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SUMMARY

An analytical solution of cavity expansion in two different concentric regions of soil is developed and inves-
tigated in this paper. The cavity is embedded within a soil with finite radial dimension and surrounded by a
second soil, which extends to infinity. Large-strain quasi-static expansion of both spherical and cylindrical
cavities in elastic-plastic soils is considered. A non-associated Mohr–Coulomb yield criterion is used for
both soils. Closed-form solutions are derived, which provide the stress and strain fields during the expan-
sion of the cavity from an initial to a final radius. The analytical solution is validated against finite element
simulations, and the effect of varying geometric and material parameters is studied. The influence of the
two different soils during cavity expansion is discussed by using pressure–expansion curves and by study-
ing the development of plastic regions within the soils. The analytical method may be applied to various
geotechnical problems, which involve aspects of soil layering, such as cone penetration test interpreta-
tion, ground-freezing around shafts, tunnelling, and mining. © 2014 The Authors. International Journal for
Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.
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1. INTRODUCTION

Cavity expansion theory has been extensively developed and widely used for the study of many
engineering problems. Since its early application to geotechnical problems in the 1960s [1], many
analytical solutions have been proposed using increasingly sophisticated constitutive soil models. Vesic
[2] presented an approximate solution for spherical cavity expansion in an infinite soil mass using
a compressible Mohr–Coulomb material. The analysis was applied to evaluate the bearing capacity
factors of deep foundations. Carter et al. [3] derived closed-form solutions for cavity expansion from
zero initial radius in an ideal cohesive-frictional material with a small-strain restriction. The deforma-
tions in the elastic region were assumed to be infinitesimal, and the convected term of the stress rate
was neglected in the governing equation, which provided an approximate limit pressure solution. Yu
and Houlsby [4] provided a unified analytical solution of cavity expansion in dilatant elastic-plastic
soils, using the Mohr–Coulomb yield criterion with a non-associated flow rule. The complete large-
strain analysis, with the aid of a series expansion, was introduced to derive a rigorous closed-form
solution without any additional restrictions or assumptions. The limitation of their analysis was that
the material properties were assumed to be constant and independent of stress–strain history. Salgado et
al. [5] reported a cylindrical cavity expansion solution and produced a stress rotation analysis for the
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interpretation of the cone penetration test (CPT). A numerical formulation was used in the plastic
region to achieve a variable stiffness, friction angle, and dilation angle.

As reviewed by Yu [6], the cavity expansion theory has mainly been applied in the geotechnical
engineering areas of in-situ soil testing [5, 7–11], deep foundations [12–15], tunnels and underground
excavations [16–18], and recently, for an interaction analysis between tunnels and piles [19, 20].
Despite the wide application of the theory to geotechnical problems, very little work has been carried
out to consider the effect of distinct soil regions within the framework of cavity expansion analyses.
The work of Xu and Lehane [21] is notable for its use of a numerical analysis of spherical cavity
expansion for investigating pile or probe resistance in two-layered soil profiles.

Analytical cavity expansion solutions for two concentrically layered media were developed by
Bernard [22, 23] for the study of projectile penetration. The analysis considered an incompressible
material as well as the assumption of a finite locking strain and was used to solve for dynamic solu-
tions of penetration depth and impact velocity. Sayed and Hamed [24] were the first to apply analytical
cavity expansion analyses of concentrically layered media to the field of geomechanics. However, in
their analysis, the medium was assumed to be a frictionless linear-elastic solid and did not account
for the plastic behaviour of soils. In this paper, the analytical solution described by Yu and Houlsby
[4] is extended in order to consider a cavity embedded within a profile of two different concentric
regions of soil. The soil is treated as an isotropic dilatant elastic-perfectly plastic material with a
Mohr–Coulomb yield criterion and a non-associated flow rule. Large-strain quasi-static expansion of
both spherical and cylindrical cavities is considered. The complete large-strain expansion for non-
associated Mohr–Coulomb materials in two concentric media has not previously been presented in the
literature. The development of an analytical cavity expansion method for application to geotechnical
problems involving aspects of soil layering is the main motivation for the work described in this paper.
The focus here is on the development of the analytical method; its application to practical geotechnical
problems will be explored in future publications.

