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This paper discusses the possibility of using the Mahalanobis squared-distance to perform
robust novelty detection in the presence of important environmental variability in a mul-
tivariate feature vector. By performing an eigenvalue decomposition of the covariance
matrix used to compute that distance, it is shown that the Mahalanobis squared-
distance can be written as the sum of independent terms which result from a transforma-
tion from the feature vector space to a space of independent variables. In general, espe-
cially when the size of the features vector is large, there are dominant eigenvalues and
eigenvectors associated with the covariance matrix, so that a set of principal components
can be defined. Because the associated eigenvalues are high, their contribution to the
Mahalanobis squared-distance is low, while the contribution of the other components is
high due to the low value of the associated eigenvalues. This analysis shows that the
Mahalanobis distance naturally filters out the variability in the training data. This property
can be used to remove the effect of the environment in damage detection, in much the
same way as two other established techniques, principal component analysis and factor
analysis. The three techniques are compared here using real experimental data from a woo-
den bridge for which the feature vector consists in eigenfrequencies and modeshapes col-
lected under changing environmental conditions, as well as damaged conditions simulated
with an added mass. The results confirm the similarity between the three techniques and
the ability to filter out environmental effects, while keeping a high sensitivity to structural
changes. The results also show that even after filtering out the environmental effects, the
normality assumption cannot be made for the residual feature vector. An alternative is
demonstrated here based on extreme value statistics which results in a much better
threshold which avoids false positives in the training data, while allowing detection of
all damaged cases.
� 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Vibration-based Structural Health Monitoring (SHM) techniques have been around for many years and are still today an
active topic of research. Despite this fact, very few industrial applications exist. Two major trends coexist in the field: model-
based and data-based techniques. Model-based techniques are often sophisticated and require a high degree of engineering
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knowledge and heavy hardware and software resources; they have however more potential to cover all levels of SHM, from
damage detection to damage prognosis. On the other hand, data-based techniques are appealing as they require less engi-
neering knowledge as well as limited hardware and software resources. From that point of view, they are ideal candidates for
industrial applications. These methods are however generally limited to the lowest levels of SHM: damage detection and in
some cases, damage localisation or classification and severity if training data are available [1].

Data-based damage detection techniques consist in detecting a deviation from the normal condition based only on
undamaged-state data measured on the structure or system to be monitored. This paper focuses on the use of vibration data
collected at regular time intervals. A further step consists in feature extraction, i.e. transforming these time series data into
meaningful information, called features (the most common being the mode shapes and eigenfrequencies). The stochastic
nature of the excitation and the unavoidable added noise on the measured data results in features having a stochastic nature.
This fact being recognised, it is natural to turn to statistical methods to monitor them and detect any significant deviation
from the normal condition.

The three basic elements of data-based damage detection are therefore (i) a permanent sensor network system, (ii) an
automated procedure for real-time or periodic feature extraction, and (iii) a robust novelty detector [2]. The first element
has received much attention in the last decade and the enormous advances in sensors and instrumentation make it possible
today to deploy very large sensor networks on structures and gather the measured data in central recording units at high
sampling rates. The second element is still today a challenge, and for the most widely-used features (eigenfrequencies
and mode shapes) is an active topic of research [3,4]. An alternative is to look at other features which can easily be extracted
automatically from the time domain data. Several efforts have been made in that direction, such as the use of residuals based
on Hankel matrices [5], or peak indicators in the frequency output of modal filters [3]. For the third element, different
approaches have been borrowed from statistics and machine learning, the most commonly used being control charts [6],
outlier analysis using the Mahalanobis squared-distance [7] (which is similar to Hoteling T2 control charts for individual
measurements) or hypothesis testing [5].

