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In this paper, shakedown analyses are carried out to predict the long-term response of slab track substructures
under repeated moving train loads. The train loads are converted into a distributed moving load on the substructure
surface by using a simplified track analysis. Based on Melan’s static shakedown theorem, a well-established
shakedown analysis method is extended to determine shakedown limits of the slab track substructures. The
influence of a linearly increasing stiffness modulus on the shakedown limits is considered by conducting finite-
element analysis with a user-defined material. It is found that a rise in stiffness modulus or stiffness variation ratio
can either increase or decrease the shakedown limit, depending on the competitive effects of the two mechanisms.
Furthermore, the subgrade thickness determines the dominant mechanism.
Notation
a radius of the contact area for pavement cases
cn cohesion of the nth layer
E Young’s modulus
E0n Young’s modulus of at the top of the nth layer
Eb Young’s modulus of the beam materials
En(z) Young’s modulus at depth z of the nth layer
f(s) Mohr–Coulomb yield criterion
hn thickness of the nth layer
I second moment of area
i general point at depth z = j
ksub equivalent reaction modulus
n nth layer
P single wheel pavement contact load
P0 maximum pressure for pavement cases
Pmax maximum pressure for railway cases
x longitudinal direction
y transverse direction
z normal direction
b stiffness variation ratio
bn stiffness variation ratio of the nth layer
deij strain increment
dsij stress increment
l dimensionless load factor
ln
sd maximum l in the nth layer

lsdpmax shakedown limit of a layered structure
ln
sdpmax shakedown limit of the nth layer

n Poisson’s ratio
nn Poisson’s ratio of the nth layer
s e
ij elastic stress field induced by unit load

s r
ij residual stress field

s r
xx−max and s r

xx−min critical residual stress fields
f friction angle
fn friction angle of the nth layer
Introduction
The good performance of a slab track requires very limited
post-construction settlement or differential settlement which is a
consequence of permanent deformation. Great efforts on material
quality and compaction level have been made to try to address
this issue. However, predicting the train-load-induced settlement
is still found to be very difficult.

Recently, the theory of shakedown has been successfully applied
in the field of pavement engineering to design against excessive
rutting (Collins and Cliffe, 1987; Liu et al., 2016; Ponter et al.,
1985; Sharp and Booker, 1984; Wang and Yu, 2013a, 2013b, 2014;
Yu, 2006; Yu and Hossain, 1998; Yu and Wang, 2012). Shakedown
is concerned with the ultimate response of an elastic-plastic
structure subjected to cyclic or repeated loads. When the applied
cyclic load is high, the elastic-plastic structure will fail due to
excessive settlement or alternative plasticity. However, when the
applied load is lower than a ‘shakedown limit’ but higher than the
yield limit, the structure will adapt itself to the cyclic loads and
finally perform elastically to the subsequent load cycles. If the latter
situation occurs, the structure reaches a relatively stable state,
termed as a ‘shakedown status’. The essence of the application
of the shakedown theory is to determine the shakedown limit,
which can be used to guide engineering design against excessive
permanent deformation. For the slab track problem, the shakedown
theory can be used to predict the long-term behaviour of the
substructures under repeated moving train loads.

Shakedown limits can be determined directly using Melan’s
static shakedown theorem (Melan, 1938) or Koiter’s kinematic
shakedown theorem. By using one of the shakedown theorems, a
lower bound or an upper bound to the actual shakedown limit
can be obtained (e.g. Collins and Cliffe, 1987; Ponter et al., 1985;
Sharp and Booker, 1984; Yu and Hossain, 1998; Yu and Wang,
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2012). An advantage of using these two fundamental shakedown
theorems is that the details of the successive elastic-plastic stress
histories are not required. Recently, a three-dimensional (3D)
lower-bound shakedown analysis method has been developed by
Yu and Wang (2012) for pavement problems. The results have
been verified by comparing with numerical step-by-step analyses
(Liu et al., 2016; Wang and Yu, 2013a).

