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Abstract: Spatial impulse response analyses techniques are commonly used in the field of acoustics,1

as they help to characterise interaction of sound with an enclosed environment. This paper presents a2

novel approach for spatial analyses of binaural impulse responses, using a binaural model fronted3

neural network. The proposed method uses binaural cues utilised by the human auditory system,4

which are mapped by the neural network to azimuth direction of arrival classes. A cascade-correlation5

neural network was trained using a multi-conditional training dataset of head related impulse6

responses with added noise. The neural network is tested using a set of binaural impulse responses7

captured using two dummy head microphones in an anechoic chamber, with a reflective boundary8

positioned to produce a reflection with a known direction of arrival. Results showed that the neural9

network was generalisable for the direct sound of the binaural room impulse responses for both10

dummy head microphones. However, it was found to be less accurate at predicting the direction of11

arrival of the reflections. The work indicates the potential of using such an algorithm for the spatial12

analysis of binaural impulse responses, while indicating where the method applied needs to be made13

more robust for more general application.14

Keywords: Machine-hearing; Machine-learning; Binaural Room Impulse Response; Spatial Analysis;15

Direction of Arrival16

1. Introduction17

A BRIR is a measurement of the response of a room to an excitation from an (ideally) impulsive18

sound. The BRIR is comprised of the superposition of the direct source-to-receiver sound component,19

discrete reflections produced from interactions with a limited number of boundary surfaces, together20

with the densely distributed, exponentially decaying reverberant tail that results from repeated surface21

interactions. In particular, a BRIR is characterised by the receiver having the properties of a typical22

human head, that is, two independent channels of information separated appropriately, and subject23

to spatial variation imparted by the pinnae and head. The BRIR is therefore uniquely defined by the24

location, shape and acoustic properties of reflective surfaces, together with the source and receiver25

position and orientation.26

The BRIR is therefore a representation of the reverberant characteristics of an environment, and27

are commonly used throughout the fields of acoustics and signal processing. Through the use of28

convolution, the reverberant characteristics of the room, as captured within the BRIR, can be imparted29
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onto other audio signals, giving the perception of listening to that audio signal as if it were recorded in30

the BRIR measurement position. This technique for producing artificial reverberation as numerous31

applications, including: music production, game sound design, alongside other audio-visual media.32

In acoustics, the spatiotemporal characteristics of reflections arising from sound propagation and33

interaction within a given bounded space can be captured through measuring the room impulse34

response for a given source/receiver pair. One problem associated with this form of analysis is35

obtaining a prediction for the direction of arrival (DoA) of these reflections. Understanding the DoA36

of reflections can allow for the formulation of reflection backpropagation and geometric inference37

algorithms, amongst other features, that reveal the properties of the given acoustic environment for38

which the impulse response was obtained. This has applications in robot audition, sound source39

localisation tasks, as well as room acoustic analysis, treatment and simulation. These algorithms can40

be used to develop an understanding of signal propagation in a room, allowing the point of origin for41

acoustic events arriving at the receiver to be found. This knowledge of the signal propagation in the42

environment can then be used to acoustically treat the environment, improving the perceptibility of43

signals produced within the environment. Conversely, the inferred geometry can be used to simulate44

the acoustic response of the room to a different source and receiver through the use of computational45

acoustic simulation techniques.46

Existing methods [1–3] have approached reflection DoA estimation using four or more channels,47

while methods looking at localising the components in two-channel binaural room impulse responses48

(BRIRs) have generally shown poor accuracy for predicting the DoA of the reflections in these BRIRs[4].49

This paper investigates a novel approach to using neural networks for DoA estimation for the direct50

and reflected sound components in BRIRs. The reduction in number of channels available for analyses51

significantly adds to the complexity of extracting highly accurate direction of arrival predictions.52

The human auditory system is a complex but robust system, capable of undertaking sound53

localisation tasks under varying conditions with relative ease [5]. The binaural nature of the auditory54

system leads to two main interaural localisation cues: interaural time difference (ITD) - the time of55

arrival difference between the signals arriving at the two ears, and interaural level difference (ILD) - the56

frequency-dependent difference in signal loudness at the two ears due to the difference in propagation57

path and acoustic shadowing produced by the head [5,6]. In addition to these interaural cues, it has58

been shown that the auditory system makes use of self-motion [7] and the spectral filtering produced59

by the pinnae to improve localisation accuracy, particularly with regards to elevation and front-back60

confusion [5,8].61

Given the robustness of the auditory system at performing localisation tasks [5], it should be62

possible to produce a computational approach using the same auditory cues. Due to the nature of the63

human auditory system, machine-hearing approaches are often implemented in binaural localisation64

algorithms, typically using either Gaussian mixture models (GMMs) [9–11] or neural networks (NNs)65

[12–15]. In most cases the data presented to the machine-hearing algorithm fits into one of two66

categories: binaural cues (ITD and ILD), or spectral cues. Previous machine-hearing approaches67

to binaural localisation have shown good results across the training data, and in some cases good68

generalisability across unknown data from different datasets [9–15].69

In [14] a cochlear model was used to pre-process head-related impulse responses (HRIRs), the70

output of which was then used to calculate ITD and ILD. Two different cochlear models for ITD71

and ILD calculation were used, as well as feeding the cochlear model output to the NN. The results72

presented showed that the NN was able to build up a spatial map from raw output of the cochlear73

model, which performed better under test conditions than using the binaural cues calculated from the74

output of the cochlea model.75

Backman et al [13] used a feature vector comprised of the cross-correlation function and ILD to76

train their NNs, which were able to produce highly accurate results within the training data. However,77

upon presenting the NN with unknown data it was found to have poor generalisation.78
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In [12], Palomäki et al. presented approaches using a self-organising map and a multi-layer79

perceptron trained using the ITD and ILD values calculated from a binaural model. They found that80

both were capable of producing accurate results within the training data, with the self organising81

map requiring the addition of head rotation to help disambiguate cue similarity between the front82

and back hemispheres [12]. Their findings suggested that a much larger dataset is required to achieve83

generalisation with the multi-layer perceptron.84

In [9–11], GMMs trained using the ITD and ILD were used to classify the DoA. In both cases the85

