990) where a σb value of 0.20 was used (as per Livingstone et al., 2015b) and k was 222 

selected to minimize the Bayesian information criterion (BIC) value.  223 

 224 

[Table 2 here] 225 

  226 

2.4. Sediment characterisation measurements 227 

 228 

Changes in grain shape were quantified at first manually (experiment 1) and then using 229 

automated image-based methods (experiments 1 and 2). Manual analysis was performed by visual 230 

classification of grains viewed under a microscope using Power’s roundness index (Powers, 1953). 231 

Automated analysis was used to measure specific grain attributes (including particle area, perimeter 232 



length, Feret, and breadth) that enable calculation of common shape parameters (Table 3). First, 233 

optical or SEM images of 50 randomly selected grains per subsample were analysed using the 234 

‘Gold Morph’ shape-analysis plug-in (Crawford and Mortensen, 2009) for the ImageJ image 235 

processing and analysis software programme (imagej.nih.gov/ij/). Second, the remaining material 236 

was analysed using a Sympatec QICPIC Image Analyser system fitted with a 532-nm laser and a 237 

high-speed (70 Hz s
-1

) CMOS camera, which permitted analysis of 19,000+ particles per sample.  238 

Calculated shape parameters are shown in Tables 3 and 4 (parameter variables are defined in 239 

Table 5). Parameters for optical and SEM image analysis (Table 3) were selected for their 240 

sensitivity to changes in grain shape as illustrated by the accompanying diagrams to Krumbein’s 241 

(1941) scale of roundness (shown in modified form in Figure S2). Parameters in Table 4 are 242 

calculated automatically by the QICPIC analysis software. Two of these (Sphericity and Convexity) 243 

have direct equivalents in Table 3 (although their outputs are inverted), whilst Aspect Ratio has 244 

some equivalency to Round (Table 3) because these parameters relate either longest or shortest 245 

length to particle area. All such parameters are limited in that they allow characterisation of overall 246 

particle form only, whereas the Krumbein and Power’s Roundness indexes require the user to 247 

classify particles based on a combination of overall form (e.g., their blockyness) and individual edge 248 

characteristics (e.g., the ‘sharpness’ of their asperities). However, because edge characteristics 249 

(including fractures) do contribute to overall form of small particles, these more quantitative 250 

approaches should offer significant advantages over manual (e.g., Power’s) techniques. The 251 

QICPIC parameters are by default calculated for grains in specific size ranges, meaning, for 252 

simplicity, individual size-category values were combined into a single mean value.  253 

In addition to the above, at the end of experiment 1 a vertical thin section oriented parallel to 254 

the shearing direction along the middle of the sample was prepared from an undisturbed sediment 255 

block. This was to permit examination of grain arrangement and characteristics in situ (i.e. within 256 



the shearing zone). The thin section was subdivided into 18 equally thick segments and in each of 257 

them, the orientation of elongated grains was determined separately. On average, 32 grains with 258 

axial ratios of at least 2:1 per segment were measured. The orientations are expressed as S1 259 

eigenvalues (Mark, 1973) and as main dip angles (MDA) representing the averaged angle of dip of 260 

the 18°-wide sector of rose diagram that contains the highest number of single measurements.  261 

 262 

3. Results 263 

 264 

3.1. Luminescence 265 

 266 

Luminescence results for experiment 1 were presented in Bateman et al. (2012) so only the new 267 

results for experiment 2 are outlined here.  For the unsheared subsamples, with progressive shearing 268 

the mean De (based on CAM) shows a slight decrease after 80 cm, but with an r
2
 of only 0.02 this is 269 

not significant (Fig. 2A). For sheared samples, the mean De shows a slight decrease after 320 cm, 270 

but with an r
2
 of only 0.08 again this is not significant especially if the final point is excluded on the 271 

basis that it was sheared at a high normal stress (150 not 100 kPa; Fig. 2B). All samples showed a 272 

surprising level of OD that was on average 30% (Table 1) and did not increase with shearing 273 

distance.  Looking at the FMM results, both sets of subsamples show weak trends towards 274 

decreasing De with shearing distance (Fig. 3). The r
2 

values are higher than the CAM (0.2 and 0.4 275 

respectively) reflecting FMM isolating some small (<10% of the data) components for some 276 

samples. The latter may reflect a small number of measurements where more than one grain was 277 

measured simultaneously. Zero-dose values through necessity had to be excluded from the 278 

logarithm-based FMM analysis.  279 



More than one FMM component was found with some sheared and unsheared subsamples, but 280 

this is not a systematic effect. To check this, two randomly selected samples were run 281 

independently three times to establish internal variability in the mean and component De values 282 

(Table 2). Sample Shfd15090 returned CAM De values within errors but one replicate had only one 283 