In the present study, the method of Yu and Wang (2012) will be
extended to solve the railway slab track problems. For the track
problem, the influencing depth of the train load is much larger
than the pavement problem. Therefore, the effect of the depth-
dependent soil stiffness will be considered.

Slab track problem
Figure 1 shows a typical slab track system which includes a
superstructure and a supporting substructure. The superstructure
includes the rail, track slab, concrete base, sleeper, pad and
fastening system. Table 1 summarises the properties of the key
components of the superstructure. The dimensions of the track
slab and the concrete base are taken from a typical Rheda 2000
single-track system. The rail is UIC60. The substructure is made
of granular materials and soils. It is assumed that the stiffness
modulus of the subsoil varies linearly with depth z
E zð Þ ¼ E0 1 þ zbð Þ1.

where E0 indicates the stiffness modulus at the subsoil surface;
E(z) indicates the stiffness modulus at a depth z from the subsoil
surface; and b is a stiffness variation ratio. This kind of soil is
known as a Gibson-type soil (Gibson, 1967). This Gibson soil has
been widely applied to solve footing problems (Boswell and
Scott, 1975; Stark and Booker, 1997). Moreover, the granular
32
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materials and soils are assumed to be elastic-perfectly plastic,
following the Mohr–Coulomb criterion.

Four axle loads belonging to two adjacent bogies on two carriages
are considered in the analysis. Each axle load is denoted by lP,
where P is a unit axle load and l is a scale factor. It is assumed
that the loads move at a constant speed along the x-direction
(Figure 1). Also, the train speed is much less than the critical
speed of the track structure; therefore, this problem can be
considered as a quasi-static one.

Lower-bound shakedown analysis approach

Melan’s lower-bound shakedown theorem
Melan’s static shakedown theorem states that an elastic-perfectly
plastic structure under cyclic or variable loads will shake down
if a self-equilibrated residual stress field exists such that its
superposition with a load-induced elastic stress field does not
exceed the yield criterion anywhere in the structure. According to
the theorem, three components are essential for the calculation of
the shakedown limit, which are the elastic stress field, residual
stress field and yield criterion.

Shakedown analysis
Yu and Wang (2012) proposed an approach to obtaining the lower-
bound shakedown limits of cohesive-frictional materials under 3D
surface loads. The approach was developed by considering that one
of the x–z planes is critical (x is the travel direction, and z is the
vertical direction). On these planes, only the horizontal residual
stresses can exist since boundary and equilibrium conditions
eliminate the possibility of other residual stresses. Moreover, using
the Mohr–Coulomb yield criterion and the self-equilibrium condition
of the residual stress field, it is found the actual horizontal residual
stress must be fully bracketed by the following two critical residual
stress fields when the structure is at a shakedown status
2·5 m 5 m 2·5 m

Superstructure

Substructure
z

y z
x

Figure 1. A typical slab track structure and axle loads
Table 1. Material properties of the superstructure
Layer
 Young’s modulus, Eb: GPa
 Width: cm
 Height: cm
E u
Second moment of area, I: cm4
nder the CC-BY license 
Mass per unit length: kg/m
Rail
 210
 15
 17·2
 3055
 60·03

Track slab
 34
 280
 24
 322 560
 1680

Concrete base
 10
 340
 30
 765 000
 2448
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s r
xx−max ¼ max

z¼j
−Mi −

ffiffiffiffiffiffiffiffi
−Ni

p� �
2.

with
M ¼ ls e
xx − ls e

zz þ 2 tan fn cn − ls e
zz tan fnð Þ

N ¼ 4 1 þ tan2 fnð Þ ls e
xzð Þ2 − cn − ls e

zz tan fnð Þ2
h i

3.

in which i represents a general point at depth z = j; f is the
material friction angle; c is the material cohesion; s e

ij is the elastic
stress field induced by a unit axial load P; and the subscript n
(n = 1, 2, 3,…) means the nth layer. Tension positive notation
is applied throughout this paper.