This paper focuses on the third element of the data-based damage detection system in the presence of confounding
effects due to environmental and operational variability. Important variability of the dynamic properties of structures under
ambient vibrations has been identified in a number of studies [8–11]. These studies highlight the fact that variations in the
dynamic characteristics due to confounding effects (temperature, humidity, traffic, wind) can be of the same order of mag-
nitude as, or greater than, the variations due to damage, which hinders detection of the onset of damage. In the context of
data-based damage detection, which is the focus of this paper, several methods have been proposed in order to filter out
these effects. The simplest methods are based on the identification of the linear subspace to which the environmental
and operational conditions belong, in order to remove their effect on the monitored features. Such methods are well suited
when the dimension of the feature vector is large enough to be able to find a linear subspace to which the confounding
effects belong. When such is not the case, non-linear methods which consist in identifying a non-linear manifold instead
of a linear subspace can be used [12–14]. These techniques are however much more complex and computationally costly.
The present paper has two aims: (i) to show that the Mahalanobis squared-distance can be used to filter out confounding
effects in a very similar way to the linear techniques, and (ii) to demonstrate the link between the aforementioned technique
and the two most commonly used linear techniques to filter confounding effects: principal component analysis [15] and fac-
tor analysis [16].

This paper is organised as follows: the second section details the mathematical foundations of the methodology proposed
to filter out confounding effects based on the Mahalanobis squared-distance. The third section presents briefly the two most
commonly-used linear techniques for filtering out confounding effects: principal component analysis and factor analysis,
and shows the link with the method proposed in Section 2. In the fourth section, the three techniques are applied on data
acquired from a wooden bridge under changing environmental conditions. The results clearly demonstrate the strong sim-
ilarities between the three techniques.
2. Multivariate novelty detection under changing environmental conditions

2.1. The Mahalanobis squared-distance

Consider a set of N feature vectors yif g (i ¼ 1 . . .N) of dimension n, representing N samples of the ‘healthy state’ of a struc-
ture, of which the mean vector yf g of size n � 1 and the covariance matrix C½ � of size n � n can be estimated as follows,
yf g ¼ 1
N

XN
i¼1

yif g ð1Þ

C½ � ¼ 1
N � 1

XN
i¼1

yif g � yf gð Þ yif g � yf gð ÞT ð2Þ
The multivariate feature vectors correspond to the features extracted from the vibration measurements such as a set of
eigenfrequencies, modeshapes, FRF or transmissibility functions at given frequencies, etc. (Throughout this paper, curved
braces denote vectors, and square braces denote matrices).
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The principle of outlier analysis [7] is, for each sample of the multivariate feature vector yf
� �

, to compute the Maha-
lanobis squared-distance [17] given by,
D2
f ¼ yf

� �� yf g� �T C½ ��1 yf
� �� yf g� � ð3Þ
Computing Df for all the data in the training set used to compute C½ �, it is possible to set a threshold. If a new sample yf
� �

of
the feature vector results in a value of Df above this threshold, it will be considered as an outlier. Outlier analysis can be
inclusive in the case that the damaged data is included for the computation of the mean vector and covariance matrix, or
exclusive in the case that only the undamaged data are used.

Outlier analysis using the Mahalanobis squared-distance has been used in various application fields such as tool condition
monitoring [18,19], monitoring of cracking in concrete [20], monitoring of railroad tracks [21] or disease diagnosis [22]. This
distance is also used for multivariate data classification in the Mahalanobis-Taguchi strategy (MTS) [23–27].

2.2. Spectral decomposition

In most cases, the features in the data vector are not statistically independent, so that the covariance matrix is not diag-
onal. It is however possible to perform a transformation of the feature vector in order to diagonalise the covariance matrix.
This is done by computing the eigenvectors Uif g and eigenvalues r2

i of C½ �,

C½ � Uif g ¼ r2

i Uif g ð4Þ

The orthogonality properties are given by,
U½ �T C½ � U½ � ¼ S½ � ð5Þ

U½ �T U½ � ¼ ½I� ð6Þ

where ½U� is the matrix whose columns contain all the eigenvectors, ½S� is a diagonal matrix containing the eigenvalues r2

i in
descending order of magnitude on the diagonal, and ½I� is the identity matrix. The spectral decomposition of the covariance
matrix is given by,
C½ � ¼ U½ � S½ � U½ �T ð7Þ

and the spectral decomposition of the inverse of the covariance matrix by,
C½ ��1 ¼ U½ � S½ ��1 U½ �T ð8Þ

Assuming now the following transformation,
gif g ¼ U½ �T yif g ð9Þ

The mean and covariance matrix estimated from the N transformed samples gi (i ¼ 1 . . .N) are given by,
gf g ¼ 1
N