FMM component compared to the two components of the other two replicates. For sample 284 

Shfd15089, one replicate returned two FMM components compared to the one component 285 

identified for the other two replicates.  Additionally, one of the replicates failed to return a CAM De 286 

within errors of the other two replicates. In the light of the variability of the replicate data, and 287 

despite using a σb value three times higher than the OD established with the dose recovery 288 

experiments (5-7% measured, 20% applied) and minimising the BIC,  FMM failed to accurately fit 289 

to and extract components from these data, and the results are therefore unreliable. 290 

 291 

[Figure 2 here] 292 

 293 

[Figure 3 here] 294 



The critical luminescence data appear to be the number of zero-dose grains measured.  No 295 

zero-grains were found in the 10 samples (>10,000 grains measured) taken from the unsheared zone 296 

regardless of the shearing distance travelled. Further, no zero-grains were measured on the sheared 297 

material during the two dose-recovery experiments undertaken (1600 grains measured, Figure S5).  298 

Zero-grains appeared only within the shearing zone after the shearing distance exceeded 100 cm 299 

(after 2400 grains from shorter distances had already been measured). As shown in Fig. 4, as a 300 

function of total grains that met the quality acceptance criteria, zero-dose grains remained low 301 

(max. 8 grains out of  80 grains in sample Shfd12095) but linearly increased with shear distance (r
2 

302 

= 0.8; note logarithmic distance scale in Fig. 4).  Whilst the number of zero-dose grains was small, 303 

this is the second separate experiment that has generated them (the first being that of Bateman et al., 304 

2012).  Further measurements for longer distances could not be undertaken because of constraints 305 

on machine time (ring-shear experiment 2 took over 13 days to run excluding stops to permit 306 

sampling) and because at longer distances multiple rotations of the circular ring-shear machine 307 

increased the possibility of collecting sediment already disturbed by earlier sampling.  308 

 309 

[Figure 4 here]  310 

 311 

3.2. Sediment characterisation 312 

Results demonstrated that, despite an initial degree of angularity and fracture presence, experiment 313 

1 sheared zone subsamples exhibited increasing angularity and elongation with shearing distance 314 

(e.g., Fig. 5, Table 6), confirmed by Power’s roundness and fracture incidence (Table 7). Most 315 

notably, analysis of SEM grain images demonstrated observable correlation with shearing distance 316 

(here defined as p ≤ 0.1) for parameters Conv2 and Round, weakly observable correlations (p ≤ 317 

0.35) for parameters rP and Conv, and a significant correlation (p ≤ 0.05) for the parameter Circ 318 



(Figs. 5 and 6; Table 6). This was supported by QICPIC analysis, which demonstrated a significant 319 

correlation with shearing distance (p ≤ 0.05) for Convexity (Table 6). Interestingly, QICPIC size 320 

results (Table 5) also demonstrated a statistically significant correlation between particle size and 321 

shearing distance, demonstrating an increase in sediment size within the shearing zone. 322 

 Experiment 2 shearing zone subsamples are not entirely consistent with those for experiment 323 

1, demonstrating some inconsistent parameter changes, including a decrease in the Circ parameter 324 

and particle diameter, an increase in the Conv2 and Sphericity parameters, and no apparent decrease 325 

in the Conv and Round parameters (Table 6). Some parameter changes consistent with experiment 1 326 

were instead observed in unsheared subsamples, specifically for Circ, Conv, Round, Convexity, and 327 

Aspect Ratio, together with a weakly observable increase in particle size (Table 6); although 328 

Sphericity was again observed to increase. Manual analysis did nonetheless demonstrate some 329 

change in Power’s roundness and fracture incidence for sheared zone subsamples and failed to 330 

show any observable changes for unsheared samples (Table 7). These less clear-cut results for 331 

experiment 2 appear to indicate that the shearing zone constituted a wider, more diffuse zone than 332 

observed during experiment 1.  333 

     334 

[Figure 5 here] 335 

[Figure 6 here] 336 

 337 

[Tables 6 and 7 here] 338 

 339 

[Figure 7 here]   340 

 341 

 342 

Thin section results from experiment 1 demonstrated that S1 values, which express the 343 

orientation strength of elongated grains, were between ~0.42 and ~0.76 and grains typically 344 



exhibited low-angle dips (Figs. 8 and 9). There was no clear pattern in the orientation strength 345 

within the shearing chamber, but two peaks are visible (Fig. 8). The peak of S1 values in the middle 346 

of the shearing zone is attributed to grain advection and rotation toward quasi-stable positions with 347 

grain long axes oriented parallel to the shearing direction (Hooyer et al., 2008). The second peak at 348 

the top of the deposit, well above the shearing zone, is possibly caused by repeated compaction that 349 

the deposit has been subjected to at the start of each shearing increment. There is no systematic 350 

downflow or upflow dip direction of elongated grains within the shearing zone.  351 