The paper begins with a general definition of the problem and the necessary geometric parameters.
The following section considers the most general expansion problem for a cavity embedded in two dif-
ferent concentric regions of soil and derives expressions for stresses, strains, and displacements within
elastic and plastic zones. The cavity expansion solution is then validated against results obtained using
the Finite Element (FE) method. Further results and parametric analyses are then presented with focus
placed on the resulting pressure–expansion curves and the development of plastic regions within the
two soil zones. A discussion of the application of the proposed method and its limitations is provided,
followed by concluding remarks.

2. DEFINITION OF PROBLEM

The problem involves three concentric zones; (i) an inner zone representing the expanding cavity, (ii) a
second zone representing Soil A, and (iii) a bounding region, which extends to infinity and represents
Soil B, as shown in Figure 1(a). Initially, the cavity has a radius a0, and the interface between Soils
A and B is located at a radial distance b0 from the centre of the cavity. The soils are assumed to be
isotropic homogeneous media; therefore, an initial hydrostatic stress P0 acts throughout both Soils A
and B as well as within the cavity. Note that a tension positive notation is used in this paper.

When the cavity pressure Pa increases slowly from its initial value P0, the radius of cavity and Soil
A/B interface are expanded to a and b, respectively (Figure 1(b)). The pressure at the Soil A/B interface
is given by Pb . Depending on material properties (and adopting the Mohr–Coulomb yield criterion), a
plastic region may form within either of the Soils A or B and extend to some radial distance cA or cB ,
respectively. For a given increment of cavity expansion, the initial plastic-elastic interfaces in Soils A
and B are given by c0A and c0B , respectively. The radial stresses at the plastic-elastic interfaces for
Soils A and B are defined as PcA and PcB , respectively.

As in the work of Yu and Houlsby [4], the soils are modelled as an isotropic dilatant elastic-perfectly
plastic material, obeying Hooke’s law for elastic analysis and the Mohr–Coulomb yield criterion with a
non-associated flow rule for plastic analysis. The properties of Soils A and B are denoted by subscripts
1 and 2, respectively: Young’s modulus (E1, E2), Poisson’s ratio (�1, �2), cohesion (C1, C2), friction
angle (�1, �2), and dilation angle ( 1,  2).
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Figure 1. Schematic view of the model of cavity expansion in two concentric regions of soil.

Figure 2. Flow chart of cavity expansion in two concentric regions of soil.

To combine both spherical and cylindrical analyses, the parameter k is used to indicate spherical
analysis (k D 2) or cylindrical analysis (k D 1). It should be noted that for the cylindrical case,
plane strain conditions in the ´ direction are assumed and the axial stress is assumed as the interme-
diate principal stress, which is satisfied for most realistic values of soil parameters, as discussed by
Yu and Houlsby [4]. In accordance with Yu [6], the following parameters are used for mathematical
convenience (definitions provided in the Appendix): G, M , Y , ˛, ˇ, � , ı .

During cavity expansion, plastic regions in the two concentric soils are generated and develop
depending on the relevant properties and profiles of Soils A and B. Considering all possible situations,
the expansion process would follow one of the routes in the flow chart illustrated in Figure 2, which
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also provides a definition of some notation. Generally, during expansion of the cavity from a0 to a, an
elastic stage (AEBE ) appears initially, followed by plastic regions developing in both Soils A and B as
a increases (APEBPE ). Ultimately, as a is increased further, Soil A becomes fully plastic (APBPE )
(Soil B extends to infinity and therefore never becomes fully plastic). The events at the circular nodes
in the flow chart describe the situation of expansion and determine the appropriate state of soil to be
considered. The solutions provided here are for the most general case of expansion (APEBPE ); all the
scenarios described in Figure 2 can be deduced from this general solution.