GMMs were found to produce accurate azimuthal DoA estimates. Their findings showed that GMM’s86

ability to accurately predict azimuth DoA was affected by the source and receiver distance, and the87

reverberation time, with larger source-receiver distances and reverberation times generally reducing88

the accuracy of the model [9,10]. The results presented in [9] showed that a GMM trained with a89

multi-conditional training (MCT) dataset was able to localise a signal using two different binaural90

dummy heads with high accuracy.91

Ding et al. [16] used the supervised binaural mapping technique, to map binaural features to 2D92

directions, which were then used to localise a sound source’s azimuth and elevation position. They93

presented results displaying the effect of reverberation on prediction accuracy, showing that prediction94

accuracy decreased as reverberation times increased. They additionally showed that the use of a95

binaural dereverberation technique improved prediction accuracy across all reverberation times [16].96

Recent work by Ma et al. [15] compared the use of GMM and deep NNs (DNNs) for the azimuthal97

DoA estimation task. The DNN made use of head rotation produced by a KEMAR unit [17] fitted with98

a motorised head. It was found that the addition of head rotation reduced the ambiguity between front99

and back, and that DNNs outperformed GMMs, with DNNs proving better at discerning between100

front and back hemispheres.101

Work presented by Vesa et al. [4] investigated the problem of DoA analysis of the component parts102

of a BRIR. They used the continuous-wavelet transform to create a frequency domain representation103

of the signal, which is used to compute the ILD and ITD across frequency bands. The DoA is then104

computed by iterating over a database of reference HRIRs and finding the reference HRIR with the105

closest matching ILD and ITD values to the component of the BRIR being analysed, the DoA is then106

assumed to be the same as the reference HRIR. They reported mean angular errors between 28.7◦ and107

54.4◦for the component parts of the measured BRIRs.108

This paper presents a novel approach for the spatial analysis of two-channel BRIRs, using a109

binaural model fronted NN to estimate the azimuthal direction of arrival for the direct sound and110

reflected components 1 of the BRIRs. It develops and extends the approach adopted in [15] in terms of111

the processing used by the binaural model to extract the interaural cues, the use of a cascade-correlation112

neural network as opposed to the multi-layer perceptron, the nature of the sound components being113

analysed - short pulses relating to the direct sound and reflected components of a BRIR as opposed to114

continuous speech signals, and the method by which measurement orientations are implemented and115

analysed by the NN. In this paper multiple measurement orientations are presented simultaneously116

to the NN whereas in [15] multiple orientations are presented as rotations produced by a motorised117

head with the signals being analysed separately by the NN, which allowed for active sound source118

location in an environment. A cascade-correlation NN is used to map binaural cues to direction of119

arrival classes, with the output being a probability vector predicting the likelihood of a signal having120

arrived from each azimuth direction of arrival.121

The following sections are organised as follows; in section 2 the implementation of the binaural122

model and NN, the data model used, and the methodology used to generate a test data set is discussed;123

section 3 presents the test results; section 4 discusses the findings, and section 5 concludes the paper.124

1 Direct sound is used to refer to the signal emitted by a loudspeaker arriving at the receiver, and reflected component refers
to a reflected copy of the emitted signal arriving at the receiver after incidence with a reflective surface.
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2. Materials and Methods125

The proposed method uses a binaural model to produce representations of the time of arrival126

and frequency dependent level differences between the signals arriving at the left and right ear of a127

dummy head microphone. This binaural model is used to produce a set of interaural cues for the direct128

sound and each detectable reflection within a BRIR. These cues alone are not sufficient to provide129

accurate localisation of sound sources, due to interaural cue similarities observed at mirrored source130

positions in the front/rear hemispheres. To distinguish between sounds arriving from either the front131

or rear of the head, an additional set of binaural cues are generated for the corresponding direct sound132

and reflected component of a BRIR captured with the dummy head having been rotated by ±90◦.133

Presenting the NN with both the original measurement and one captured after rotating the receiver134

helps reduce front-back confusions, arising due to similarities in binaural cues for positions mirrored135

in the front and back hemispheres. The use of a rotation of ±90◦ was used in this study based on tests136

run with different rotation angles, which are presented in section 2.2. These sets of interaural cues137

are then interpreted by a cascade-correlation NN, producing a prediction of the DoA for the direct138

sound and each detected reflection in the BRIR. The NN is trained with a MCT dataset of interaural139

cues extracted from HRIRs measured with a KEMAR 45BC binaural dummy head microphone, with140

added simulated spatially white noise at different signal-to-noise ratios. The NN is trained using141

mini-batches of the training dataset, and optimised using the Adaptive Moment (ADAM) optimiser;142

with the order of the training data randomised at the end of the training iteration.143