XN
i¼1

gif g ¼ U½ �T yf g ð10Þ

C½ �g ¼ 1
N � 1

XN
i¼1

gif g � gf gð Þ gif g � gf gð ÞT ð11Þ

¼ U½ �T 1
N � 1

XN
i¼1

yif g � yf gð Þ yif g � yf gð ÞT U½ � ð12Þ

¼ U½ �T C½ � U½ � ð13Þ

and by using the orthogonality condition, one sees directly that the covariance matrix of fgg is diagonal and that the stan-
dard deviation of each component gi is given by ri, via,
U½ �T C½ � U½ � ¼ S½ � ð14Þ

Using the inverse transformation,
yif g ¼ U½ � gif g ð15Þ

the Mahalanobis squared-distance reduces to,
D2
f ¼

Xn
i¼1

1
r2

i

ðgfi � giÞ2 ð16Þ
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This shows that the Mahalanobis squared-distance can be decomposed into a sum of independent contributions from
each component of the transformed variables gfi ¼ Uif gT yf

� �
. The contributions are weighted by the inverse of the associ-

ated eigenvalues r2
i , which can be interpreted as the variances of the new, transformed variables. If the variance is large, the

contribution to the distance is small.

2.3. Filtering of the environmental effects

In many cases, when the number of features is large enough, the total variability in the feature vector extracted from the
healthy condition can be explained by a smaller number of transformed features, usually called the principal component
scores. Strictly speaking, this occurs when some of the eigenvalues of C½ � are equal to zero. The associated eigenvectors form
the null-space (or kernel) of the training data. In practice, due to the noise and numerical precision issues, the eigenvalues
are not strictly equal to zero, but a significant drop in the eigenvalues can be observed and can be used to define the number
of principal components which account for most of the variability. An effective null-space is defined by putting a threshold
on the singular values, assuming that the singular values below this threshold are only non-zero due to the noise in the train-
ing data. In the following, the effective null-space or kernel will simply be called the ‘null-space’ or ‘kernel’. A practical way
to determine the number p of vectors in the principal subspace is to define the following indicator,
I ¼
Pp

i¼1r2
iPn

i¼1r2
i

ð17Þ
and to determine p as the lowest integer such that I > eð%Þ, where e is a threshold value (i.e. 99.9%). The meaning of this
threshold is as follows: p principal components are needed in order to explain e% of the variance in the observed data.
Assume that these p principal components have been identified. For a new sample of the feature vector yf

� �
, the Maha-

lanobis squared-distance can be decomposed into two parts,
D2
f ¼

Xp

i¼1

1
r2

i

ðgfi � giÞ2 þ
Xn

i¼pþ1

1
r2

i

ðgfi � giÞ2 ¼ D2
1f þ D2

2f ð18Þ
where D2
1f is the Mahalanobis squared-distance of yf

� �
projected on the principal components, and D2

2f is the Mahalanobis

squared-distance of yf
� �

projected on to the null-space of the principal components.
If one now assumes that very large variability exists in the feature vector extracted from the healthy condition due to

environmental effects, if this variability is more important than other sources such as noise, it will belong to the set of
the first p principal components. Because the Mahalanobis squared-distance scales each independent component with
respect to the inverse of its variance, the distance will have a very low sensitivity to the environmental changes. By including
the feature vector measured in all possible environmental conditions in the computation of the covariance matrix, the Maha-
lanobis squared-distance is made insensitive to the environmental conditions. This idea will be demonstrated in Section 4 on
a laboratory experiment.

3. Principal component analysis and factor analysis

The way principal component analysis can be used to filter out confounding effects is to project the feature vector onto
the subspace of the minor components, when the major components have been identified on data containing variability to
confounding effects [28,29]. If the Mahalanobis squared-distance is subsequently used to perform outlier analysis, it reduces
to computing,
D2
f ¼

Xn

i¼pþ1

1
r2

i

ðgfi � giÞ2 ¼ D2
2f ð19Þ
which is equivalent to considering that ri ¼ 1 for i 6 p. One can easily see that if there is a clear drop in the ri values, com-
puting the full Mahalanobis squared-distance is equivalent to computing the Mahalanobis squared-distance of the feature
vector projected on to the subspace of minor components.