3. CAVITY EXPANSION IN TWO CONCENTRIC REGIONS OF SOIL

3.1. Solution in elastic regions

As illustrated in Figure 1, for an arbitrary radial distance r , the material is elastic in the zones where
r > cB (Soil B) and where cA < r < b (Soil A). Under conditions of radial symmetry, the stresses
within the soils around the cavity must satisfy the following equation of equilibrium:

�� � �r D
r

k

@ �r

@ r
(1)

where �r and �� are stresses acting in the radial and tangential directions, respectively; the parameter
k D 1 is for cylindrical symmetry and k D 2 is for spherical symmetry.

Correspondingly, the radial and tangential strain for small-strain analysis in the elastic regions can
be expressed as a function of the radial displacement u:

�r D
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For the elastic region in Soil A (cA < r < b), with Hooke’s law, the solutions for the radial
displacement and stresses are expressed as
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where D1 and D2 are integration constants defined as

D1 D
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The solutions are subject to two stress boundary conditions:

�r jrD cA D�PcA I �r jrDb D�Pb (7)

Similarly, the following solutions for the radial displacement and stress in Soil B (r > cB ) are
obtained:
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(8)
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which is subject to the stress boundary condition:

�r jrD cB D�PcB (11)

3.2. Solution in plastic region of Soil A: (a < r < cA)

In order to account for the effect of large strain in the plastic regions, logarithmic strains are adopted,
namely

�r D ln
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Using the tension positive notation, the Mohr–Coulomb yield condition in Soil A during cavity
expansion is

˛1 �� � �r D Y1 (13)

where ˛1 and Y1 are functions related to friction angle and cohesion (Appendix). It may be noted that
when the friction angle is zero, the Mohr–Coulomb yield function reduces to the Tresca criterion.

The stress components in the plastic region of Soil A must satisfy equilibrium (equation 1) and the
yield condition (equation 13) as follows:
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where A1 is a constant of integration and where �r has two stress boundary conditions:
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Combining the expressions in equation (15) leads to
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For the displacement analysis in the plastic region, total strain is considered as the sum of elastic
and plastic contributions, using superscripts e and p, respectively. Elastic strain (equivalent to strain
rate P� for this case because initial strains are zero) can be derived from equations (4) and (5):
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where P. / is the corresponding incremental form.
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The non-associated Mohr–Coulomb flow rule for loading phase in Soil A can be expressed as
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where ˇ1 is a function of dilation angle. If ˇ1 D ˛1 (dilation angle = friction angle), then the flow rule
for Soil A is said to be fully associated. This plastic-flow rule was proposed by Davis [25], assuming
that the soil dilates plastically at a constant rate.

Substituting elastic strain equations (18) and (19) into the plastic-flow rule equation (20) results in
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With logarithmic strain equations (12), substituting equations (14) and applying the initial stress
conditions into equation (21) leads to
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To calculate the distribution of displacements within the plastic region of Soil A, without imposing
any boundary conditions, equation (25) can be written as
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To calculate the strain distribution, equation (30) can be rewritten in terms of r
r0

and derived to give

an equation in terms of d r
d r0

. The final strain distribution is then obtained using logarithmic strains for
large-strain analysis.

3.3. Solution in plastic region of Soil B: (b < r < cB )

Similarly, by using the corresponding equilibrium equation and yield condition, the stress components
in the plastic region of Soil B are shown to be in the form
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where A2 is a constant of integration and radial stress has two boundary conditions:
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where R2 is a parameter, which is related to the pressure at the interface between Soils A and B (Pb).
The solution for plastic displacements in Soil B can be obtained by the equations of Yu and Houlsby [4],
which provides the following for the pressure–expansion relationship:
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To calculate the distribution of displacements in the plastic region of Soil B, u can be written as the
following equation, which in-turn can be used to derive the strain distribution:

uD r � r0 D r �
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�2
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4. VALIDATION WITH FINITE ELEMENT SIMULATION

