

This is a repository copy of A universal adsorption behaviour for Cu uptake by iron (hydr)oxide organo-mineral composites.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/126491/

Version: Accepted Version

Article:

Fariña, AO, Peacock, CL orcid.org/0000-0003-3754-9294, Fiol, S et al. (2 more authors) (2018) A universal adsorption behaviour for Cu uptake by iron (hydr)oxide organo-mineral composites. Chemical Geology, 479. pp. 22-35. ISSN 0009-2541

https://doi.org/10.1016/j.chemgeo.2017.12.022

© 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ **TABLE 1:** Cu k-edge EXAFS fits for Cu adsorbed to humic acid, ferrihydrite and goethite, and ferrihydrite and goethite organo-mineral composites. (Fit to ferrihydrite reproduced from Moon and Peacock, 2012).

(a)	FYAES	fite	for st	nectra	fit 1	hv	refinemen	t of a	sinc	rle	model	cluster
(a)	LARD	ms	101 5	pecua	m	Uy	rennemen	a or a	ւջութ	SIC	model	clusiel

рН	$\begin{array}{c} N_{O} \\ R(Cu-O_{1}) \\ 2\sigma^{2} \\ \theta, \phi \end{array}$	$\begin{array}{c} N_{O} \\ R(Cu\text{-}O_{2}) \\ 2\sigma^{2} \\ \theta, \phi \end{array}$	$\begin{array}{c} N_{O} \\ R(Cu-O_{3}) \\ 2\sigma^{2} \\ \theta, \phi \end{array}$	$\begin{array}{c} N_{O} \\ R(Cu\text{-}O_{4}) \\ 2\sigma^{2} \\ \theta, \phi \end{array}$	$\begin{array}{c} N_{O} \\ R(Cu\text{-}O_{ax}) \\ 2\sigma^{2} \\ \theta, \phi \end{array}$	$\begin{array}{c} N_{Fe} \\ R(Cu\text{-}Fe_1) \\ 2\sigma^2 \\ \theta, \phi \end{array}$	$\begin{array}{c} N_{Fe} \\ R(Cu\text{-}Fe_2) \\ 2\sigma^2 \\ \theta, \phi \end{array}$	$\begin{matrix} N_{C} \\ R(Cu\text{-}C) \\ 2\sigma^{2} \\ \theta, \phi \end{matrix}$	$\begin{matrix} N_{O} \\ R(Cu-O_{5}) \\ 2\sigma^{2} \\ \theta, \phi \end{matrix}$	EF	R (%)	Fit Index	Reduced Chi ²
			Hun	nic acid er	nd-member	model sam	ple: HA_51	wt%C_0.	7wt%Cu_	pH5	1		
5.00	1.0 1.96 0.008 90, 0	1.0 1.92 0.011 90, 90	1.0 1.95 0.023 90, 180	1.0 2.00 0.024 90, 270	1.0 2.31 0.019 0, 0	_	-	1.0 2.79 0.023 90, 24	1.0 4.12 0.016 90, 19	-1.79	20.4	0.36	30.3
Ferrihydrite end-member model sample: Fh_0.7wt%Cu_pH6.25													
6.25	1.0 1.91 0.009 90, 0	1.0 1.90 0.007 90, 90	1.0 1.95 0.003 90, 180	1.0 2.03 0.006 90, 270	-	0.8 3.01 0.023 90, 45	-	-	_	-5.49	17.1	0.20	4.35
Goethite end-member model sample: Gt_0.7wt%Cu_pH6													
6.00	1.0 1.89 0.017 90, 0	1.0 1.97 0.005 90, 90	1.0 1.92 0.003 90, 180	1.0 2.00 0.013 90, 270	-	1.0 3.03 0.013 130, 0	1.0 3.28 0.013 130, 90	-	-	5.09	18.7	0.30	25.0
			Fe	rrihydrite	organo-mii	neral compo	osite: Fh_H	A_8wt%C	C_0.7wt%	Cu			
4.30	1.0 1.96 0.007 90, 0	1.0 1.93 0.009 90, 90	1.0 2.00 0.019 90, 180	1.0 1.97 0.020 90, 270	1.0 2.35 0.017 0, 0	-	-	1.0 2.79 0.026 90, 24	1.0 4.11 0.020 90, 19	2.16	21.2	0.35	29.8
			Fer	rihydrite (organo-min	eral compo	site: Fh_HA	A_12wt%	C_0.7wt%	Cu			
4.30	1.0 1.97 0.005 90, 0	1.0 1.92 0.007 90, 90	1.0 2.00 0.020 90, 180	1.0 1.99 0.020 90, 270	1.0 2.35 0.017 0, 0	-	-	1.0 2.79 0.025 90, 24	1.0 4.11 0.020 90, 21	1.82	21.9	0.35	29.2
			(Goethite o	rgano-mine	ral composi	ite: Gt_HA	_7wt%C_	0.7wt%C	u			
4.30	1.0 1.94 0.005 90, 0	1.0 1.94 0.012 90, 90	1.0 1.99 0.016 90, 180	1.0 1.98 0.015 90, 270	1.0 2.34 0.019 0, 0	_	-	1.0 2.79 0.020 90, 24	1.0 4.11 0.013 90, 19	2.03	22.7	0.38	31.5