2.1. Binaural Model144

A binaural model inspired by the work presented in [18,19] is used to compute the temporal and145

frequency dependent level differences between the signals arriving at the left and right ears of a listener.146

Both the temporal and spectral feature spaces provide directionally dependent cues, produced by path147

differences between ears and acoustic shadowing produced by the presence of the head, which allow148

the human auditory system to localise a sound source in an environment [6,20]. These directionally149

dependent feature spaces are used in this study to produce a feature vector that can be analysed by a150

NN to estimate the direction of arrival.151

Prior to running analysis of the binaural signals, the signal vectors being analysed are zero-padded152

by 2000 samples accounting for signal delay introduced by the application of a gammatone filter bank.153

This ensures that no part of the signal is lost when dealing with small windows of sound, where the154

filter delay would push the signal outside of the represented sample range. The zero-padded signals155

are then passed through a bank of 64 gammatone filters spaced equally from 80 Hz to 22 kHz using156

the equivalent rectangular bandwidth scale. The gammatone filter implementation in M. Slaney’s157

‘Auditory Toolbox’ [21] was used in this study. The output of the cochlea is then approximated using158

the cochleagram function in [22] with a window size of six samples and an overlap of one sample;159

this produces an F × N map of auditory nerve firing rates across time-frequency units, where N is the160

number of time samples and F is the number of gammatone filters. The cochleagram is calculated as:161

xl( f , n) = yl( f , τ) ∗ yl( f , τ)⊤ (1)

where xl( f , n) is the cochleagram output for the left channel for gammatone filter f at frame162

number n, yl( f , τ) is the filtered left channel of audio at gammatone filter f and time frame τ which is163

six samples in length, and (.)⊤ signifies vector transposition [22]. The cochleagram was used to extract164

the features as opposed to extracting directly from the gammatone filters, as it was found to produce165

more accurate results when passed to the NN.166

The interaural cues are then computed across the whole cochleagram producing a single set of167

interaural cues for each binaural signal being analysed. The first of these interaural cues is the interaural168

cross-correlation (IACC) function, which is computed for each frequency band as the cross-correlation169

between the whole approximated cochlea output xl and xr for the left and right channel respectively,170
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with a maximum lag of ±1.1 ms. The maximum lag of ±1.1 ms was chosen based on the maximum171

time delays suggested by Pulkki et al. for their binaural model proposed in [18]. The cross-correlation172

function is then normalised by,173

IACC =
xc f

xl, f x⊤l, f xr, f x⊤r, f

(2)

where xc f is the cross-correlation between the left and right approximated cochlea outputs for174

gammatone filter f . The IACC is then averaged across the 64 gammatone filters, producing the175

temporal feature space for the analysed signal. The maximum peak in the IACC function represents176

the signal delay between the left and right ear. The decision to use the entire IACC function as opposed177

to the ITD was based on the findings presented in [15], which suggested that features within the IACC178

function, such as the relationship between the main peak and any side bands, varied with azimuthal179

direction of arrival.180

The ILD is then calculated from the cochleagram output in decibels as the loudness ratio between181

the two ears for each gammatone filter f such that,182

ILD f = 10 ∗ log10


 ∑

T
t=1 xl f ,t

∑
T
t=1 xr f ,t


dB (3)

where xl f ,t and xr f ,t is the approximated cochlea output for gammatone filter f for signal x, for183

the left (l) and right (r) ear at time window t, and T is the total number of time windows. An example184

of the IACC and ILD feature vector for a HRIR at azimuth = 90◦and elevation = 0◦ can be seen in Fig. 1.185

Figure 1. Example of IACC function (top) and ILD (bottom) for a HRIR with a source positioned at

Azimuth = 90 ◦ and Elevation = 0◦.

In this study the binaural model is used to analyse binaural signals with a sampling rate of186

44.1 kHz, the output of the binaural model is then an IACC function vector of length 99 and an ILD187

vector of length 64. This produces a feature space for a single binaural signal of length 163.188
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2.2. Neural Network Data Model189

The binaural model presented in section 2.1 is used to generate a training feature matrix using the190

un-compensated ‘raw’ SADIE KEMAR 2 dataset [23]. This dataset contains a HRIR grid of 1550 points:191

5◦ increments across the azimuth in steps of 10◦ elevation. To train the NN only the HRIRs relating to192

0◦ elevation were used, providing a dataset of 104 HRIRs. A multi-conditional training (MCT) dataset193

is created by adding spatially white noise to the HRIRs at 0 dB, 10 dB, and 20 dB signal-to-noise ratios.194

This spatially white noise is generated by convolving Gaussian white noise with all 1550 HRIRs in195

the SADIE KEMAR dataset, and averaging the resulting localised noise across the 1550 positions;196

producing a spatially white noise signal matrix [15]. This addition of spatially white noise is based on197

the findings in [9,10,15], which found that training the NN with data under different noise conditions198

improved generalisation. These HRIRs with added spatially white noise are then analysed by the199

binaural model and the output used to create the feature vector. The neural network is only trained200

using these HRIRs with noise mixtures, no reflected components of BRIRs are included as part of the201

training data.202

Two training matrices are created by concatenating the feature vector of one HRIR with the feature203

vector produced by a HRIR corresponding to either a +90◦ or −90◦ rotation of KEMAR with the same204

signal-to-noise ratio. This produces two 416 × 326 feature matrices with which two neural networks205

can be trained with - one for each rotation. The use of a NN for each fixed rotation angle was found to206

produce more accurate results than having one NN trained for both.207

The use of ‘head rotation’ has a biological precedence, in that humans use head rotation to focus208

in on the location of a sound source; disambiguating front-back confusions that occur due to interaural209

cue similarities between signals arriving from opposing locations in the front and back hemispheres210