The accuracy of the analytical model was initially confirmed against results obtained with the fun-
damental solutions from Yu and Houlsby [4] for the case where the properties of Soils A and B
were identical. To further validate the analytical model, two FE numerical models were developed
in Abaqus/Standard and used to simulate the expansion of both spherical and cylindrical cavities, as
shown in Figure 3. The axis-symmetric option was used in Abaqus in order to achieve spherical and
cylindrical analyses using the 2D models. The cavity was expanded from an initial radius of 6 mm
under an initial pressure of 1 kPa. The initial radius of the Soil A/B interface (given by b0) was 30 mm,
while Soil B had a radius D, which was large enough to make boundary effects negligible. In the
numerical simulations, the properties of both Soils A and B were set as follows: � D 0.2, � D 10 ı,
 D 10 ı, C D 10 kPa.

A total of four expansion tests were carried out using the numerical model in which the Young’s
modulus (E ) of Soils A and B was either 1 or 10 MPa (results presented in Figure 4). The labels
on the figure indicate the model (analytical D CEM; numerical D FEM), followed by the value of
Young’s modulus of Soil A and B, respectively. Hence, the label CEM-10-1 relates to the analytical
cavity expansion analysis results in which Soil A has E1 D 10 MPa and Soil B has E2 D 1 MPa.
Figure 4 shows that very good agreement between analytical and numerical results was obtained.

As indicated in Figure 4(a) for spherical expansion, for the uniform soil tests (‘-10-10’ and ‘-1-1’),
the cavity pressure (Pa) increases gradually with cavity displacement and asymptotically approaches a
limit pressure. The limit pressure of the soil with E D 10 MPa is shown to be nearly twice as large as
that with E D 1 MPa. For the tests with two different soils (two-region tests), the pressure–expansion
curves initially follow the trend in which the E of the uniform soil tests matches the value of E in Soil
A of the two-region tests (i.e. ‘-10-1’ matches ‘10-10’ and ‘-1-10’ matches ‘-1-1’). At a certain stage,
the existence of Soil B begins to have an effect, and the pressure–expansion curve of the two-region

Figure 3. Finite element models for (a) spherical cavity expansion; (b) cylindrical cavity expansion.
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Figure 4. Comparison between numerical results and analytical solutions: (a) spherical cavity expansion;
(b) cylindrical cavity expansion.

analysis tends towards the limit pressure obtained from the uniform soil test in which E matches
that of Soil B of the two-region test (i.e. ultimately ‘-10-1’ approaches ‘1-1’ and ‘-1-10’ approaches
‘-10-10’). Figure 4(b) shows equivalent results for cylindrical cavity expansion and illustrates that
cylindrical pressures are about 60 % of those from the spherical analysis.

The effect of a distinct change in soil stiffness on the pressure expansion curves is shown to be sig-
nificant in Figure 4. The limit pressure is often applied to investigate pile capacity or probe resistance
in conventional cavity expansion solutions (e.g. [13]). This approach is appropriate for uniform soils
because the limiting pressure is only affected by the parameters of a single soil. For concentric regions
of two different soils, Figure 4 shows that the limiting pressure depends only on the properties of Soil B.
For penetration problems such as CPT or pile capacity analysis, the resistance of a probe located in
Soil A will certainly depend on the properties of Soil A, so the limit pressure approach may not be
adequate for cases where two different soils affect results (e.g. layered soils). A more suitable approach
for layered soils, as suggested by Xu and Lehane [21], is to consider a realistic increase in cavity size
(given by a=a0) and to evaluate the cavity pressure required to achieve this expansion. The results of
such an approach for the case of cavity expansion in two concentric regions of different soils (rather
than horizontally layered soils) are explored further in the next section.