N is the number of atoms in a shell. R is the distance of the atom in a shell from the Cu central absorber. σ is the Debye-Waller factor. θ and ϕ are the spherical coordinates of each atom in a shell. EF is the correction to the Fermi energy value set in ATHENA. Values in italics were held constant during optimisation.

pН	N Cu _{mineral}	N Cu _{HA}	EF	R (%)	Fit Index	Reduced Chi ²				
Ferrihydrite organo-mineral composite: Fh_HA_8wt%C_0.7wt%Cu										
5.00	0.49±0.09	0.51±0.09	2.41	25.5	0.52	3.13				
6.00	0.70±0.12	0.30±0.12	3.71	26.9	0.59	3.51				
Ferrihydrite organo-mineral composite: Fh_HA_12wt%C_0.7wt%Cu										
5.00	0.50±0.10	0.50±0.10	1.90	24.7	0.51	3.05				
6.00	0.68±0.11	0.32±0.11	2.69	28.1	0.65	3.87				
Goethite organo-mineral composite: Gt_HA_7wt%C_0.7wt%Cu										
5.00	0.49±0.10	0.51±0.10	0.07	26.1	0.64	3.80				
6.00	0.63±0.10	0.37±0.10	3.46	27.5	0.67	4.03				

(b) EXAFS fits for ferrihydrite and goethite organo-mineral composites fit by linear combination of two model clusters

N $Cu_{mineral}$ is the number of Cu atoms (Cu site occupancy) adsorbed to the ferrihydrite or goethite fraction of the organo-mineral composite via bidentate edge-sharing or corner-sharing complexation, respectively. N Cu_{HA} is the number of Cu atoms (Cu site occupancy) adsorbed to humic acid fraction of the organo-mineral composite. EF is the correction to the Fermi energy value set in ATHENA. In the linear combination analysis, N $Cu_{mineral}$ + N Cu_{HA} was constrained to equal 1.

TABLE 2: Input parameters for the surface complexation models for Cu adsorbed to ferrihydrite (reproduced here
from Moon and Peacock, 2013), goethite and humic acid.