 352 

[Figure 8 here] 353 

[Figure 9 here] 354 

 355 

3.2. Ring shear monitoring data 356 

 357 

Parameters recorded during experiment 2 are shown in Fig. 10. During this experiment, the 358 

prescribed normal stress (100 or 150 kPa) varied by <±0.12 kPa, which is negligible. The total 359 

compaction of the sediment at the end of experiment reached about 6 mm reflecting a combination 360 

of pore space reduction because of denser grain packing and grain-size reduction due to grain 361 

abrasion and fracturing. However, some apparent compaction also occurred as a result of sediment 362 

being squeezed out of the chamber through the shearing gap (although not measurable the volume 363 

was estimated as <1% in relation to the overall sediment volume in the chamber). The highest 364 

compaction rates were achieved at the beginning of the shearing whereby half of the total 365 

compaction (~3 mm) occurred during the initial shearing displacement of ~5 cm. After about 170 366 

cm of shearing, compaction became approximately linear and small and increased slightly again 367 

during the last shearing increment under increased normal stress of 150 kPa. Despite the granular 368 

character of the material, no dilatant volume increase at the beginning of shearing was noticed, 369 



possibly because of the fine-grained nature of the sand. The average shear stress generated in the 370 

deforming material was ~36 kPa during the shearing under normal stress of 100 kPa and ~55 kPa 371 

under normal stress of 150 kPa. During the entirety of experiment 2, shear stresses fluctuated 372 

significantly with an amplitude of up to ~18 kPa. Stress variations of several kPa occurred over 373 

shearing displacements of just a few centimetres (Fig. 10). After a shearing displacement of about 374 

800 cm certain cyclicity in stress fluctuations with a wavelength of around 60 cm became apparent. 375 

This was possibly caused by recurrent grain-rearrangement events that become predictable after a 376 

quasi-steady state of deformation has been reached. During shearing under normal stress of 100 377 

kPa, the magnitude of stress variations increased toward the end of the experiment and remained 378 

high during shearing under normal stress of 150 kPa.  379 

 380 

[Figure 10 here] 381 

 382 

4. Discussion 383 

  384 

The marker displacement of shearing chamber sediments reported in Bateman et al. (2012) 385 

indicated that shearing took place within a narrow, well-defined shearing zone. This is supported by 386 

sediment characterisation of the sheared subsamples from experiment 1 that indicated the evolution 387 

of particle shape toward more angular and elongated morphologies. This is consistent with 388 

fracturing of grain surfaces as a result of grain-grain stresses imposed during sediment deformation 389 

and an increase in apparent average grain size. Thin section results also indicate the development of 390 

alignment of larger grains in the shearing zone. It is proposed that the apparent grain size increase 391 

and alignment observations result from the rotation of larger grain in the shearing zone causing 392 



smaller grains to be expelled from it. As a result of the cohesive nature of the sediment and lack of 393 

free-water, it is possible that grains were expelled in both directions.   394 

Mixed observations of size and shape changes for both sheared and unsheared subsamples from 395 

experiment 2 indicate that the shearing zone may have occurred in a wider zone than for experiment 396 

1. It may be possible to disregard the inconsistent Circ, Conv2, and Sphericity parameter changes 397 

observed for sheared zone samples. Circ and Sphericity (Tables 3 and 4) relate particle perimeter 398 

length to that of an idealised sphere of the same area, which is unlikely to apply to initially 399 

nonspherical geological particles. Conv2 (Table 3) uses perimeter length to calculate convexity and 400 

is therefore likely to capture changes in surface roughness rather than overall form. However, the 401 

statistically significant decrease in grain size shown by the sheared samples, which is inconsistent 402 

with experiment 1, remains. Irrespective of this, grains in the sheared and unsheared subsamples 403 

might be expected to have experienced high stresses and mechanical fracture.  404 

Based on the luminescence results in this current experiment we can confirm some of the 405 

preliminary findings reported in Bateman et al. (2012).  In the latter, they reported that shearing led 406 

to changes in De distributions with grains displaying increases and decreases in De including some 407 

zero-dosed grains. It was hoped that in experiment 2, with a much higher stored dose, with shearing 408 

distance there would be more grains with a reduced (but not zeroed) De relative to the given dose. 409 

This was not observed because, whilst sheared and unsheared subsamples returned individual grain 410 