5. RESULTS

This section considers the cavity expansion method in two concentric regions of different soils and
investigates the effect of various parameters on model results. Results are based on the expansion of a
cavity from a0 D 0.1mm to aD 6mm (a=a0 D 60). As illustrated in Figure 4, the two-region tests are
highly sensitive to the ratio a=a0 (the value of a0 has no effect on the normalised pressure expansion
curves as long as the ratio of b0=a0 is maintained). The selection of these cavity parameters was based
on geotechnical centrifuge experiments being carried out as part of this research (to be published in
a future paper) in which a 6 mm radius penetrometer is pushed into sand with an average grain size
of approximately 0.1 mm. The cavity expansion analysis was conducted with a Soil A/B interface at
b0 D 30mm and initial hydrostatic stress P0 D 1 kPa. The following material parameters are taken for
baseline comparison (note that subscripts 1 and 2 refer to Soils A and B, respectively): �1 D �2 D 0.2;
�1 D �2 D 40 ı;  1 D  2 D 10 ı; C1 D C2 D 0 kPa. As in the previous section, results here focus
mainly on the effect of varying the value of Young’s modulus E of the two soils (E1 D 10 or 1 MPa;
E2 D 10 or 1 MPa).

Figure 5 shows the distribution of radial (a, b) and tangential (c, d) stresses respectively, for both
spherical and cylindrical cavity expansion, as radial distance from the cavity (r) is increased. The
results from the two-region tests are bounded by the results from the uniform soil tests (‘-10-10’ and
‘-1-1’). A sharper decrease in stresses is noted for the spherical cases compared to the cylindrical cases.
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Figure 5. Radial (a, b) and tangential (c, d) stress distributions around cavity for both spherical and
cylindrical cavity expansion (for a=a0 D 60).

Figure 6. Displacement distribution around cavity: (a) spherical cavity expansion; (b) cylindrical cavity
expansion (for a=a0 D 60).

There is an interesting difference between the spherical and cylindrical analysis results. For the cylin-
drical tests, the results for the two-region analysis appear to be mainly controlled by the value of E
of Soil B (‘-10-1’ effectively matches ‘-1-1’ and ‘-1-10’ is close to ‘-10-10’). For the spherical tests,
however, the data from both the two-region tests are close to the uniform test ‘-1-1’. The reason for
this behaviour is the different degree of interaction between Soils A and B within the spherical and
cavity expansion analyses, which will be discussed later in the text using pressure–expansion curves
(Figure 8).

Normalised displacement distributions are presented in Figure 6 and show that results for all tests
closely agree. This is due to the kinematic nature of the expansion problem; the differences between
the lines shown in Figure 6 (for constant values of friction and dilation angles in Soils A and B) are
due only to the effect of yielding. For purely elastic behaviour, the displacements are insensitive to the
elastic parameters (as in the elastic half-plane analysis of Verruijt and Booker [26] for displacements
around tunnels).

The spherical test ‘CEM-1-10’ is selected to investigate the variation of displacement with strength
and plastic-flow parameters (i.e. friction and dilation angles), as shown in Figure 7. For tests with
uniform parameters in Soils A and B, the displacements increase with an increase in dilation angle
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Figure 7. Variation of displacement distribution with (a) friction angle and (b) dilation angle for spherical
test: CEM-1-10 (for a=a0 D 60).

Figure 8. Variation of cavity pressure with cavity radius: (a) spherical cavity expansion; (b) cylindrical
cavity expansion.

(Figure 7(b)), whereas displacements decrease only marginally with an increase in friction angle
(Figure 7(a)). The effect of varying friction angle of the two soils in the two-region tests is difficult to
observe because the overall effect on displacements is small. The magnified zone in Figure 7(a) shows
that the effect of friction angle is bounded by the uniform tests. The magnitudes of the differences are
of little practical concern. For dilation angle, the behaviour for the two-region tests is dominated by
the value of dilation angle in Soil A, where the lines with equal values of  1 are shown to overlap
in Figure 7(b).