[6,20]. In this study, the equivalent effect of implementing a head rotation is realised by taking the211

impulse response measurements at two additional fixed measurement orientations (at +/-90 degrees).212

The use of fixed rotations reduces the number of additional signals needed to train the NN, and reduces213

the number of additional measurements that need to be recorded. The use of additional measurement214

positions corresponding to receiver rotations of ±90◦ was found to produce lower maximum errors215

when compared to rotations of ±15◦, ±30◦, and ±60◦ (Table 1). The two training matrices are used216

to train two NN, one for each rotation, the network trained with the −90◦ rotation dataset is used217

to predict the DoA for signals that originate on the left hemisphere, while the +90◦ NN is used to218

predict the DoA for signals on the right hemisphere. Each of these NNs are trained with the full219

azimuth range to allow the NNs to predict the DoA for signals with ambiguous feature vectors that220

may be classified as originating from the wrong hemisphere. When testing the NN, the additional221

measurement positions are assigned to the signals based on the location of the maximum peak in222

the IACC feature vector. If the peak index in the IACC is less than 50 (signal originated in the left223

hemisphere) a receiver rotation of −90◦ is applied, otherwise a receiver rotation of +90◦ is used. To224

normalise the numeric values, the training data was Gaussian-normalised to ensure each feature had225

zero mean and unit variance. The processing work flow for the training data can be seen in Fig. 2.226

2 KEMAR (Knowles Electronics Manikin for Acoustic Research) is a head and torso simulator designed specifically for, and
commonly used in, binaural acoustic research.
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Table 1. Direction of arrival accuracy comparison for the reflected component measured with the

KEMAR 45BC for different fixed receiver rotation angles

Rotation Within ± 5◦ Front-back confusions Max Error

KEMAR Reflections

±15◦ 29.86% 15.28% 173
±30◦ 34.03% 6.25% 54
±60◦ 29.17% 9.72% 50
±90◦ 32.64% 9.03% 30

Left recorded
HRIR

Right recorded

HRIR

Add spatially
white noise

Add spatially
white noise

Processing

Binaural

Model

Feature Vector

Neural
Network

Gaussian
normalise
features

Head
Rotation

Figure 2. Signal processing chain used to generate the training data used to train the neural network.

2.3. Neural Network227

TensorFlow [24], a commonly used python library designed for the development and execution228

of machine learning algorithms, is used to implement a cascade-correlation NN, the topology of which229

connects the input feature vector to every layer within the NN. Additionally, all layers’ outputs are230

connected to subsequent layers in the NN, as in Fig. 3 [25]. The use of NN over GMM was chosen based231

on findings in [15], which suggested that DNN outperformed GMM for binaural localisation tasks. The232

decision to use the cascade-correlation NN was based on comparisons between the cascade-correlation233

NN architecture and the MLP, which showed that the cascade-correlation NN arrived at a more234

accurate solution with less training required compared to the MLP (Table 2).235

Table 2. Comparison of prediction accuracy for the reflected component measured with the KEMAR

45BC using additional measurements at receiver rotations of ±90◦ using a multi-layer perceptron and

cascade-correlation neural network. Both the multi-layer perceptron and the cascade-correlation neural

network had one hidden layer with 128 neurons, and an output layer with 360 neurons, and were

trained using the procedure discussed in section: 2.3.

Neural Network Within ± 5◦ Run time

KEMAR Reflections (Test Data)

multi-layer perceptron 26.39% 390 Epochs 40 Seconds
cascade-correlation 32.64% 244 Epochs 28 seconds
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Input
Vector

Hidden
Layer 1

Output

Layer

Key

= Weighted
Connection

= Data
Flow

Figure 3. Cascade-correlation neural network topology used, where triangles signify the data flow and

squares are weighted connections between the hidden layers and the incoming data.

The NN consists of an input layer, one hidden layer, and an output layer. The input layer contains236

one node for each feature in the training data, the hidden layer contains 128 neurons each with237

a hyperbolic tangent activation function, and the output layer contains 360 neurons, one for each238

azimuth direction from 0◦ to 359◦. Using 360 output neurons as opposed to 104 (one for each angle239

of the training dataset) allows the NN to make attempts at predicting the DoA for both known and240

unknown source positions. A softmax activation function is then applied to the output layer of the241

NN, producing a probability vector predicting the likelihood of the analysed signal having arrived242

from each of the 360 possible DoAs.243

Each data point, whether it be a feature in the input feature vector or the output of a previous244

layer, is connected to a neuron via a weighted connection. The summed response of all the weighted245

connections linked to a neuron defines that neuron’s level of activation when presented with a specific246

data configuration, a bias is then applied to this activation level. These weights and biases for each247

layer of the NN are initialised with random values, with the weights distributed such that they will be248

zero mean and have a standard deviation (σ) defined as:249

σi = m−1/2 (4)

where m is the number of inputs to hidden layer i [26].250

The NN is trained over a maximum of 600 epochs, with the training terminating once the251