This is illustrated with the following example: in Fig. 1, the feature vectors in two dimensions have been built from two
normal distributions with r1 ¼ 3 and r2 ¼ 1 and using a rotation angle of p=3. Equidistant points from the mean lie on an
ellipse which is rotated at an angle p=3 with respect to the features axis. As r1 and r2 are of the same order of magnitude,
there is no possibility to clearly define the linear subspace to which the confounding effects belongs.

In Fig. 2, consider now the same case but with r2 ¼ 0:1. One can see clearly that the feature vectors almost lie on a line,
which is a subspace of the feature vector space. The Mahalanobis squared-distance can be decomposed into two independent
terms. The first term corresponds to the projection of the feature vector in the direction of the line (direction with large ri).
This term is only sensitive to a change of the feature vector in the principal direction. Looking only at this contribution cor-
responds to projecting the feature vector on the first principal component. One notes however, that the contribution to the
Mahalanobis squared-distance will be weak because the distance is weighted by 1=r2

1 where r1 is large. The second term



Fig. 1. Equidistant points in the sense of the Mahalanobis squared-distance. x1 and x2 built from two normal distribution with r1 ¼ 3 and r2 ¼ 1 using a
rotation angle of p=3.

Fig. 2. Equidistant points in the sense of the Mahalanobis squared-distance. x1 and x2 built from two normal distribution with r1 ¼ 3 and r2 ¼ 0:1 using a
rotation angle of p=3.
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corresponds to the projection of the feature vector on the direction perpendicular to the line (direction with small ri). This
term is only sensitive to a change of the feature vector in the minor direction (in opposition with the principal direction).
Looking only at this contribution corresponds to projecting the feature vector on the direction orthogonal to the principal
component. The contribution to the Mahalanobis squared-distance will be very strong because it is weighted by 1=r2

2 where
r2 is very low.

The procedure to identify the linear subspace and to project the data on to the orthogonal subspace is slightly different in
factor analysis [16]. In order to show this, the theory behind it and the link with principal component analysis is briefly
recalled in the following.

Assume, as previously, that all the features are arranged in a vector fyg and one can write,
yf g ¼ f ðT;h; . . .Þ þ gð mf gÞ ð20Þ

where mf g is the vector of variables independent of the environment (i.e. damage, noise, . . .), and ðT;h; . . .Þ are the confound-
ing effects (i.e. Temperature, humidity, . . .). In general, the function f is very difficult to identify, the general form being
dependent on the structure considered and the type of features extracted. This general mapping function f can be decom-
posed into two different mappings as shown in Fig. 3. The environmental factors ðT;h . . .Þ are transformed into a vector of
unobservable factors fng, by means of a non-linear mapping M,
f ðT; h; . . .Þ ¼ K½ � MðT;h; . . .Þð Þ ð21Þ

The terminology unobservable factors is used in factor analysis [30]. This non-linear mapping is generally unknown and

there is no need to identify it in the present application. The unobservable factors fng are assumed to be statistically uncor-



Fig. 3. Function f relating the dynamical features with the environmental variables is decomposed into a non-linear mapping M and a linear mapping K,
introducing statistically independent unobservable factors fng.
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related variables with unit standard deviation. In linear factor analysis, a linear mapping K is used between the unobservable
factors and the features. Eq. (20) becomes,
yf g ¼ K½ � nf g þ gð mf gÞ ð22Þ

If the number of unobservable factors is equal to the number of features, ½K� is a rotation matrix resulting in an orthogo-

nalisation of the feature vector fyg. In this case gð mf gÞ ¼ 0 and the environment cannot be distinguished from the other vari-
ables in mf g. In order to remove the effects of the environment and keep information about damage, the dimension of fng
needs to be smaller than the number of features. One important parameter to be determined in the method is therefore
the number of unobservable factors. This issue is very similar to the one of finding the number of principal components dis-
cussed earlier.