The pressure–expansion curves in Figure 8 show the effects of the two different concentric regions
of soil, as discussed previously where analytical results were validated against FE simulations. As
the cavity size (a=a0) is increased, the curves from the uniform soil tests reach a limit pressure. The
limit pressure is reached quite quickly (in terms of a=a0) for the uniform soil tests (a=a0 < 20 for
spherical and cylindrical tests), while the two-region tests reach the limit pressure after a much greater
expansion (a=a0 ranging from 250 to >500 for the spherical tests and from about 100 to 500 for the
cylindrical tests).

The distinction between the two-region effects in the spherical and cylindrical analyses mentioned in
discussion of Figure 5 can be explained using Figure 8. For the analysis, in which a=a0 D 60, Figure 8
shows that the cavity pressure is generally dominated by the stiffness of Soil B, except for the spherical
test ‘CEM-1-10’. The two concentric zones have a significant effect in this spherical expansion test at
the considered expansion state, whereas in the cylindrical analysis, the effect is minimal. This explains
the difference in stress distributions between the spherical and cylindrical tests in Figure 5.

In Figure 9, the development of normalised plastic radius (cA=a, cB=a) in Soils A and B as the
normalised cavity radius increases is presented for the case of spherical cavity expansion, as well as
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Figure 9. Development of plastic radii (cA, cB ) in spherical tests: (a) CEM-10-10; (b) CEM-1-1; (c)
CEM-10-1; (d) CEM-1-10.

the Soil A/B interface b=a, plotted with dotted lines. The uniform soil test results in Figure 9(a and
b) show that plastic radius increases linearly with expansion after a small initial stage of nonlinear
development (a=a0 < 5). The growth of the plastic region is noted to be much faster in the test with
higher stiffness, resulting in Soil A becoming fully plastic (AP ) at a much lower expansion ratio in
test ‘10-10’ (a=a0 D 12) compared to test ‘-1-1’ (a=a0 D 32). For the two-region tests ‘-10-1’ and
‘-1-10’, the results in Figure 9(c and d) show the development of plastic radius within the different
expansion stages (refer to Figure 2 for definition of labels). In test ‘-10-1’, for a=a0 between 11 and
22, Soil A is fully plastic while Soil B remains fully elastic (APBE ). In test ‘-1-10’, there is a stage
during which Soil B becomes partially plastic prior to Soil A becoming fully plastic (APEBPE ). The
nonlinear behaviour of the plastic radius in the two-region tests is much more obvious compared to
the uniform soil tests. All tests eventually tend towards an ultimate state in which further expansion
generates a linear increase of the plastic radius (i.e. cB=a levels off, which is discernible in the figures).

Figure 10 shows the equivalent results for the cylindrical cavity expansion. The cylindrical results
show a significantly faster development (in terms of a=a0) and higher value of plastic radius (cA, cB )
compared to the spherical analysis results.

The spherical test ‘CEM-1-10’ is selected to study the effect of the variation of friction angle on
the pressure–expansion curves and the development of cavity radius in Figure 11. The effect of the
two different concentric regions of soil on cavity pressure (Figure 11(a)) is clearly shown where cavity
pressure is initially controlled by Soil A but is then controlled by Soil B at larger expansion ratios.
Plastic radius of Soil A (cA) is dominated by Soil A (‘�1 D 40 ı; �2 D 40 ı’ is close to ‘�1 D 40 ı;
�2 D 20

ı’, and ‘�1 D 20 ı; �2 D 20 ı’ overlaps ‘�1 D 20 ı; �2 D 40 ı’), as shown in Figure 11(b).
The tests with a lower friction angle in Soil A have larger values of cA, earlier appearance of cB , and
larger values of cB . Figure 12 shows similar results for the effect of variation of dilation angle from
spherical test ‘CEM-1-10’. The development of plastic radius cA and cB are mainly controlled by Soil
A, while a lower dilation angle in Soil A leads to a smaller value of cA before Soil A becomes fully
plastic (AP ).