NN reached 100% accuracy or improvement saturation. Improvement saturation is defined as no252

improvement over a training period equal to 5% of the total number of epochs. Mini-batches are253

used to train the NN with sizes equal to 25% of the training data. The order of the training data is254

randomised after each epoch so the NN never receives the same batch of data twice. The adaptive255

moment estimation (ADAM) optimiser [27] is used for training, using a learning rate of 0.001, a β1256

value of 0.9, a β2 value of 0.99 and an ǫ value of 1−7. The β values define the exponential decay for the257

moment estimates and ǫ is the numerical stability constant [27].258

The NN’s targets are defined as a vector of size 360, with a one in the index relating to the DoA,259

and all other entries equal to zero. The DoA is therefore extracted from the probability vector produced260

by the NN as the angle with the highest probability such that,261

θ = argmax P(θ|x) (5)

where P(θ|x) represents the probability of azimuth angle θ given the feature vector x. The262

probability is calculated as,263

P(θ|x) = so f tmax(((x × wout1) + (x̃1 × wout2)) + bout) (6)
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where w denotes a set of weights, bout is the output biases, and x̃1 is the output from the hidden264

layer calculated as,265

x̃1 = tanh((x × w1) + b1) (7)

2.4. Testing Methodology266

A key measure of the success of a NN is its ability to generalise across different datasets other than267

that with which it was trained. To test the generalisability of the proposed NN, a dataset was produced268

in an anechoic chamber for both a KEMAR 45BC [17] and Nuemann KU100 [28] binaural dummy head,269

using an Equator D5 coaxial loudspeaker [29]. The exponential sine sweep method [30] was used to270

generate the BRIRs, with a swept frequency range of 20 Hz to 22 kHz over ten seconds. To be able to test271

the NN’s performance at predicting the DoA of reflections, a flat wooden reflective surface mounted272

on a stand was placed in the anechoic chamber, such that a reflection with a known DoA would be273

produced (Fig. 4). This allows us to test the accuracy of the NN at predicting the DoA for a reflected274

signal without the presence of overlapping reflections that could occur in non-controlled environments.275

To approximate an omnidirectional sound source, the BRIRs were averaged over four speaker rotations276

(0◦, 90◦, 180◦ and 270◦); omnidirectional sources are often desired in impulse response measurements277

for acoustic analysis [31], as they produce approximately equal acoustic excitation throughout the278

room. The extent to which this averaged loudspeaker response will be omnidirectional will vary279

across different loudspeakers, particularly at higher frequencies where loudspeakers tend to be more280

directional. Averaging the response of the room over speaker rotations does result in some spectral281

variation, particularly with noisier signals, however, this workflow is similar to that employed when282

measuring the impulse response of a room.283

Figure 4. Measurement set-up showing the reflective surface (A), KEMAR 45BC (B) and Equator D5

Coaxial Loudspeaker (C).

To calculate the required location of the reflective surface such that a known DoA would be284

produced, a simple MATLAB image source model based on [32] was used to calculate a point of285

incidence on a wall that would produce a first order reflection in a 3 m × 3 m × 3 m room with the286

receiver positioned in the centre of the room. The reflective surface was then placed in the anechoic287

chamber based on the angle of arrival and distance between the receiver and calculated point of288

incidence. Although care was taken to ensure accurate positioning of the individual parts of the289
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system, it is prone to misalignments due to the floating floor in the anechoic chamber, which can lead290

to DoAs that differ from that which is expected.291

With these BRIRs only having two sources of impulsive sounds, the direct sound and first292

reflection, a simple method for separating these signals was employed. Firstly, the maximum absolute293

peak in the signal is detected and assumed to belong to the direct sound. A 170 sample frame around294

the peak location indexed at [peakIndex − 45 : peakIndex + 124] was used to separate the direct sound295

from the signal. It was ensured that all segmented audio samples only contained audio pertaining to296

the direct sound. The process was then run again to detect the location of the reflected component, and297

each segment was checked to ensure only audio pertaining to the reflected component was present298

(see Fig. 5 for example BRIR with window locations). When dealing with BRIRs measured in less299

controlled environments, a method for systematically detecting discrete reflections in the BRIR is300

required and various methods have been proposed in the literature to detect reflections in impulse301

responses including [4,33–35].302

The separated signals were then analysed using the binaural model, and a test data matrix303

generated by combining the segmented direct or reflected component with the corresponding rotated304

signal (as described in section 2.2). The positively and negatively rotated test feature vectors were305

stored in separate matrices, and used to test the NN trained with the corresponding rotation dataset306

(as described in section 2.2). The data was then Gaussian normalised across each feature in the feature307

vector, using the mean and standard deviations calculated from the training data.308

Figure 5. Example binaural room impulse response generated with source at Azimuth = 0◦ and reflector

at Azimuth = 71◦, solid line is the left channel of the impulse response, the dotted line is the right

channel of the impulse response, and the windowed area denotes the segmented regions using the

technique discussed in section 2.4.