In order to identify the linear mapping ½K� between the unobservable factors and the features, it is necessary to measure
the feature vector under changing environmental conditions, while the influence of other factors feg is small.
ef g ¼ gð mf gÞ � K½ � nf g ð23Þ

This requires the extraction of features from the undamaged structure during a period of time in which all of the envi-

ronmental effects to be removed manifest themselves (i.e. monitoring a bridge after construction during a one year period
of time). In factor analysis, feg is the vector of unique factorswhich are assumed to be uncorrelated and independent from the
unobservable factors. Assume that N samples yif g (i ¼ 1::N) of the feature vector fyg have been measured during a certain
period of time. The covariance matrix of the features is C½ � as defined previously. Using the factor model (Fig. 4), each sample
of the feature vector is written in the form,
yif g ¼ K½ � nif g þ eif g ð24Þ

Due to the statistical hypothesis on fng and feg, the covariance matrix can be written,
C½ � ¼ K½ � K½ �T þ W½ � ð25Þ
where W½ � is the covariance matrix of feg, assumed to be diagonal (unique factors are uncorrelated). The identification of the
factor model consists in splitting the covariance matrix of measured features into the contribution of the environment and
the residual part. This is possible because of the assumption that jjfegjj � jj K½ �fngjj (in some appropriate norm). Several
Fig. 4. Orthogonal factor model.
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methods exist to identify the factor model. The method used in [16] and detailed in [30] is presented. The method is iterative.
It starts with the definition of the communalities which are the diagonal elements of,
C½ �� ¼ K½ � K½ �T ð26Þ

The iterations are carried out on C½ ��, starting with C½ �� ¼ C½ �:

� Compute the eigenvalues r2
i and eigenvectors Ui of matrix C½ ��

� Determine the p eigenvectors needed to represent e% of the variance in the data and take
K½ � ¼ 1
r1

U1
1
r2

U2 . . .
1
rp

Up

� �
ð27Þ

� Compute the new communalities which are the diagonal elements of K½ � K½ �T and replace the diagonal elements of C½ ��
with the new communalities.

� Iterate until the values of the communalities have converged.

The output of the algorithm is the matrix ½K�. The diagonal matrix W½ � can be computed easily from,
W½ � ¼ C½ � � K½ � K½ �T ð28Þ

From the algorithm above, the link with PCA is straightforward. It corresponds to the first iteration of the method in

which the first p eigenvectors of C½ � are computed. After this first iteration, the subspace spanned by the vectors of ½K� is
the subspace of the principal components as defined earlier. Note however that in PCA, the vectors are usually not nor-
malised (1=ri multiplying factor used in FA). The resulting subspaces are however identical. At this point, the following
remarks should be made:

� As the influence of the unique factors is very small if e is high enough (i.e. e ¼ 99:9% is a common choice), the algorithm
for FA converges very fast and there is only a very slight difference between the first estimate of ½K� and the converged
value. The subspaces identified with PCA and FA are therefore very close.

� It is not obvious that the matrix W½ � should be a diagonal matrix in SHM applications. Most of the features extracted for
SHM contain some noise which is not added directly and independently on each feature, but results from the noise in the
data acquisition chain which has been transformed in the feature extraction process, causing very likely correlations
between the noise on the different features (see for example the study for mode shapes in [31]).

Once the matrix ½K� has been identified, the removal of the environmental effects consists in determining the best approx-
imation of the feature vector fyg,
ŷf g ¼ K½ � n̂
n o

ð29Þ
and in removing it from the feature vector in order to build a residual,
ef g ¼ yf g � K½ � n̂
n o

ð30Þ
There are several choices in order to build the best approximations, but previous studies have shown that all of them lead
to very similar results. The simplest approximation is based on ordinary least squares giving the following estimate,
n̂
n o

¼ K½ �T K½ �
� 	�1

K½ �T yf g ð31Þ
which reduces to,
n̂
n o

¼ S�½ ��1 K½ �T yf g ð32Þ
where K½ �T K½ � ¼ S�½ � is a diagonal matrix with the eigenvalues r2
i ; i ¼ 1::p on the diagonal. This solution is the one that min-

imises the L2-norm of the error given by,
k yf g � K½ � n̂
n o

k2 ¼ yf g � K½ � n̂
n o� 	T

yf g � K½ � n̂
n o� 	

ð33Þ
An alternative to this approach is to use generalised least-squares where the norm contains a weighting matrix W½ �, such
that,
k yf g � K½ � n̂
n o

k2W ¼ yf g � K½ � n̂
n o� 	T

W½ � yf g � K½ � n̂
n o� 	

ð34Þ
The minimum of this norm is given by:
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n̂
n o