The results of the two-region analyses also depend to a large degree on the size of Soil A. Indeed,
for some critical size of Soil A, Soil B should have no effect on the results of the analysis. Figure 13
shows the variation of cavity pressure with the size of Soil A (given by b0) for cavities expanded from
a0 D 0.1 mm to a D 6 mm. The results for the uniform soil tests are, as expected, unaffected by the
variation of b0. For the two-region tests, when b0 is small, the cavity pressure is close to the uniform

© 2014 The Authors. International Journal for Numerical
and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.

Int. J. Numer. Anal. Meth. Geomech. 2014; 38:961–977
DOI: 10.1002/nag



CAVITY EXPANSION SOLUTIONS IN LAYERED SOILS 973

Figure 10. Development of plastic radii (cA, cB ) in cylindrical tests: (a) CEM-10-10; (b) CEM-1-1; (c)
CEM-10-1; (d) CEM-1-10.

Figure 11. Developments of (a) cavity pressure and (b) plastic radii (cA, cB ) with variation of friction angle
for spherical test: CEM-1-10 (for  1 D  2 D 10ı).

Figure 12. Developments of (a) cavity pressure and (b) plastic radii (cA, cB ) with variation of dilation angle
for spherical test: CEM-1-10 (for �1 D �2 D 40ı).
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Figure 13. Variation of cavity pressure with size of Soil A (b0): (a) spherical cavity expansion; (b)
cylindrical cavity expansion.

Figure 14. Variation of plastic radius (cA, cB ) with thickness of Soil A (b0): (a) spherical cavity expansion;
(b) cylindrical cavity expansion.

soil test where E matches the value of E in Soil B of the two-region test. As b0 increases, the two-
region effects diminish, and the cavity pressure approaches the uniform soil test pressure in which E
matches the value of E in Soil A of the two-region test. The value of b0 at this stage can be considered
as defining the critical size of Soil A, referred to as b0,crit ; for Soil A larger than b0,crit , there will
be no effect of the outer region of soil. For example, for the spherical test ‘-1-10’ in Figure 13(a),
the cavity pressure decreases from about 290 kPa (equivalent to the ‘-10-10’ test) and approaches the
pressure of the ‘-1-1’ test when b0=a is about 25. This value of b0=a defines the critical size of Soil
A in order for the two regions to have an effect in the spherical cavity expansion analysis. In con-
trast, the critical size for test ‘-10-1’ is about three times larger than that of test ‘-1-10’ (b0=a Š 90

where ‘-1-10’ line approaches ‘-10-10’ line), illustrating the effect of soil stiffness on the critical
size. The cylindrical analysis results in Figure 13(b) show a much larger critical size compared to the
spherical results.

Figure 14 shows the variation of plastic radius (cA, cB ) with b0 for both spherical and cylindrical
analyses for cavity expansion from a0 D 0.1 mm to a D 6 mm. The grey areas indicate values of the
plastic radius in Soil B (cB ). The right-side boundary of the shaded area defines a line describing the
linear increase of cA with b0 for all tests. The value of cA eventually deviates from this line for all
tests. Outside of the shaded area, cB does not exist; the size of Soil A (defined by b0) is great enough
that plasticity does not commence within Soil B.

As expected, for the uniform soil tests, the plastic radius is unaffected by the variation of b0.
Considering the spherical test ‘-10-1’ in Figure 14(a), cB increases initially with b0, although at a
lower rate than cA. The plastic region in Soil B disappears when b0=a Š 15 (where the ‘10-1’ line
for cB meets the right-side boundary of the shaded area). Soil A is fully plastic until b0=a Š 30, after
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which the value of cA decreases towards and finally reaches the value obtained from the ‘-10-10’ test
at b0=a Š 90 (as the effects of Soil B gradually dissipate). In test ‘-1-10’, cB decreases initially with
b0 and cA gradually increases and reaches the value from test ‘-1-1’ at b0=a Š 90. This again defines
the critical size of Soil A (b0,crit ) for the spherical analysis with the assumed material parameters. The
cylindrical results in Figure 14(b) show similar trends to the spherical test.