By substituting the load-induced elastic stress fields and either
of the critical residual stress fields into the Mohr–Coulomb
yield criterion f(s) £ 0, the present shakedown problem can be
rewritten as a mathematical optimisation problem
max l

s:t: 
f s r

xx ls eð Þ, ls e½ � £ 0
s r
xx ls eð Þ ¼ s r

xx−max or s r
xx−min4.

For a layered structure, one maximum admissible load factor l
can be found for each layer, marked as ln

sd; therefore, l
n
sdP is the

shakedown limit of the nth layer. The minimum value among all
ln
sdP is then recorded as the shakedown limit of the whole structure.

The mathematical optimisation problem can be solved using a
program developed by Wang and Yu (2013b) using Matlab.

For the problem of slab track, the preceding shakedown analysis
can be applied to the substructures provided that the pressure
applied on the substructures and the train-induced elastic stress
fields are known.

Simplified track analysis for pressure distribution
A simplified track analysis is proposed to convert the train loads
to a distributed moving pressure on the substructure. It is
considered that the superstructure components act together as a
single infinite Euler–Bernoulli beam with a total EbI value (Eb is
the Young’s modulus of the beam materials; I is the second
moment of the inertia of the beam), while the supporting
substructure is simplified as a Winkler’s foundation. The pads and
sleepers are ignored in this study as they barely contribute to the
bending of the superstructure. Winkler’s hypothesis, despite its
obvious limitations, yields reasonable performance (Dutta and
Roy, 2002; Kouroussis et al., 2011). The displacement of the
 [ University of Leeds] on [20/04/18]. Published with permission by the ICE und
beam D can be easily obtained using exiting solutions (e.g.
Frýba, 1972). And the reaction pressure on the substructure
can be calculated provided that a reaction modulus k (MPa/m)
is known

p ¼ kD5.

Based on the beam on elastic foundation analysis (Esveld, 2001),
the reaction pressure can be written as

p ¼ p0e
−m xj j cos m xð Þ þ sin m xj j½ �6.

where p0 = lPm/4b; m = (2kb/EbI)
0·25; and b is the half-width of

the beam.

It should be noted that the reaction modulus is not a fundamental
soil property. Relations between the reaction modulus and the
material elastic modulus have been proposed theoretically or
empirically by a number of authors for different situations
(e.g. Biot, 1937; Sadrekarimi and Akbarzad, 2009; Vesic, 1961).
It was suggested that the nature of the supporting elastic medium
can be best described by the deflection line of its surface under a
unit concentrated load (Dutta and Roy, 2002). For the problem of
an infinite beam resting on a 3D elastic soil continuum, Vesic
(1961) developed a relation between the reaction modulus k and
the elastic modulus of the soil E by equating the maximum
deflection of the beam with the maximum surface displacement of
the elastic half-space; however, the proposed equation is obtained
for b/d smaller than 1, where d is defined as

d ¼ 1 − v2ð ÞEbI

E

� �1=3
7.

in which n is the Poisson’s ratio of the soil. Vesic’s (1961) equation
deviates from the exact solutions when b/d is close to or higher
than 1. The current slab track analysis, however, has a relatively
large value of b/d, varying between 1 and 3. Therefore, a new
equation (Equation 8) is derived following Vesic’s fitting method
(Vesic, 1961). This fitting method matches the shape of the
deflection curve obtained by considering a beam resting on a 3D
elastic-isotropic continuous half-space (Vesic, 1961) with that
obtained from beam on elastic foundation analysis. The results have
been validated by comparing with corresponding displacements
from finite-element (FE) analyses, as shown in Figure 2.

k ¼ 0×583EbI

b1×267d3×7338.

As a result, the four unit axle loads are converted into a
distributed load on the top of the substructure, as shown in
33
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Figure 3 for different values of the stiffness modulus. The
reaction force due to the upward displacement of the beam
is taken as zero. As can be seen, the pressure is distributed
more widely and uniformly when the reaction modulus is lower.
In the transverse direction, the pressure is assumed to be
distributed uniformly over the width of the concrete base (i.e.
3·4 m).