The generated test data consisted of 144 of these BRIRs, with source positions from 0◦ to 357.5◦309

and reflections from 1◦ to 358.5◦ using a turntable to rotate the binaural dummy head in steps of310

2.5◦(with the angles rounded for comparison with the NN’s output). This provided 288 angles to test311

the NN with: 144 direct sounds and 144 reflections. The turntable was covered in acoustic foam to312

attempt to eliminate any reflections that it would produce.313
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3. Results314

The two NNs trained with the SADIE HRIR dataset (as described in sections 2.1 and 2.2) were315

tested with the components of the measured test BRIRs (as described in 2.4), with the outputs316

concatenated to produce the resulting direction of arrival for the direct and reflected components. The317

angular error was then computed as the difference between the NN predictions and the target values.318

The training of the neural network generally terminated due to saturation in output performance319

within 122 epochs, with an accuracy of 95% and a maximum error of 5◦. Statistical analysis of the320

prediction errors was performed using MATLAB’s one-way analysis of variance (ANOVA) function321

[36], and is reported in the format: ANOVA(F(between group degrees of freedom, within groups322

degree of freedom) = F value, P = significance), all of these values are returned by the anova1 function323

[36].324

A baseline method used as a reference to compare results obtained from the NN can be derived325

from the ITD equation (Eq. 8 taken from [37]) rearranged for calculating the DoA,326

ITD =
d sin(θre f )

c
(8)

where d is the distance between the two ears, θre f is the DoA, and c is the speed of sound [37]. The327

ITD value used for the baseline DoA predictions was measured by locating the maximum peak in the328

IACC feature vector, as calculated using the binaural model proposed in section 2.1.The index for this329

peak in the IACC feature vector relates to one of 99 ITD values linearly spaced from -1.1 ms to 1.1 ms.330

In Table 3 the neural network accuracy across the test data is presented. The results show that331

for the direct sound, the neural network predicted 64.58% and 68.06% of the DoAs within 5◦ for the332

KEMAR and KU100 dummy head respectively. Although when analysing direct sound captured with333

the KU100 a greater percentage of predictions are within ±5◦ of the target value, the neural network334

makes a greater number of exact predictions and lower relative error for KEMAR. This observation is335

expected given the different morpho-acoustic properties of each head and their ears, which could lead336

to differences in the observed interaural cues - particularly those dependent on spectral information.337

The results show that the neural network performs worse when analysing the reflected components.338

In this case, the reflected component measured with the KU100 is more accurately localised, with339

lower maximum error, relative error, root mean squared error, and number of front-back confusions.340

Comparisons between the accuracy of the proposed method with the baseline shows that the NN341

is capable of reaching a higher degree of accuracy, with lower angular error, and fewer front-back342

confusions.343



Version January 15, 2018 submitted to Appl. Sci. 12 of 20

Table 3. Direction of arrival accuracy comparison for the direct sound and reflected components

measured with the KEMAR and KU100 binaural dummy heads, for both the cascade-correlation neural

network and the baseline method.

Head Exact Within ± 1◦ Within ± 5◦
Front-back
confusions

Average
Relative

Error

Root mean
squared

error

Cascade-Correlation Neural Network

Direct Component

KEMAR 17.36% 21.53% 64.58% 1.39% 7.10% 5.18◦

KU100 13.19% 17.36% 68.06% 0% 6.90% 6.86◦

Reflected Component

KEMAR 2.08% 11.11% 32.64% 9.03% 23.61% 13.59◦

KU100 0% 9.03% 37.50% 2.78% 15.43% 8.85◦

Baseline Method

Direct Component

KEMAR 1.39% 2.78% 11.81% 49.31% 38.78% 66.37◦

KU100 1.39% 3.47% 13.19% 50% 36.01% 65.66◦

Reflected Component

KEMAR 0% 2.78% 11.11% 49.31% 38.85% 67.31◦

KU100 0% 4.86% 21.53% 49.31% 36.81% 70.23◦

In Fig. 6 comparisons between the direct sound and reflected component for BRIRs captured with344

the KEMAR 45BC are presented. The boxplots show that for the direct sound a maximum error of345

12◦ and median error of 5◦ (mean error of 4.20◦) was observed, while the reflected component has a346

maximum error of 30◦ and median of 8.5◦(mean error of 10.87◦). There is a significant difference in the347

neural network performance between the direct sound and reflected component, ANOVA(F(1,286) =348

83.99, P < 0.01). This observed difference could result from difference in signal path distance, which349

was found to reduce prediction accuracy in [9,10]. May et al. reported that as source-receiver distances350

increased, and therefore the signal level relative to the noise floor or room reverberation decreased, the351

accuracy of the GMM predictions decreased. They reported that, averaged over seven reverb times,352

the number of anomalous predictions made by the GMM increased by ∼9% between a source-receiver353

distance of 2 m compared to a source-receiver distance of 1 m. Further causes of error could be due to354

system misalignment at point of measurement or lower signal-to-noise ratios (SNR) occurring due to355

signal absorption at the reflector and larger propagation path (source-reflector-receiver); an average356

SNR of approximately 22.40 dB and 13.14 dB was observed across direct and reflected component357

respectively.358

In Fig. 7 the comparison between direct sound and reflected component for BRIRs captured using359

the KU100 are presented. The boxplots show that for the direct sound a maximum error of 23◦ is360

observed and a median error of 5◦(mean error of 5.15◦), and the reflected component had a maximum361

error of 19◦and median of 7◦(mean error of 7.51◦). Although the maximum and median errors are362

not too dissimilar between the predictions for the direct sound and reflected component, there is a363

significant difference in the distribution of the angular errors, ANOVA(F(1,286) = 18.85, P < 0.01). The364

direct sound DoA predictions are generally more accurate than those for the reflected component. As365

with the findings for the KEMAR, this could be due to difference in signal paths between the direct366

sound and reflected component, system misalignment, or lower SNR; an average SNR of approximately367

22.41 dB and 10.91 dB was observed across direct sound and reflected components respectively.368
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Figure 6. Comparison of angular errors in the neural network direction of arrival predictions for

measurements with the KEMAR 45BC. Top image is a boxplot comparison of the angular error in the

neural network predictions for the direct sound and reflected components. Bottom left is a histogram

showing the error distribution for the direction of arrival predictions of the direct sound, and bottom

right is the error distribution for the direction of arrival predictions of the reflected components. The

black line on the histograms depicts the median angular error.