Ferrihydrite (reproduced from Moon and Peacock, 2013)							
Surface area (m ² /g) ^a		300					
Site density \equiv FeOH ^{-0.5}	$^{5}(e) (sites/nm^{2})^{b} / (mol sites/g x 10^{-3})^{c}$	2.5 / 1.25					
Site density \equiv FeOH ^{-0.5}	$(c) (sites/nm^2)^b / (mol sites/g x 10^{-3})^c$	3.5 / 1.74					
Site density \equiv Fe ₃ O ^{-0.5}	1.2 / 0.598						
C _{stern} (F/m ²) ^d		1.10					
elog K _{FeOH(e)}	\equiv FeOH ^{-0.5} (e) + H ⁺ = \equiv FeOH ₂ ^{+0.5} (e)	7.99					
^d log K _{FeOH(e)_Na}	\equiv FeOH ^{-0.5} (e) + Na ⁺ = \equiv FeOH ^{-0.5} (e) - Na ⁺	-1.00					
^d log K _{FeOH2(e)_NO3}	$\equiv FeOH_2^{+0.5}(e) + NO_3^{-} = \equiv FeOH_2^{+0.5}(e) - NO_3^{-}$	-1.00					
(where equations abov	we are repeated for $(\equiv FeOH^{-0.5}(c))$						
elog K _{Fe3O}	$\equiv Fe_3O^{-0.5} + H^+ = \equiv Fe_3OH^{+0.5}$	7.99					
^d log K _{Fe3O_Na}	$\equiv Fe_{3}O^{-0.5} + Na^{+} = \equiv Fe_{3}O^{-0.5} - Na^{+}$	-1.00					
^d log K _{Fe3OH_NO3}	\equiv Fe ₃ OH ^{+0.5} + NO ₃ ⁻ = \equiv Fe ₃ OH ^{+0.5} NO ₃ ⁻	-1.00					
Goethite							
Surface area $(m^2/g)^a$	103						
Site density ≡FeOH ^{-0.5}	3.45 / 0.59						
Site density \equiv Fe ₃ O ^{-0.5}	2.70 / 0.46						
$C_{\text{stern}} (F/m^2)^d$	1.00						
^e log K _{FeOH}	\equiv FeOH ^{-0.5} + H ⁺ = \equiv FeOH ₂ ^{+0.5}	9.20					
^d log K _{FeOH_Na}	\equiv FeOH ^{-0.5} + Na ⁺ = \equiv FeOH ^{-0.5} Na ⁺	-1.00					
^d log K _{FeOH2_NO3}	\equiv FeOH ₂ ^{+0.5} + NO ₃ ⁻ = \equiv FeOH ₂ ^{+0.5} - NO ₃ ⁻	-1.00					
^e log K _{Fe3O}	$\equiv Fe_3O^{-0.5} + H^+ = \equiv Fe_3OH^{+0.5}$	9.20					
^d log K _{Fe3O_Na}	$\equiv Fe_{3}O^{-0.5} + Na^{+} = \equiv Fe_{3}O^{-0.5} - Na^{+}$	-1.00					
^d log K _{Fe3OH_NO3}	\equiv Fe ₃ OH ^{+0.5} + NO ₃ ⁻ = \equiv Fe ₃ OH ^{+0.5} NO ₃ ⁻	-1.00					
Humic acid							
Surface area (m ² /g) ^a		200					
Site density ≡RCOO ⁻	$(sites/nm^2)^c / (mol sites/g x 10^{-3})^d$	6.20 / 2.06					
Site density $\equiv RO^{-}$ (site	$es/nm^2)^c$ / (mol sites/g x10 ⁻³) ^d	4.49 / 1.49					
C _{stern} (F/m ²) _d		8.00					
^d log K _{RCOO}	$\equiv RCOO^- + H^+ = \equiv RCOOH^+$	3.67					
^d log K _{COO_Na}	$\equiv \mathbf{R}\mathbf{C}\mathbf{O}\mathbf{O}^- + \mathbf{N}\mathbf{a}^+ = \equiv \mathbf{R}\mathbf{C}\mathbf{O}\mathbf{O}^ \mathbf{N}\mathbf{a}^+$	-1.00					
^d log K _{RO}	$\equiv RO^- + H^+ = \equiv ROH^+$	7.11					
^d log K _{RO_Na}	$\equiv \mathbf{RO}^- + \mathbf{Na}^+ = \equiv \mathbf{RO}^ \mathbf{Na}^+$	-1.00					

^aDetermined from BET analysis (Fh and Gt: this study; HA: Bujak et al., 1995). ^bDetermined from a crystallographic consideration of the mineral surface (Fh: Hiemstra and van Riemsdijk, 2009; Gt: Hiemstra and van Riemsdijk, 1996). ^cDetermined using the surface area. ^dDetermined from fitting potentiometric titration data (Fh: Moon and Peacock, 2013; Gt: Otero-Fariña, 2017; HA: López et al., 2012). ^cDetermined according to log $K_{group} = pH_{PZC}$ (Hiemstra et al., 1996).

TABLE 3: Input parameters for the surface complexation models for Cu adsorbed to ferrihydrite and goethite organo-mineral composites.