In practice, the substructure is made of layers of materials.
For such kind of layered problem, it is practical to use an
34
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equivalent reaction modulus keq or an equivalent stiffness
modulus Eeq. However, the exiting methods are more suitable
for footing problems (e.g. Cai et al., 1994; Sadrekarimi and
Akbarzad, 2009; Sridharan et al., 1990) rather than for the slab
track problem. A matching procedure is thus proposed based on
the fact that the maximum surface displacement of the
substructure equals the maximum deflection of the beam on an
equivalent Winkler’s foundation. The matching procedure has
been validated by comparing the pressure distributions at design
situations to those measured in field and model tests of Bian
et al. (2014). In the present study, a three-layered substructure
consisting of an antifrozen layer, a prepared subgrade layer and
subsoil with great depth is considered. Five cases are considered
as listed in Table 2. The corresponding equivalent keq values are
determined according to Figure 4. The load distributions on the
layered substructures can be obtained by substituting keq into
Equation 6.

Meanwhile, the load distributions for the cases with depth-
dependent stiffness are determined in a similar manner by
matching the maximum displacements. It should be noticed that
the stiffness variation is considered only for the subsoil layer.
Finally, a relation between keq and b is given in Figure 5. As
can be seen, the equivalent reaction modulus keq increases non-
linearly with the stiffness variation ratio. Figure 6 also compares
the load distributions for b = 0 and b = 1.

Elastic stress fields
As for the elastic stress fields, numerical calculations are required to
obtain solutions. In this study, FE analyses using the commercial
software Abaqus are conducted. The stress–strain relation (Equation 2)
considering the depth-dependent stiffness is programmed into a
UMAT subroutine and integrated with the software.
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Table 2. Material properties of three-layered substructures
E 
Layer name
under the CC-BY
hn: m
 license 
En or En0:
MPa
mn
 en: °
 cn: kPa
Antifrozen
layer
0·4
 200
 0·3
 50
 1
Prepared
subgrade
1·3, 1·8, 2·3, 2·8
 130
 0·3
 40
 2
Subsoil
 ∞

110
 0·3
 30
 2

55
 0·3
 30
 2
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The FE model is shown in Figure 7. Only a quarter of the
substructure is built by assigning symmetric boundary conditions
on the x–z plane and y–z plane (Figure 7). The fine mesh density is
used for the regions near these two symmetric planes and the
interfaces between different layers. The load distribution on the
substructure is controlled by the user subroutine DLOAD.
Sensitivity studies have been carried out to examine the effects
of the model size and element type. It is found that the model
size has an obvious effect on the shakedown limit; therefore,
a very large model with size 300m × 50m × 50m is selected.
Comparatively, the effect of the element type (C3D8 and C3D20R)
is negligible. C3D8 is finally chosen considering the computational
cost. The FE model is validated by comparing the present lower-
bound shakedown solutions with the analytical shakedown
solutions of Wang et al. (2018) for a homogenous case.
Lower-bound shakedown limits

Shakedown limits for a homogeneous half-space
Shakedown limits for an isotropic homogenous half-space subjected
to different load distributions (Figure 8) are first presented. The
shakedown limits are normalised by the cohesion c. As can be
seen, a higher friction angle gives a larger shakedown limit. Also,
the shakedown limit varies with the stiffness modulus, giving a
maximum difference of 37%. This is because the reaction modulus
k as well as the load distribution is changed. When the stiffness
modulus is high, the load is distributed more narrowly, leading to a
relatively uneven pressure. This finally results in higher stresses
close to the surface and increases the possibility of failure.

Shakedown limits for a layered substructure
Figure 9 shows the shakedown limits of each layer for a three-
layered structure considering b = 0. It is found that an increase in
the subgrade thickness (second layer) decreases the shakedown
limit of that layer but increases those of the other two layers.
More significant changes can be observed in the subsoil (third
layer). It should be noted that for any specific case, the lowest
layer shakedown limit is the overall shakedown limit of the
substructure. It is interesting to notice that there exists an
optimum layer thickness, around 1·7 m in this particular case. A
further increase in the subgrade thickness barely changes the
overall shakedown limit.