De values higher and lower than the given gamma dose, neither sets showed significant trend with 411 

distance sheared.  Experiment 2 did nonetheless confirm the increase in zero-dose grains observed 412 

by Bateman et al. (2012, their Fig. 4) with the occurrence of a small number of zero-dose grains 413 

increasing with shearing distance but only for sheared sediment grains.  Taken together it would 414 

appear that grains apparently have a bimodal response, either completely retaining their dose or 415 

completely losing it during shearing.   416 



This leads to the question as to what within the shearing process could be the cause of a 417 

minority of grains to be reset whilst other grains are unaffected. Possible mechanisms include grain 418 

fracture, which is postulated to reduce the number of active luminescence centres that are 419 

surrounded by an extended atomic lattice (Toyoda et al., 2000), the ejection of trapped electrons by 420 

stresses imposed on the crystal lattice (Lee and Schwarz, 1994), localised frictional heating at grain 421 

boundaries (Fukuchi, 1989; Lee and Schwarz, 1994), and wear of grain surfaces leading to loss of 422 

alpha-induced luminescence stored near grain surfaces (Lamothe, 1988; Takeuchi et al., 2006). The 423 

results of this study indicate that grain fracture is unlikely because grain size observations appear to 424 

support smaller grains being expelled from the shearing zone rather than this zone comprising 425 

particles that have been cleaved. Further, sand-sized quartz grains formed by the comminution of 426 

larger clasts beneath glaciers are thought to be highly resistant to further fracture (Wright, 1995), 427 

indicating that observations of changes in grain size may result largely from sorting, as opposed to 428 

cleavage. This is supported by observed grain shape changes being relatively modest, with 429 

fracturing acting only to modify grain faces and edges.  430 

Frictional heating at grain boundaries or wear to grain surfaces (e.g., Lamothe, 1988) is easily 431 

excluded mainly because it would be localised at grain surfaces, such that any effect on 432 

luminescence will have been removed by the HF acid etching during sample preparation. 433 

Additionally, the use of a laser to stimulate grains during OSL measurement should ensure rapid 434 

depletion of all optical traps throughout translucent quartz grains. If heterogeneity existed in trap 435 

defects within the crystal lattice and only traps near the grain surface (but sufficiently deep they 436 

survive etching) were storing dose, then the mechanical surface removal observed could potentially 437 

lead to resetting.  However, two arguments can be put forward against this.  Firstly, mechanical 438 

alteration appears to be related to shearing distance and so the amount of surface removed from a 439 

grain could be expected to increase with distance.  That being the case, we would expect to see a 440 



rapid initial reduction in grain De as a result of the high dose grain surface being removed first, then 441 

a slower reduction associated with the exposure of the low dose core.  The OSL data from both 442 

experiments do not detect initial De reduction only an increase in zero-doses.  Secondly, some 443 

mechanical alteration (Table 5) is also detected in the below shearing zone subsamples, for which 444 

no zero-dose grains were observed. Thus, the reduction to zero-doses measured in experiments 1 445 

and 2 could not just be occurring at grain surfaces, and the removal of some grain surfaces during 446 

shearing apparently is not removing palaeodose for most grains.   447 

Application of stress, on the other hand, might affect defects in the crystal lattice such that 448 

localised recombination of electrons could occur giving rise to triboluminescence (Lee and 449 

Schwarz, 1994) and lowering the overall dose within a grain.  As the concentration of trapped 450 

charge and the number of photons produced are low, this would seem unlikely. Alternatively, 451 

elevated stress on the crystal lattice (and possibly associated temperature from friction; Fukuchi, 452 

1989; Lee and Schwarz, 1994) could cause the redistribution of trapped charge into more unstable 453 

traps thereby leading to apparent resetting when samples were measured months later. Simple 454 

laboratory grinding of sediment with a pestle and mortar has been observed to reduce and increase 455 

measured De through charge redistribution and/or triboluminescence (Phil Toms, Gloucester 456 

University, pers. com.). Charge redistribution is supported by Bateman et al. (2012) who observed a 457 

decrease with shearing of the stable 375
o
C TL peak with a corresponding increase in signal in the 458 

less stable 240
o
C peak. Nonetheless, establishing this as a mechanism requires further work. For 459 

example, it would be necessary to investigate the effect on the signal caused by the orientation of 460 

the crystal structure relative to the maximum stress imposed by grain bridges.  461 

It is clear in comparing the sheared and unsheared subsample sets that alterations to palaeodose 462 

are not occurring simply as a result of general pressure (i.e. the normal stress) exerted on the 463 

sediments (100 kPa).  Had this been the case, zero-dosed grains would have been observed from 464 



unsheared samples.  Apparent resetting of the whole grain is concordant with elevated stresses 465 

(over and above the pressure applied to all sediment) imposed on grain crystal lattices during 466 

shearing.  Shear stresses and the resulting strain distribution in granular materials are well known to 467 

be highly heterogeneous (e.g., Drescher and de Josselin de Jong, 1972; Iverson et al., 1996; Li and 468 