¼ K½ �T W½ � K½ �
� 	�1

K½ �T W½ � yf g ¼ K½ �T yf g ð35Þ
A typical choice for the weighting matrix is W½ � ¼ C½ ��1. Although there are some sound statistical reasons for that, a phys-
ical understanding is the fact that less weight is put on the data with the highest variance in the calculation of the estimate.

Note that in the particular case studied here, assuming that k W½ �k � k K½ �T K½ �k (again, in some appropriate norm), the inverse
of the covariance matrix can be approximated by,
C½ ��1 ’ K½ � S�½ ��2 K½ �T ð36Þ

and Eq. (35) reduces to,
n̂
n o

¼ S�½ ��1 K½ �T yf g ð37Þ
which is identical to Eq. (32). Other alternatives can be based on Bartlett’s and Thomson’s factor score which have been
found to give very similar results [32]. In this study, Eq. (32) will be used. The residual can be written,
ef g ¼ yf g � K½ � S�½ ��1 K½ �T yf g ¼ ½I� � K½ � S�½ ��1 K½ �T
� 	

yf g ð38Þ
It is equal to the projection of the feature vector in the null-space of the subspace spanned by the vectors of ½K�, which, as
discussed earlier, is the subspace of the principal components if a single iteration is used in FA.

The above developments clearly show the link between PCA and FA, and how these two methods can be related to the use
of the Mahalanobis squared-distance proposed in Section 2. This is further illustrated in the next section where the three
methods are applied to data from a laboratory experiment.

4. Application: Wooden bridge

Consider the wooden bridge shown in Fig. 5, equipped with a monitoring system, previously developed and investigated
in [33]. The total mass of the bridge is 36 kg. A random excitation was applied using an electrodynamic shaker and output-
only acceleration measurements were collected at 15 different locations. Mode shapes and eigenfrequencies were extracted
from the measurements using output-only stochastic subspace identification. The monitoring was performed over several
days during which modal properties varied significantly due to temperature and humidity changes. Out of the 16 modes
identified, only modes 6–8, 10 and 12–16 are used in this study. The first five modes correspond to low frequency modes
related to rigid body motion of the bridge involving strain in the supports only, while modes 9 and 11 were not found con-
sistently in all datasets, which is the reason for discarding them. In total, 1880 measurements were performed on the
undamaged structure under changing environmental conditions. Samples 1881 to 1985 then correspond to the incremental
addition of a local mass of 23.5 g, 47 g, 70.5 g, 123.2 g and 193.7 g at samples 1881, 1901, 1924, 1946 and 1966 respectively,
which are considered as the damaged conditions here. Samples 1986 to 2008 correspond to measurements on the bridge
where all masses have been removed (return to undamaged condition).

Fig. 6 shows the variation of natural frequency six with respect to the sample number. It is clear that environmental con-
ditions are responsible for frequency changes of an order of magnitude larger than the damage (simulated here with an
added mass).

The feature vector is made of nine natural frequencies and nine mode shapes measured at 15 locations. The mode shapes
are complex and normalised with respect to the first component, so that 14 � 2 values are used in the feature vector for each
Fig. 5. Wooden bridge equipped with a monitoring system [33].



Fig. 6. Evolution of the 6th natural frequency of the bridge with respect to sample number.
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mode shape, resulting in a feature vector y of dimension 261 (9 frequencies + 14 � 2 � 9 mode shape components). Each
component of the feature vector is then standardised with respect to the mean and standard deviations computed on the
training data.