Figure 10 further examines the influence of the stiffness modulus
on the shakedown limit while keeping the ratios of stiffness
moduli of layers E1/E2/E3 unchanged. All stiffness moduli
are increased by around 45%, and the corresponding load
distributions are calculated. Compared with Figure 9, this case
shows similar changing tendencies of the layer shakedown limits;
however, the optimum layer thickness is moved to around 2·2 m
(Figure 10). Also, the rises in the stiffness moduli reduce the
substructure shakedown limit for low h2 cases, but increase it
for high h2 cases. This difference is attributed to the fact that
the pressure distribution is changed. For the cases with higher
stiffness, the pressure is less evenly distributed, leading to a lower
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shakedown limit of the first layer and higher shakedown limits of
the other layers. When the subgrade thickness is small, the subsoil
becomes critical, resulting in an upward trend. When the subgrade
thickness is large, the other two layers tend to fail first. Figure 11
summarises the effects of stiffness modulus and subgrade
thickness on the overall shakedown limits. It should be noted that
if the pressure distribution is also kept identical, the shakedown
36
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limit should not change because the elastic stress distribution will
be the same according to Wang and Yu (2013b).

Figure 11 also shows the result of a soft subsoil case (only the
subgrade stiffness is halved) in which the shakedown limit is
decreased significantly. The layer shakedown limits for the soft
case are 220, 290 and 572 kN. This implies that a poor-soil
ground will result in more stresses locked in the upper layers
and thus a higher possibility of large permanent deformation.
Overall, any decrease of material stiffness modulus involves two
mechanisms: more evenly distributed pressure due to a weaker
substructure and changed elastic distribution due to the modified
stiffness ratios.

The results for the cases when the depth-dependent stiffness is
considered for the subsoil and h2 = 2·3 m are shown in Figure 12.
The layer shakedown limits are also competitively affected by the
two mechanisms mentioned earlier.

First, the rise in the stiffness variation ratio b means that the overall
stiffness of the substructure is increased, so the pressure distribution
tends to be more uneven as shown in Figure 6. This leads to higher
local stresses close to the surface and thus a lower shakedown limit
of the first layer (Figure 12). This is verified by searching for the
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Figure 7. FE model
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critical point of the layer. The locations of the critical points in each
layer are shown in Figure 13 at which two critical residual stress
fields intersect. As can be seen, when b is increased from 0 to 1,
the critical point location is switched from the subsurface to the
surface due to higher pressures on surface. Meanwhile, the stresses
transferred to the lower two layers are relatively small, leading to
downward trends of the layer shakedown limits.

Secondly, the rising b also gives decreasing ratios of layer stiffness
E1/E3 and E2/E3. As a result, fewer stresses will be contained in the
upper two layers and more stresses will be taken by the third layer.
The shakedown limit of the third layer then tends to decrease, while
those of the upper two layers tend to increase.

Consequently, both mechanisms strengthen the second layer,
demonstrated as a fast growth of its shakedown limit. In the
current case with a relatively thick subgrade (h2 = 2·3 m), the
influence of the first mechanism overwhelms that of the second,
leading to a decreasing trend for first layer but an increasing trend
for the third layer.
 [ University of Leeds] on [20/04/18]. Published with permission by the ICE und
Conclusions
In this paper, the lower-bound shakedown solutions for
substructures of slab tracks have been obtained. A simplified
method is developed to convert the train load on the
superstructure to a moving pressure on the substructure. The key
influencing factors are investigated, including the depth-dependent
stiffness variation ratio for the subsoil.

It is found that the change in the shakedown limit with the rising
stiffness modulus or the increasing stiffness variation ratio b is
competitively controlled by two mechanisms. First, the pressure
distribution becomes relatively uneven, leading to higher stresses
at the surface, a smaller shakedown limit of the first layer and
larger shakedown limits of the lower layers. Second, the ratios of
layer stiffness E1/E3 and E2/E3 become lower, resulting in more
stresses in the third layer and a lower shakedown limit of that
layer. Accordingly, there are more stresses in the upper layers;
therefore, the corresponding layer shakedown limits are higher.