Aydin, 2010) and that the deforming material develops domains of different mechanical behaviour 469 

with sizes across several orders of magnitude between millimetres (micromorphology) and 470 

kilometres (macrotectronics) (Mandl et al., 1977). Experimental laboratory work has demonstrated 471 

that uneven strain distribution results in the formation of discrete shear planes that focus sediment 472 

advection whereas grains between the shear planes either remain largely stable or undergo 473 

rotational movement (cf. Damsgaard et al., 2013) leading to sediment ‘skeleton’ evolution (e.g., 474 

Larsen et al., 2006, 2007; Narloch et al., 2012, 2015; Menzies et al., 2013). The latter may generate 475 

grain bridges that support stresses up to several times (Iverson et al., 1996) or even an order of 476 

magnitude (Mandl et al., 1977) greater than the general stress in the surrounding material. Grain 477 

bridges fail by fracture of the particles, slip between the particles in the bridge, frictional slip 478 

between the outermost particles in the bridge and the surface of blocks sliding above and below, 479 

and by wear (abrasion) of the particles (Biegel et al., 1989; Hooke and Iverson 1995), all resulting 480 

in spontaneous rearrangements of the skeleton and stress relief.  481 

As stated earlier, strong evidence exists of pronounced stress heterogeneity during shearing 482 

experiment 2, especially in its second half, when normal pressure was 150 kPa and induced shear 483 

stress varied from 47 up to 65 kPa.  Notably, these recorded stress values are an average value 484 

resulting from multiple local stress events in the sample, and therefore the amplitude of grain-to-485 

grain stresses at the scale of grain bridges and local shear planes must have been significantly 486 

greater. Brittle deformation of quartz grains has been observed at 200 Mpa (Bisshop et al., 2005) 487 

and 7000 kPa with a strain rate around 10
-12

 s
-1

 (Gueydan et al., 2005). It is unlikely these sorts of 488 



pressures occurred at the grain-to-grain level. However, if the work of Mandl et al. (1977) is 489 

correct, pressures within bridges could have reached up to 650 kPa whilst others have suggested it 490 

could exceed 5000 kPa (Boulton, 1974; Cohen et al., 2005).  As grains move from spheroids to more 491 

angular forms, as shown by the sediment data, so the potential for more uneven grain packing 492 

leading to more frequent bridge-building events and more extreme stresses during these events 493 

should increase.  The increase in zero-dose grains with distance should therefore mirror changes in 494 

grain shape and more variability in monitored stress data, which it does. Thus, some more angular 495 

grains within highly stressed bridges could have had their De depleted, whereas other grains could 496 

have avoided this by being located in more sheltered areas between the shear planes and grain 497 

bridges. The net effect of this is the uneven yet distinct increase in numbers of zero-dose grains in 498 

the shearing zone with increasing shearing displacement (Fig. 4).  499 

Zero-dose grains have been measured from nonglacial environments. Some can be attributed to 500 

post-depositional disturbance leading to grains moving to the surface, being reset and then being 501 

reburied (e.g., Bateman et al., 2003, 2007). This is clearly not the case for this experiment or for 502 

most glacial landforms. Other causes of zero-dose grains may be attributable to poor quartz 503 

characteristics (e.g., Preusser et al., 2007), which has hampered dating of glacial sediment (e.g., in 504 

the  Swiss Alps) or measurement issues. The experiment presented here demonstrates that 505 

measurement issues or sediment characteristics cannot account for the zero-dose grains measured. If 506 

pressure across bridges between grains is the key resetting mechanism for subglacial sediments and 507 

landforms then such conditions do not apply to other nonglacial environments. As such, findings 508 

from this work cannot be directly extended to non-glacial environments except for sediments in 509 

tectonic areas with active near-surface faults.   510 

The observed increasing numbers of zero-dosed grains with shearing distance supports the 511 

original findings of Swift et al. (2011) that the lower measured luminescence signals of sediment 512 



sampled directly from the glacier bed beneath ~100 m of glacier at Haut Glacier d’Arolla, 513 

Switzerland, were attributable had been reset.  As many glacial sediments will have been in the 514 

shearing zone for distance greatly exceeding that of this ring-shearing experiment, reset grains in 515 

many glacial diamicts and landforms may be more prevalent than previously thought.  This may 516 

account for the relatively good resetting of sediment associated with glacial landforms that have 517 

been obtained as part of the BRITICE-CHRONO project (e.g., Evans et al., 2017; Smedley et al., 518 

2017; Bateman et al., 2018).  That many glacial studies have struggled in this regard may be more 519 

because of insensitive quartz and poor intrinsic OSL characteristics of local bedrocks (e.g., 520 