6. COMMENTS ON GEOTECHNICAL APPLICATIONS

The results presented illustrate that the cavity expansion method can be effectively used to study prob-
lems involving two concentric regions of different soils. In reality, there are few geotechnical problems
in which a true concentric condition exists. However, in some scenarios, the concentric assumption
may prove to be of limited consequence to the application of the method to the more typical case of
horizontally layered soils. The application of the method to the interpretation of CPT tip resistance
or pile end bearing capacity in layered soils will be explored in future publications. The method may
also have application to tunnelling and mining applications; however, the derivations would need to be
modified for cavity contraction rather than expansion for these cases. Notably, the concentric assump-
tion is directly applicable to the analysis of shaft construction using ground-freezing techniques, where
a cylinder of frozen ground is surrounded by a zone of less stiff and weaker un-frozen ground.

7. CONCLUSIONS

An analytical solution for spherical and cylindrical cavity expansion in two different concentric regions
of soil was presented and validated against FE simulations. The closed-form solutions are an extension
of the cavity expansion solutions developed by Yu and Houlsby [4] and provide the stress and strain
distributions within the two soils for both elastic and plastic states using a Mohr–Coulomb yield crite-
rion, a non-associated flow rule, and a large-strain analysis. The effects of the two different concentric
regions of soil were investigated by using pressure expansion curves and by studying the development
of the plastic radius in both soil regions (cA and cB ). The effect of variation of stiffness, strength,
and plastic-flow parameters of both soils was illustrated, and the results highlighted the capability of
the analytical solution. Despite the limitation of constant material properties, the proposed solution
is potentially useful for various geotechnical problems involving aspects of soil layering, such as the
interpretation of cone penetration test data, tunnelling and mining, and analysis of shaft construction
using ground-freezing methods.

LIST OF NOTATION

a0, a radii of the cavity
b0, b radii of the Soil A/B interface
c0A, cA radii of the plastic boundary in Soil A
c0B , cB radii of the plastic boundary in Soil B
P0 initial cavity pressure and in-situ hydrostatic stress
Pa cavity pressure
Pb radial stress at the boundary of two soil regions
PcA radial stress at the plastic boundary of Soil A
PcB radial stress at the plastic boundary of Soil B
E1, E2 Young’s moduli for two soil regions
G1, G2 shear moduli for two soil regions
C1, C2 cohesions for two soil regions
�1, �2 friction angles for two soil regions
 1,  2 dilation angles for two soil regions
�1, �2 Poisson’s ratios for two soil regions
M1, M2 functions of material properties for two soil regions
Y1, Y2 functions of material properties for two soil regions
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˛1, ˛2 functions of material properties for two soil regions
ˇ1, ˇ2 functions of material properties for two soil regions
�1, �2 functions of material properties for two soil regions
ı1, ı2 functions of material properties for two soil regions
	1, 	2 functions of material properties for two soil regions
�1, �2 functions of material properties for two soil regions
�r , �� radial and tangential stresses, respectively
�r , �� radial and tangential strains, respectively
u radial displacement
D1, D2 constants of integration
A1, A2 constants of integration
ƒ1,ƒ2 infinite power series
R2 cavity pressure ratio in Soil B
% auxiliary variable
n integer from zero to infinity
D radius of Soil B in Finite element models
r0, r radial positions of soil element in the model
k parameter to combine cylindrical (k D 1) and spherical (k D 2) analysis
�max peak friction angle
�cs critical state friction angle
b0,crit critical size of Soil A

APPENDIX

The functions provided by Yu and Houlsby [6] for mathematical convenience are reproduced in what
follows using the notation adopted in this paper. These equations apply separately to Soils A and B.

G D
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M D
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