4.1. Filtering of the environmental effects using the Mahalanobis squared-distance

Fig. 7 shows the evolution of the Mahalanobis squared-distance computed for each of the 2008 samples when considering
the first 300, 1000 and 1880 samples for the computation of the covariance matrix (training data). It is clear from the results
that the Mahalanobis squared-distance acts as a filter for the environmental variations which have been used for the com-
putation of the covariance matrix. When using the first 300 and 1000 samples, the value of the Mahalanobis squared-
distance for some of the healthy samples (not used for the computation of the covariance matrix) is of the same order of
magnitude as for the samples with the structural change. In this case, the novelty detection is hindered by the environmental
changes. When including all the variability from the environment in the computation of the covariance matrix, the Maha-
lanobis squared-distance has a low sensitivity to environmental changes and is very sensitive to structural changes.

4.2. Comparison with principal component analysis and factor analysis

The residual of the feature vector is computed for each sample using either PCA or FA. Fig. 8a shows the result when only
the first iteration is used in FA and the first 1880 samples are used as training data, confirming that it is identical to PCA. Note
that the same number of principal components/unobservable factors has been used with the two methods (e ¼ 99:9% was
used to find p ¼ 81). Fig. 8b compares the results of PCA with FA after convergence of the iterative process. The differences
are very minor and difficult to detect.

In Fig. 9, the results of FA and PCA are compared to the results previously obtained where no pre-processing of the feature
vector is performed (raw data). Samples (1–1880) are used for the computation of the covariance matrix in all cases. As
expected, PCA and FA do not bring a major improvement in the damage detection.

4.3. Threshold setting and damage detection using the Mahalanobis squared-distance

In order to assess the possibility of using the Mahalanobis squared-distance to perform damage detection under changing
environmental conditions, 80% of the undamaged samples under changing environmental conditions were used to compute
the mean vector and the covariance matrix. The training samples were picked randomly amongst the 1880 samples, result-
ing in 1504 training feature vectors of size 261. The remaining 376 samples were used as testing set, together with samples
1986–2008 (undamaged after removal of the masses).

In order to detect damage, it is necessary to set a threshold above which the condition of the system will be considered as
abnormal. This value is dependent on both the number of observations and the dimension of the feature vector. The value
also depends upon whether an inclusive or exclusive threshold is calculated. Another important parameter is the confidence
level a which is set here to 0:001 (this sets the limit so that it is normal to have statistically 1 out of 1000 samples above the
threshold).

The first approach to set the threshold makes the assumption that the residual vector is normally distributed. A Monte-
Carlo simulation is used, summarised as follows [7]:

� Construct a (261 � 1504) matrix with each element being a randomly generated number from a zero mean and unit stan-
dard deviation normal distribution.



Fig. 7. Evolution of the Mahalanobis squared-distance with respect to sample number when the covariance matrix is computed with 300, 1000 and 1880
(all) healthy samples.
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� Calculate the Mahalanobis squared-distance for all the observations, and store the largest value.
� Repeat the process 1000 times and store the largest value of the Mahalanobis squared-distance for each process.

The inclusive threshold Tinc is the value of the largest of the 1000 values stored, and the exclusive threshold can be com-
puted from,
Texc ¼ ðn� 1Þðnþ 1Þ2Tinc

nðn2 � ðnþ 1ÞTincÞ ð39Þ
where n is the number of training samples (n ¼ 1504). The result is shown in Fig. 10. It is clear that the threshold is too low,
as there are numerous false positives both in the training and the testing set. This is due to the fact that the normality
assumption is not correct.

An alternative is to use extreme value statistics to compute the threshold. The methodology is described in [34,35]. The
first steps consists in fitting a parametric model to the right tail of the empirical cumulative density function (CDF) of the
training data. It is shown in [36] that when looking at the distribution of maxima, there are only three possible distributions:
the Gumbel, Frechet and Weibull distributions. The approach consists in fitting the parameters of these three distributions



Fig. 8. Comparison of the Mahalanobis squared-distance computed after PCA and (a) FA using a single iteration and (b) FA after convergence (the first 1880
samples are used as training data).

Fig. 9. Comparison of the Mahalanobis squared-distance applied to the raw feature vector with the Mahalanobis squared-distance computed after PCA and
FA.