Sawakuchi et al., 2011; Klasen et al., 2016) than to lack of signal resetting. Future work requires 521 

targeting of natural subglacial sediments in regions that have quartz with good luminescence 522 

characteristics to establish whether robust chronologies from these depositional contexts are indeed 523 

possible. A resetting mechanism associated with active transport at the ice-bed interface may also 524 

offer potential as a glaciological process tracer. For example, the degree of resetting could be used 525 

to quantify sediment strain history or sediment residence times in contemporary systems (Swift et 526 

al., 2011). 527 

 528 

5. Conclusions 529 

 530 

· The occurrence of a small number of zero-dose grains in the shearing zone that increase in 531 

number with shearing confirms the preliminary findings of Bateman et al. (2012). Grains 532 

either appeared to retain their given dose or had a zero-dose. 533 

· Data show that grain fracturing or loss of surface material is not responsible for OSL 534 

zeroing. 535 



· Stress variations increased towards the end of the experiments with rapid changes in the 536 

order of 18 kPa within a few centimeters of shearing that are interpreted as the build up and 537 

collapse of grain bridges. The observed changes in grain characteristics are thought to have 538 

led to more bridging with increasing shear distance.  539 

· Localised high pressure grain-to-grain stresses within bridges (or during their collapse) 540 

appear to explain why some grains become zeroed whilst other retain their palaeodose. 541 

· Relatively short shearing distances might be sufficient to reset a small proportion of the 542 

luminescence signal within subglacial sediments. This opens up the potential for future 543 

work to successfully apply luminescence dating to sediments contained within subglacial 544 

landforms. 545 
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Figure Captions 778 

Fig. 1. The ring shear apparatus used for both experiments. (A) Apparatus loaded with sediment at 779 

end of the experiments. (B) The empty ring shear chamber showing the ribs on lid (top of picture) 780 

and in the base of the trough used to create shear stress. 781 

Fig. 2.   CAM De values from (A) unsheared and (B) sheared samples with distance sheared.  782 

Dashed red line shows the initial gamma dose value. Note final point underwent shearing at an 783 

extra 50 kPa 784 

Fig. 3.   FMM De component values (those representing more than 10% of data only) from (A) 785 

unsheared and (B) sheared samples with distance sheared. Blue/red indicates dominant component 786 

and brown other components extracted. Dashed red line shows the initial gamma dose value. Note 787 

final point underwent shearing at an extra 50 kPa 788 

Fig. 4. Zero-dosed grains measured as a proportion of total number of grains accepted. Note final 789 

point underwent shearing at an extra 50 kPa. 790 

Fig. 5. SEM images of particles from subsamples of unsheared material (above) and sheared 791 

material (below) (experiment 1). Unsheared material contains some angular and fractured particles, 792 

but many fractures do not appear fresh (e.g., top left) or recent fractures are few in number and 793 

asperities typically remain well rounded (e.g., top right). Sheared material contains a larger number 794 

of particles with an apparently greater fracture incidence and dominantly angular and sharp 795 

asperities (bottom images). Nonetheless, a large proportion of particles in all samples do not show 796 

any evidence of fracture, indicating that grain-grain stresses during shearing are highly 797 

heterogeneous. 798 



Fig. 6. Evolution of round (calculated on area of longest length; see supplementary information for 799 

further details) in shearing-zone subsamples from (A) experiment 1 of Bateman et al. (2012) and 800 

(B) experiment 2. 801 

Fig. 7. Evolution of size in sheared subsamples from (A) experiment 1 and (B) experiment 2.  Note 802 

the offset between experiments 1 and 2 attributed to inadvertent sorting during subsampling for 803 

artificial dosing.   804 

Fig. 8. Vertical distribution of S1 eigenvalues in the sediment at the end of experiment 1 after a 805 

shearing distance of 1280 cm. Note the relatively high eigenvalues in the shearing zone. Also 806 

shown is the distribution of main dip angles (MDA) of elongated grains at each depth, whereby a 807 

horizontal line is 0° dip and a vertical line is 90° dip. 808 

Fig. 9. An example of the sheared sediment collected at the end of experiment 1 after a shearing 809 

distance of 1280 cm.  (A) Thin section of grains. (B) Black and white image analysis from thin 810 

section used to quantify grain orientation. 811 

Fig. 10. Development of shear stresses and sediment compaction during the ring shear experiment 2 812 

under normal stress of 100 kPa (0-1280 cm displacement) and 150 kPa (1280-1920 cm 813 

displacement). Note the shear stress heterogeneity evident during the entire experiment believed to 814 

have contributed to the variations in De distribution; v is the shearing velocity.  815 