In Fig. 8 comparison between the two binaural dummy heads is presented for both the direct369

sound and reflected components of the BRIRs. The box plots show that there is no significant difference370

between the medians for the direct sound, and while the maximum error observed for DoA predictions371

with the KU100 is higher than that of the KEMAR there is no significant difference in the angular errors372

between the two binaural dummy heads, ANOVA(F(1,286) = 4.29, P = 0.04). This would suggest that for373

at least the direct sound the NN is generalisable to new data, including that which is produced using374

a different binaural dummy head microphone from that which was used to train the NN. However,375

comparing the angular errors observed in the output of the NN for the reflected component shows376

that the KU100 has a significantly lower median angular error and performs significantly better overall377

when analysing the reflected components captured with the KU100, ANOVA(F(1,286) = 18.23, P <378

0.01). This observation does not match what would be expected given that the NN was trained with379

HRIRs captured using a KEMAR unit, suggesting that the NN should perform better or comparably380

when predicting the DoA for reflected signals captured using another KEMAR over results obtained381

with the KU100.382

Fig. 6-7 compares the accuracy of the NN predictions for direct and reflected components for383

each head. The difference between the direct sound and reflected component is more dissimilar for384

BRIRs captured with the KEMAR than the KU100, possibly suggesting the presence of an external385

factor that is creating ambiguity in the measured binaural cues for the reflected components captured386

using the KEMAR. Furthermore, comparing the interaural cues (Fig. 9-10) between the direct sound387

and reflected components of the BRIR for the KEMAR and KU100 measurements, shows a more388

distinct blurring for the reflected components measured with the KEMAR when compared to those389

measured with the KU100. This could suggest that a source of interference is present in the KEMAR390

measurements that is producing ambiguity in the measured signals’ interaural cues. This could be due391
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to noise present within the system and environment, or misalignment in the measurement system for392

the KEMAR measurements; leading to the production of erroneous reflected signals.393

Figure 7. Comparison of angular errors in the neural network direction of arrival predictions for

measurements with the KU100. Top image is a boxplot comparison of the angular error in the neural

network predictions for the direct sound and reflected components, bottom left is a histogram showing

the error distribution for the direction of arrival predictions of the direct sound, and bottom right is the

error distribution for the direction of arrival predictions of the reflected components. The black line on

the histograms depicts the median angular error.
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Figure 8. Boxplot comparison of angular errors in the neural network direction of arrival predictions

between the KEMAR and KU100 dummy heads for direct sound (top) and reflected (bottom)

components

Figure 9. Comparison of interaural cross correlation across direction of arrival for the KEMAR

measured Direct Sound (top left), KEMAR measured Reflection (bottom left), KU100 measured Direct

Sound (top right), and KU100 measured Reflection (bottom right)
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Figure 10. Comparison of interaural level difference across direction of arrival for the KEMAR

measured Direct Sound (top left), KEMAR measured Reflection (bottom left), KU100 measured Direct

Sound (top right), and KU100 measured Reflection (bottom right)

Figure 11. Plots of neural network predicted direction of arrival (dotted black line) vs expected direction

of arrival (solid line). Top left plot is for the KEMAR direct sound, top right plot is for the KU100 direct

sound, bottom left is for the KEMAR reflection, and bottom right is for the KU100 reflections.

By investigating the neural networks predicted direction of arrival compared against the expected,394

insight can be gained into any patterns occurring in the NN output predictions. Additionally it will395

show how capable the NN is at predicting the DoA for signals with a DoA not represented within396
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the training data.In Fig. 11 the predicted direction of arrival by the neural network (dashed line)397

is compared against the expected direction of arrival (solid line), the plot shows the comparison398

for the KEMAR direct sound measurements predictions (top left), KEMAR reflection measurements399

predictions (bottom left), KU100 direct sound measurements predictions (top right), and KU100400

reflection measurements predictions (bottom right). Generally, the direct sound measurements401

predictions are mapped to the closest matching DoA represented in the training database, suggesting402

that the NN is incapable of making prediction for untrained directions of arrival. In the case of the403

reflections, the NN predictions tend to plateau over a larger range of expected azimuth DoA. This404

observation further shows the impact of the blurring of the interaural cues (Fig. 9-10) producing405

regions of ambiguous cues in the reflection measurements, causing the NN to produces regions of the406

same DoA prediction.407

4. Discussion408

The results presented in section 3 show that there is no significant difference in the accuracy409

of the NN when analysing the direct sound of BRIRs captured with both the KEMAR 45BC and410

the KU100. However, the accuracy of the NN is significantly reduced when analysing the reflected411

component of the BRIRs, with the NN performing better at predicting the DoA of reflected components412

measured with the KU100. The reduction in performance would be expected between the direct413

sound and reflected component, due to the lower signal-to-noise ratio that would be observed for the414

reflected component. It is of interest that reflections measured with the KU100 are more accurately415

localised than those measured with the KEMAR 45BC, this could be due to a greater degree of system416

misalignment in the KEMAR 45BC measurements that was not present in the KU100 measurements.417