If the subgrade is thin, the second mechanism dominates the
overall shakedown limit; otherwise, the first one is in control. For
a typical three-layered substructure, an increase in the subgrade
thickness will raise the overall shakedown limit until an optimum
value is reached which represents the transfer of critical point
location from the subsoil to one of the upper layers.

Overall, the material stiffness modulus (including the depth-
dependent stiffness modulus), the ratios of layer stiffness and the
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Figure 13. Normalised critical residual stress fields: (a) b = 0; (b) b = 1
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layer thickness have great impacts on the long-term stability of
the slab track substructure. A proper design should have
considered all those effects and should have reached the
maximum potentials of each layer.

Acknowledgements
Financial supports from the National Natural Science Foundation
of China (Grant Number 51408326) and the Ningbo 3315 Talent
Scheme are gratefully acknowledged.

REFERENCES
Bian XC, Jiang HG, Cheng C et al. (2014) Full-scale model testing on a

ballastless high-speed railway under simulated train moving loads.
Soil Dynamics and Earthquake Engineering 66: 368–384.

Biot M (1937) Bending of an infinite beam on an elastic foundation.
Journal of Applied Mechanics 59: A1–A7.

Boswell LF and Scott CR (1975) A flexible circular plate on a
heterogeneous elastic half-space: influence coefficients for contact
stress and settlement. Géotechnique 25(3): 604–610.

Cai Z, Raymond GP and Bathurst RJ (1994) Estimate of static track
modulus using elastic foundation models. Transportation Research
Record 1470: 65–72.

Collins IF and Cliffe PF (1987) Shakedown in frictional materials under
moving surface loads. International Journal for Numerical and
Analytical Methods in Geomechanics 11(4): 409–420.

Dutta SC and Roy RA (2002) A critical review on idealization and
modeling for interaction among soil–foundation–structure system.
Computers and Structures 80(20–21): 1579–1594.

Esveld C (2001) Modern Railway Track, 2nd edn. MRT Productions
Duisburg, Germany.

Frýba L (1972) Vibration of Solids and Structures under Moving Loads.
Noordhoff International, Groningen, the Netherlands.

Gibson RE (1967) Some results concerning displacements and stresses in a
non-homogeneous elastic half-space. Géotechnique 17(1): 58–67.

Kouroussis G, Verlinden O and Conti C (2011) Free field vibrations caused
by high-speed lines: measurement and time domain simulation. Soil
Dynamics and Earthquake Engineering 31(4): 692–707.

Liu S, Wang J, Yu HS and Wanatowski D (2016) Shakedown solutions for
pavements with materials following associated and non-associated
plastic flow rules. Computers and Geotechnics 78: 218–266.
38
ed by [ University of Leeds] on [20/04/18]. Published with permission by the IC
Melan E (1938) Der spannungsgudstand eines Henky-Mises schen
kontinuums bei verlandicher belastung. Sitzungberichte der Ak
Wissenschaften Wie 147: 73–87 (in German).

Ponter ARS, Hearle AD and Johnson KL (1985) Application of
the kinematical shakedown theorem to rolling and sliding point
contacts. Journal of the Mechanics and Physics of Solids 33(4):
339–362.

Sadrekarimi J and Akbarzad M (2009) Comparative study of methods of
determination of coefficient of subgrade reaction. Electronic Journal
of Geotechnical Engineering 14(s1–s6): 211–216.

Sharp RW and Booker JR (1984) Shakedown of pavements under moving
surface loads. Journal of Transportation Engineering 110(1): 1–14.

Sridharan A, Gandhi NSVVSJ and Suresh S (1990) Stiffness coefficients of
layered soil systems. Journal of Geotechnical Engineering 116(4):
604–624.

Stark RF and Booker JR (1997) Surface displacements of a
non-homogeneous elastic half-space subjected to uniform surface
tractions: part I: loading on arbitrarily shaped areas. International
Journal for Numerical and Analytical Methods in Geomechanics
21(6): 361–378.

Vesic AB (1961) Bending of beams resting on isotropic elastic solid.
Journal of Engineering Mechanics 87(2): 35–54.