 816 



Table 1  

OSL single grain data from shearing experiment; results for the sheared and unsheared samples 

    Central Age Modelling Finite Mixture Modelling 

De Distribution 

Characteristics 

Labcode 

Shearing 

Distance (cm) 

No. Grains 

Measured 

No. Grains 

Accepted Mean De  OD       Dominant Component  Other Component  

Zero 

Grains Skew Sort 

  

(Gy) (%)      De (Gy) Prop 

(%) 

De (Gy) Prop 

(%) 

N (%) a 

  

Unsheared           

Shfd11227 0 1200 75 37.0 ± 1.5 32 44.6 ± 2.5 62 27.4 ± 2.0 38 0 (0) 1.37 0.31 

Shfd11218 10 1200 64 40.0 ± 1.8 35 41.2 ± 1.5 90   0 (0) 4.91 0.23 

Shfd11219 20 1100 73 38.8 ± 1.8 37 40.2 ± 1.4 83 23.4 ±2.6 15 0 (0) 2.84 0.28 

Shfd11220 40 1200 64 38.4 ± 1.4 26 36.7 ± 1.2 94   0 (0) 1.41 0.26 

Shfd11221 80 1200 79 34.9 ± 1.1 25 36.3 ± 1.3 93   0 (0) 0.24 0.25 

Shfd12091 160 400 49 36.1 ± 2.1 37 36.3 ± 1.7 81 19.9 ± 3.3 11 0 (0) 0.88 0.41 

Shfd11223 320 900 67 36.1 ± 1.5 31 37.1 ± 1.0 98   0 (0) 0.46 0.25 

Shfd11224 640 1000 61 36.9 ± 1.0 17 36.9 ± 1.0 100   0 (0) 0.22 0.19 

Shfd12094 1280 900 80 38.2 ± 1.4 31 35.6 ± 1.6 88 66.0 ± 14.8 12 0 (0) 1.29 0.30 

Shfd11226 1920 1200 59 36.5 ± 2.0 40 36.8 ± 1.29 92   0 (0) 2.16 0.29 

Sheared           

Shfd12087 10 500 63 38.6 ± 1.5 29 40.8 ± 1.7 91   0 (0) 0.25 0.31 

Shfd12088 20 600 69 39.5 ± 1.3 25 37.3 ± 1.4 88   0 (0) 0.68 0.27 

Shfd12089 40 700 74 40.9 ± 1.3 21 41.5 ± 1.1 98   0 (0) 0.42 0.32 

Shfd12090 80 600 59 38.8 ± 1.2 23 40.4 ± 1.1 98   0 (0) 0.93 0.39 

Shfd11222 160 1300 71 35.4 ± 1.4 30 39.1 ± 1.7 82 22.4 ± 3.1 18 2 (2.8) 1.06 0.35 

Shfd12092 320 600 73 36.8 ± 1.5 32 39.3 ± 1.4 92   1 (1.4) 0.48 0.30 

Shfd12093 640 800 80 37.7 ± 1.3 28 39.0 ± 1.2 96   1 (1.3) 0.48 0.28 

Shfd11225 1280 1100 66 35.8 ± 1.5 30 37.6 ± 1.2 95   2 (3) 0.39 0.27 

Shfd12095 1920 700 80 43.3 ± 1.7 31 49.7 ± 2.62 73 29.4 ± 3.3 27 8 (10) 0.49 0.47 

             

 
a 
Absolute number of zero-dose grains. In parenthesis, percentage of zero-dose grains as a function of total grains that gave De values meeting the quality assurance 

criteria. 
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Table 2  

OSL single grain data from replicated samples from shearing experiment; the given initial gamma dose was 38.1 ± 1.2 

Gy 

   
Central Age 

Modelling Finite Mixture Modelling 

De Distribution 

Characteristics 

Labcode 

No. Grains 

Measured 

No. 

Grains 

Accepted Mean De  OD       

Dominant 

Component  Other Component  Skew Sort 

  

(Gy) (%)      De (Gy) Prop. 

(%) 

De (Gy) Prop. 

(%)   

Shfd12089(1) 700 74 43.6 ± 1.6 27 46.8 ± 2.0 85 28.3 ± 4.30 15 0.42 0.32 

Shfd12089 (2) 300 47 40.6 ± 1.5  22     0.59 0.23 

Shfd12089 (3) 700 53 40.9 ± 1.3 21 41.5 ± 1.3 98   0.11 0.21 

           

Shfd12090 (1) 600 59 38.9 ± 1.9 33 32.4 ± 2.1 65 54.9 ± 5.8 35 0.93 0.39 

Shfd12090 (2) 600 72 38.0 ± 1.3 28 43.6 ± 2.1 69 27.7 ± 2.3 31 0.21 0.28 

Shfd12090 (3) 800 69 39.8 ± 1.2 23 40.4 ± 1.1 98   0.45 0.24 
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Table 3  
Shape parameters used to interpret quantitative particle morphology data obtained by ImageJ analysis of Krumbein 

plots and optical and SEM images of shearing experiment sediment 

Parameter Example Use 

or Source 

Formula Comment Krumbein Scale 

Comparison
a
 

Circ Roussillon et 

al. (2009) 
 

Compares perimeter of particle with that of 2D 

disk of same area. Influenced by elongate 

particles that deviate from spheroid shape. 