Organo-mineral com	posite	Ferrihydrite					
wt% C		2	5	8	12	16	
mineral:humic acid	% mass ratio	96:4	90:10	84:16	77:23	69:31	
Surface area (m ² /g) ^a		296	290	284	277	269	
Site density \equiv FeOH ^{-0.5}	$(6) (mol sites/g x 10^{-3})^{b}$	1.200	1.125	1.050	0.963	0.863	
Site density \equiv FeOH ^{-0.5}	$(c) (mol sites/g x 10^{-3})^{b}$	1.670	1.566	1.462	1.340	1.201	
Site density \equiv Fe ₃ O ^{-0.5}	$(\text{mol sites/g } x10^{-3})^{\text{b}}$	0.574	0.538	0.502	0.460	0.413	
Site density ≡RCOO ⁻	$(\text{mol sites/g } x10^{-3})^{\text{b}}$	0.082	0.206	0.330	0.474	0.639	
Site density ≡RO ⁻ (mo	bl sites/g x 10^{-3}) ^b	0.0560	0.149	0.238	0.343	0.462	
C _{stern} (F/m ²) ^c		1.38	1.79	2.20	2.69	3.24	
^d log K _{FeOH(e)}	\equiv FeOH ^{-0.5} (e) + H ⁺ = \equiv FeOH ₂ ^{+0.5} (e)	7.99	7.99	7.99	7.99	7.99	
^d log K _{FeOH(e)_Na}	\equiv FeOH ^{-0.5} (e) + Na ⁺ = \equiv FeOH ^{-0.5} (e) - Na ⁺	-1.00	-1.00	-1.00	-1.00	-1.00	
^d log K _{FeOH2(e)_NO3}	$\equiv \text{FeOH}_2^{+0.5}(e) + \text{NO}_3^- = \equiv \text{FeOH}_2^{+0.5}(e) - \text{NO}_3^-$	-1.00	-1.00	-1.00	-1.00	-1.00	
(where equations abov	we are repeated for $(\equiv FeOH^{-0.5}(c))$						
^d log K _{Fe3O}	$\equiv Fe_3O^{-0.5} + H^+ = \equiv Fe_3OH^{+0.5}$	7.99	7.99	7.99	7.99	7.99	
^d log K _{Fe3O_Na}	$\equiv Fe_3O^{-0.5} + Na^+ = \equiv Fe_3O^{-0.5} - Na^+$	-1.00	-1.00	-1.00	-1.00	-1.00	
^d log K _{Fe3OH_NO3}	$\equiv Fe_{3}OH^{+0.5} + NO_{3}^{-} = \equiv Fe_{3}OH^{+0.5} - NO_{3}^{-}$	-1.00	-1.00	-1.00	-1.00	-1.00	
^d log K _{RCOO}	$\equiv RCOO^- + H^+ = \equiv RCOOH^+$	3.67	3.67	3.67	3.67	3.67	
^d log K _{RCOO_Na}	$\equiv RCOO^- + Na^+ = \equiv RCOO^ Na^+$	-1.00	-1.00	-1.00	-1.00	-1.00	
^d log K _{RO}	$\equiv RO^- + H^+ = \equiv ROH^+$	7.11	7.11	7.11	7.11	7.11	
^d log K _{RO_Na}	$\equiv \mathbf{RO}^- + \mathbf{Na}^+ \equiv \equiv \mathbf{RO}^ \mathbf{Na}^+$	-1.00	-1.00	-1.00	-1.00	-1.00	
^d log K _{CuFh}	$2 \equiv FeOH^{-0.5}(e) + Cu^{+2} = (\equiv FeOH(e))_2Cu^+$	8.61	8.61	8.61	8.61	8.61	
^d log K _{CuHA}	$\equiv RCOO^{-} + Cu^{+2} \equiv \equiv RCOOCu^{+}$	2.49	2.49	2.49	2.49	2.49	
Organo-mineral com	posite	Goethite					
wt% C		7					
mineral:humic acid	% mass ratio	86:14					
Surface area $(m^2/g)^a$		116					
Site density \equiv FeOH ^{-0.2}	$(mol sites/g x 10^{-3})^{b}$	0.507					
Site density \equiv Fe ₃ O ^{-0.5}	$(\text{mol sites/g } x10^{-3})^{\text{b}}$	0.396					
Site density ≡RCOO ⁻	$(\text{mol sites/g } x10^{-3})^{\text{b}}$	0.288					
Site density $\equiv RO^{-}$ (motion)	ol sites/g x 10^{-3}) ^b	0.209					
C _{stern} (F/m ²)c		1.98					
^d log K _{FeOH}	\equiv FeOH ^{-0.5} + H ⁺ = \equiv FeOH ₂ ^{+0.5}	9.20					
^d log K _{FeOH_Na}	\equiv FeOH ^{-0.5} + Na ⁺ = \equiv FeOH ^{-0.5} Na ⁺	-1.00					
^d log K _{FeOH2_NO3}	$\equiv \text{FeOH}_2^{+0.5} + \text{NO}_3^- = \equiv \text{FeOH}_2^{+0.5} - \text{NO}_3^-$	-1.00					
^d log K _{Fe3O}	$\equiv Fe_3O^{-0.5} + H^+ = \equiv Fe_3OH^{+0.5}$	9.20					
^d log K _{Fe3O_Na}	$\equiv Fe_{3}O^{-0.5} + Na^{+} = \equiv Fe_{3}O^{-0.5} - Na^{+}$	-1.00					
^d log K _{Fe3OH_NO3}	$\equiv Fe_{3}OH^{+0.5} + NO_{3}^{-} = \equiv Fe_{3}OH^{+0.5} - NO_{3}^{-}$	-1.00					
^d log K _{RCOO}	$\equiv RCOO^- + H^+ = \equiv RCOOH^+$	3.67					
^d log K _{RCOO_Na}	-1.00						