Fig. 10. Mahalanobis squared-distance and threshold for novelty detection using a normality assumption.
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and selecting the model which gives the lowest error. The fitting of the parameters is performed using a differential evolu-
tion algorithm described in [35], and in the present case, the distribution giving the lowest error is the Frechet distribution:
HðxÞ ¼ exp � d
x�k

� �bh i
if x P 0

0 otherwise

(
ð40Þ
Once the parameters d; k and b are known, the threshold is computed for a confidence level a (=0.001 in the present case) by
inverting the expression:



Fig. 11. Mahalanobis squared-distance and threshold for novelty detection using extreme value statistics – 80% of healthy condition used as training set.

Fig. 12. Mahalanobis squared-distance and threshold for novelty detection using extreme value statistics – 60% of healthy condition used as training set.

Fig. 13. Mahalanobis squared-distance and threshold for novelty detection using extreme value statistics – 40% of healthy condition used as training set.
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exp � d
x� k


 �b
" #

¼ 1� a=2 ð41Þ
which gives the threshold TEVS:
TEVS ¼ x ¼ kþ d

ð�lnð1� a=2ÞÞ1=b
ð42Þ



Fig. 14. Mahalanobis squared-distance and threshold for novelty detection using extreme value statistics – feature vector of size 135, 80% of healthy
condition used as training set.

Fig. 15. Mahalanobis squared-distance and threshold for novelty detection using extreme value statistics – feature vector of size 90, 80% of healthy
condition used as training set.
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This threshold is represented in Fig. 11. The figure shows that this threshold is much more adequate than the one com-
puted based on the normality assumption. There are no false positives in the training set and only one outlier in the testing
set. All damaged samples lie above the threshold, showing that this type of threshold is adequate to perform damage detec-
tion under changing environmental conditions. Note however that after removing the point masses, the Mahalanobis
squared-distance returns close to the original level but slightly above the threshold, at a level corresponding to the first level
of damage. This is probably due to the fact that the training data did not include the full range of environmental conditions.

Figs. 12 and 13 show the influence of taking randomly respectively 60 and 40% of the healthy state in the training set
instead of 80%. One sees clearly that the number of false positives in the testing set strongly increases and exceeds the con-
fidence level of the threshold, showing that there are not enough samples in the training set. In the present case, at least 60–
80% of the healthy state should be considered in the training data.

Figs. 14 and 15 show the influence of the size of the feature vector. In the first graph, only the real part of the mode shapes
is considered and the imaginary part is discarded, resulting in a feature vector of size 135. In the second graph, the imaginary
part and the high frequency modes (14–16) are discarded resulting in a feature vector of size 90. In both cases, the number of
false positives is not strongly affected for the testing set, but the first damage scenario now lies below the computed thresh-
old. This illustrates the fact that, as expected, by reducing the size of the feature vector, some information is lost and it is
more difficult to differentiate the damage from the environmental conditions.
5. Conclusions

The Mahalanobis squared-distance is often used to perform novelty detection. By performing an eigenvalue decomposi-
tion of the covariance matrix used to compute that distance, it has been shown that the Mahalanobis squared-distance can
be written as the sum of independent terms which result from a transformation from the feature vector space to a space of
independent variables. In general, especially when the dimension of the feature vector is large, there are dominant eigenval-
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ues and eigenvectors associated to the covariance matrix, so that a set of principal components can be defined. Because the
associated eigenvalues are high, their contribution to the Mahalanobis squared-distance is low, while the contribution of the
other components is high due to the low value of the associated eigenvalues. This analysis shows that the Mahalanobis
squared-distance naturally filters out the variability in the training data. This property can be used to remove the effect
of the environment in damage detection. It has also been shown that this method is closely related to the two main linear
techniques used to remove confounding effects: principal component analysis and factor analysis. This has been demon-
strated on real data from a wooden bridge for which the feature vector consists in eigenfrequencies and modeshapes col-
lected under changing environmental conditions, as well as damaged conditions simulated with an added mass. The
results confirm the ability to filter out environmental effects while keeping a high sensitivity to structural changes, and
the equivalent performances of the new methodology proposed and the two established techniques. When filtering environ-
mental effects, one should pay attention to using a proper training set containing the full range of environmental conditions,
and to using a large enough feature vector in order to ensure some separability between the damage effects and the envi-
ronmental effects. The results also show that the normality assumption does not hold in the case studied, and that an
approach based on extreme value statistics is necessary to set a proper threshold for damage detection.
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