+ve (↑Circ value) 

rP Roussillon et 

al. (2009)  

Use of perimeter of ellipse intended to remove 

influence of particle elongation when attempting 

to capture roundness. 

+ve (↑rP value) 

Conv Roussillon et 

al. (2009)  

Convex hull fitted to particle (rather than ellipse) 

further removes influence of elongation when 

attempting to capture roundness. 

-ve (↓Conv value) 

Conv2 Cox and 

Budhu (2008)  

As Conv (above) but uses particle perimeter and 

convex hull perimeter rather than area. 

-ve (↓Conv2 value) 

Round Cox and 

Budhu (2008) 
 

Relates area to longest length. Sensitive to 

evolution of ‘sharp’, elongated forms. 

-ve (↓Round value) 

 

a
 Regression using reversed Krumbein (1941) scale (Fig. S1). All relationships significant at p < 0.001. 
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Table 4  
Shape parameters calculated by the QICPIC analysis software (https://www.sympatec.com/ 

EN/ImageAnalysis/Fundamentals.html); for details on terms within the formulas see Table S1 

Parameter Formula Comment Interpretation 

Sphericity 

 

Circularity in for a 2D shape. Identical to inverse of 

Circ (Table S1). Influenced by particle elongation. 

↑angularity = ↓Sphericity 

Aspect Ratio 

 

Ratio of shortest to longest axis. Measures particle 

elongation (similar to ratio of B-axis to A-axis). 

↑ angularity = ↓Aspect Ratio 

Convexity 

 

Identical to Conv (Table S1). Convex hull fitted to 

particle eliminates influence of elongation. 

↑angularity = ↓Convexity 

    

 

Table



 
Table 5 

Shape formula variables (Tables 3 and 4) 

Variable Description 

Ps  

Pe 

As 

PCH 

ACH 

LFeret 

Lmin 

perimeter of the particle silhouette 

perimeter of the smallest ellipse that encloses the particle silhouette 

area enclosed by the particle silhouette 

perimeter of the smallest convex hull that encloses the particle silhouette 

area of the smallest convex hull that encloses the particle silhouette 

length of the particle�s Feret diameter 

length of the particle�s shortest axis 
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Table 6 

Trend and statistical significance of changes in particle shape and size during shearing; regression was undertaken on 

log-transformed shearing distance values for all analyses. 

Experiment/Zone 
Optical and SEM Image  

QICPIC Analysis Particle diameter 

analysis 

 

Circ rP Conv Conv2 Round Sphericity Convexity 
Aspect 

ratio 

Surface 

mean 

diameter 

Volumetric 

Mean 

Diameter 

Krumbein ↑↑↑ ↑↑↑ ↓↓↓ ↓↓↓ ↓↓↓      

Experiment 1/sheared ↑↑↑ ↑ ↓ ↓↓ ↓↓  ↑↑↑  ↑↑↑ ↑↑↑ 

Experiment 2/sheared ↓↓ ↑↑↑  ↑↑↑  ↑↑↑ ↑↑↑ ↑ ↓↓↓ ↓↓↓ 

Experiment 2/unsheared ↑↑  ↓↓  ↓↓ ↑ ↑↑↑ ↑↑↑ ↑ ↑ 

           

Key: ↑↑↑ p ≤ 0.05; ↑↑ p ≤ 0.1; ↑ p ≤ 0.35; ↑ positive and ↓ negative correlation; x indicates p > 0.35. 

Table



Table 7 

Trend and statistical significance of changes in particle shape quantified using Power’s roundness (see text) and fracture 

incidence analysis; all regressions undertaken on log-transformed shearing distance values 

Experiment/zone R %Frac %R %A %VA 

Experiment 1/sheared ↓↓↓ ↑↑↑ ↓↓↓ ↑↑↑ - 

Experiment 2/sheared ↓↓↓ ↑↑ ↓↓ ↑↑↑ ↑↑ 

Experiment 2/unsheared - - - - - 

Key: ↑↑↑ p ≤ 0.05; ↑↑ p ≤ 0.1; ↑ positive and ↓ negative correlation; - indicates p > 0.1. 
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