^d log K _{RO}	$\equiv RO^- + H^+ = \equiv ROH^+$	7.11
^d log K _{RO_Na}	$\equiv \mathbf{RO}^- + \mathbf{Na}^+ = \equiv \mathbf{RO}^ \mathbf{Na}^+$	-1.00
^d log K _{CuGt}	$2 \equiv FeOH^{-0.5} + Cu^{+2} = (\equiv FeOH)_2Cu^+$	12.93
^d log K _{CuHA}	$\equiv RCOO^{-} + Cu^{+2} \equiv \equiv RCOOCu^{+}$	2.49

^aCalculated using the surface areas of the end-member mineral and humic acid weighted to the mineral:humic acid mass ratio of each composite. ^bCalculated using the surface site densities of the end-member mineral and humic acid weighted to the mineral:humic acid mass ratio of each composite. ^cCalculated using the C_{stern} values of the end-member mineral and humic acid weighted to the mineral:humic acid mass ratio of each composite. ^dFixed at those determined for the end-member ferrihydrite (Moon and Peacock, 2013), goethite and humic acid (both this study).

TABLE 4: Distribution of adsorbed Cu between the iron (hydr)oxide and humic acid fractions in the ferrihydrite and goethite organo-mineral composites predicted from the surface complexation model and obtained by EXAFS.

Organo-mineral composite	pН	Distribution of					
		End-member n	nodel fit	Optimised mod	EXAFS		
		$logK_{CuHA}2.49$	logK _{CuFh} 8.61	logK _{CuHA} 3.31	logK _{CuFh} 9.27		
		% HA	% Fh	% HA	% Fh	% HA	% Fh
Fh_HA_8wt%C_0.7wt%Cu	4.3	75	25	90	10	100	0
	5.0	34	66	54	46	51±9	49±9
		7	93	20	80	30±12	70±12
Fh_HA_12wt%C_0.7wt%Cu	4.3	90	10	88	12	100	0
	5.0	69	31	55	45	50±10	50±10
	6.0	23	77	22	78	32±11	68±11
		$logK_{CuHA}2.49$	logK _{CuGt} 12.93	$logK_{CuHA}4.86$	logK _{CuGt} 12.10		
		% HA	% Gt	% HA	% Gt	% HA	% Gt
Gt_HA_7wt%C_0.7wt%Cu	4.3	20	80	97	3	100	0
	5.0	12	88	78	22	51±10	4 <u>9±10</u>
	6.0	3	97	46	54	37±10	63±10