An additional difference that could lead to more accurate predictions being made for the KU100 could418

be the diffuse-field flat frequency response of the KU100, which could produce more consistent spectral419

cues for the reflected component (as seen in Fig: 10), leading to more accurate direction of arrival420

predictions by the neural network.421

Analysis over different degrees of measurement orientation rotations (Table 1) showed that422

while the number of predictions within ±5◦ varies little between degrees of rotation, the maximum423

error in the neural networks prediction decreases as angle of rotation increases. Larger degrees of424

rotation would produce greater differences in interaural cues between the rotated and original signal,425

allowing the neural network to produce more accurate predictions under noisier conditions where the426

interaural cues become blurred. The use of additional measurement orientations decreases the number427

of front-back confusions, with generally larger degrees of receiver rotations producing fewer front-back428

hemisphere errors, except when using ±30◦. Using larger degrees of rotation has the additional benefit429

of reducing the maximum predictions errors made by the neural network, this could be due to the430

greater rotational mobility allowing signals at the rear of the listener to be focused more in the frontal431

hemisphere; producing more accurate direction of arrival predictions. It is interesting that there is a432

greater percentage of front-back confusions for the KEMAR 45BC compared to the KU100, this could433

be due to differences in system alignment causing positions close to 90◦and 270◦(source facing the left434

or right ear) to originate from the opposite hemisphere.435

The lack of significant difference between the direct sounds measured with the two binaural436

dummy heads agrees with the findings of May et al. [11], who found that a GMM trained with a437

MCT dataset was able to localise sounds captured with two different binaural dummy heads. The438

notable difference between the KEMAR 45BC and KU100 include: morphological differences of the439

head and ears between binaural dummy head microphones, the KEMAR 45BC has a torso, the KU100’s440

microphones have a flat diffuse-field frequency response, and material used for the dummy head441

microphones.442

The overall accuracy of the method presented in this paper is, however, lower than that found443

in [11]. This could be a result of the type of signals being analysed, which, in this study, are 3.8ms444

long impulsive signals as opposed to longer speech samples. Compared to more recent NN based445
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algorithms [15] the proposed algorithm under performs compared to reported findings of 83.8% – 100%446

accuracy across different test scenarios. However, their analyses only considered signals in the frontal447

hemisphere around the head, and considered longer audio samples for the localisation problem.448

Comparing the proposed method to that presented in [12] shows that the proposed method449

achieves lower relative errors for the direct sound and reflections measured with both binaural450

dummy head microphones, compared to the 24.0% reported for real test sources using a multi-layered451

perceptron in [12].452

The average errors reported in this paper are lower than that presented in [4], which reported453

average errors in the range of 28.7◦ and 54.4◦ when analysing the components of measured BRIRs.454

However, the results presented in [4] considered reflections with reflection orders greater than first,455

and therefore further analyses of the proposed NNs performance with full BRIRs is required for more456

direct comparisons to be made.457

Future work will focus on improving the accuracy of the model for azimuth DoA estimation,458

using measured binaural room impulse responses to assess the accuracy of the neural network as459

reflection order and propagation path distance increases. The proposed model will then be extended460

on to consider estimation of elevation DoA, providing complete directional analysis of the binaural461

room impulse responses. The aim being for the final method to be integrated within a geometry462

inference and reflection backpropagation algorithm, allowing for in-depth analysis of the acoustics463

of a room. However, this will require higher accuracy in the DoA predictions for the reflections.464

Further avenues of research to improve the robustness of the algorithm could include: the use of noise465

reduction techniques to ideally reduce the ambiguity in the binaural cues, increasing the size of the466

training database used to train the neural network, investigation into using different representations467

of interaural cues and how they are extracted from the signals, using reflections to train the NN with468

in addition to the HRIRs, or the use of a different machine learning classifier.469

5. Conclusions470

The aim of this study was to investigate the application of neural networks in the spatial analysis471

of binaural room impulse responses. The neural network was tested using binaural room impulse472

responses captured using two different binaural dummy heads. The neural network was shown to have473

no significant difference in accuracy when analysing the direct sound of the binaural room impulse474

response across the two binaural dummy heads, with 64.58% and 68.06% of the predictions being475

within ±5◦ of the expected values for KEMAR and the KU100 respectively. However, upon presenting476

the NN with reflected components for analysis, the accuracy of the predictions was significantly477

reduced. The NN also generally produces more accurate results for reflected components of the478

binaural room impulse response captured with the KU100. Comparisons of the interaural cues for the479

direct sound and reflected components show a distinct blurring in the cues for the reflected components480

measured with KEMAR, which is present to a lesser extent for the KU100. This blurring could be481

a product of lower signal-to-noise ratios or misalignment in the measurement systems, leading to482

greater ambiguity in the measurements. The results presented in this paper show the potential of using483

this technique as a tool for analysing binaural room impulse responses, while indicating that further484

work is required to improve the robustness of the algorithm for analysing reflections and signals with485

lower signal-to-noise ratios. Further development of this algorithm will investigate application of the486

neural network for elevation direction of arrival analysis, and integration of the method with geometry487

inference and reflection back propagation algorithms, allowing for analysis of a room’s geometry and488

its affect on sounds played within it.489
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The following abbreviations are used in this manuscript:497
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DoA Direction of Arrival

ITD Interaural Time Difference

ILD Interaural Level Difference

HRIR Head-related Impulse Responses

NN Neural Network

DNN Deep Neural Networks

GMM Gaussian Mixture Model

IACC Interaural Cross Correlation

FFT Fast Fourier Transform

MCT Multi-conditional Training

ADAM Adaptive Moment Estimation

BRIR Binaural Room Impulse Responses

SNR Signal-to-noise ratio

ANOVA Analysis of Variance
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