Wang J, Liu S and Yang W (2018) Dynamics shakedown analysis of slab
track substructures with reference to critical speed. Soil Dynamics and
Earthquake Engineering 106: 1–13.

Wang J and Yu HS (2013a) Residual stresses and shakedown in cohesive-
frictional half-space under moving surface loads. Geomechanics and
Geoengineering 8(1): 1–14.

Wang J and Yu HS (2013b) Shakedown analysis for design of flexible
pavements under moving loads. Road Materials and Pavement Design
14(3): 703–722.

Wang J and Yu HS (2014) Three-dimensional shakedown solutions for
anisotropic cohesive-frictional materials under moving surface loads.
International Journal for Numerical and Analytical Methods in
Geomechanics 38(4): 331–348.

Yu HS (2006) Plasticity and Geotechnics. Springer, New York, NY, USA.
Yu HS and Hossain MZ (1998) Lower bound shakedown analysis of

layered pavements using discontinuous stress fields. Computer
Methods in Applied Mechanics and Engineering 167(3–4): 209–222.

Yu HS and Wang J (2012) Three-dimensional shakedown solutions for
cohesive-frictional materials under moving surface loads. International
Journal of Solids and Structures 49(26): 3797–3807.
How can you contribute?

To discuss this paper, please submit up to 500 words to
the editor at journals@ice.org.uk. Your contribution will be
forwarded to the author(s) for a reply and, if considered
appropriate by the editorial board, it will be published as a
discussion in a future issue of the journal.
E under the CC-BY license 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AbadiMT-CondensedExtraBold
    /AbadiMT-CondensedLight
    /AndaleMono
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellGothic-Black
    /BellGothic-Bold
    /BellGothic-Light
    /BernardMT-Condensed
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldCondensed
    /Bodoni-BoldItalic
    /Bodoni-Book
    /Bodoni-BookItalic
    /Bodoni-Italic
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /Bodoni-PosterItalic
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /Braggadocio
    /BritannicBold
    /BrushScriptMT
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CurlzMT
    /Desdemona
    /EdwardianScriptITC
    /EngraversMT
    /EngraversMT-Bold
    /EurostileBold
    /EurostileRegular
    /FootlightMTLight
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GillSans-UltraBold
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /Gulim
    /Haettenschweiler
    /Harrington
    /Impact
    /ImprintMT-Shadow
    /KinoMT
    /LatinWide
    /LucidaBlackletter
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /MS-Gothic
    /MS-Mincho
    /MS-PGothic
    /MS-PMincho
    /MaturaMTScriptCapitals
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /NewCaledonia
    /NewCaledonia-Black
    /NewCaledonia-BlackItalic
    /NewCaledonia-Bold
    /NewCaledonia-BoldItalic
    /NewCaledonia-BoldItalicOsF
    /NewCaledonia-BoldSC
    /NewCaledonia-Italic
    /NewCaledonia-ItalicOsF
    /NewCaledonia-SC
    /NewCaledonia-SemiBold
    /NewCaledonia-SemiBoldItalic
    /NewsGothicMT
    /NewsGothicMT-Bold
    /NewsGothicMT-Italic
    /Onyx
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /Sabon-Bold
    /Sabon-BoldItalic
    /Sabon-BoldItalicOsF
    /Sabon-BoldOsF
    /Sabon-Italic
    /Sabon-ItalicOsF
    /Sabon-Roman
    /Sabon-RomanOsF
    /Sabon-RomanSC
    /SimSun
    /Stencil
    /Symbol
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanPS
    /TimesNewRomanPS-Bold
    /TimesNewRomanPS-BoldItalic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-Italic
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Universal-GreekwithMathPi
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Wingdings
    /Wingdings2
    /Wingdings3
  ]
  /NeverEmbed [ true
    /Arial-BlackItalic
    /ArialUnicodeMS
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /LucidaConsole
    /TimesNewRomanMT-ExtraBold
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    23.95276
    23.95276
    24.12284
    24.12284
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ([Based on 'Sheridan'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


