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The initial stage of language comprehension is a multi-label

classification problem. Listeners or readers, presentedwith

an utterance, need to discriminate between the intended

words and the tens of thousands of other words they know.

We propose to address this problem by pairing a network

trainedwith the learning rule of Rescorla andWagner (1972)

with a second network trained independently with the learn-

ing rule ofWidrow andHoff (1960). The first network has

to recover from sublexical input features themeanings en-

coded in the language signal, resulting in a vector of acti-

vations over the lexicon. The second network takes this

vector as input and further reduces uncertainty about the

intendedmessage. Classification performance for a lexicon

with 52,000 entries is good. The model also correctly pre-

dicts several aspects of human language comprehension. By

rejecting the traditional linguistic assumption that language

is a (de)compositional system, and by instead espousing a

discriminative approach (Ramscar, 2013), a more parsimo-

nious yet highly effective functional characterization of the

initial stage of language comprehension is obtained.
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2 SERING ET AL.

1 | INTRODUCTION

Table 1 presents 10 simple sentences. When reading these sentences, the letters and their combinations succeed

in bringing to the fore a small number of meanings while dismissing thousands of others as irrelevant. Each of the

sentences encodes a small number of a much larger set of meanings. Therefore the sentences present the reader with a

multi-label classification problem.

In this paper we model this problem as follows. First, we represent the orthographic input by means of letter

trigrams. For the first sentence, these are #Ma Mar ary ry# y#p #pa pas ass sse sed ed# d#a #aw awa way

ay# (the # symbol represents the space character). Letter trigrams provide amuch richer and denser representation of

the visual input than do orthographic words. For the data in Table 1, there are n = 104 distinct letter trigrams, to which

we refer as cues.

The second column lists the lexical “meanings”, or more precisely, the lexomes, that are expressed in the sentences.

These lexomes are the targets of multi-label classification. Lexomes are pointers to locations in a high-dimensional

semantic vector space (defined below). Note that past-tense word forms such as passed (regular) and ate (irregular)

are coupledwith the lexomes PASS and EAT as well as with the lexome for the past tense, PAST. Furthermore, the two

word forms apple and pie are coupled with one lexome APPLEPIE, and the three expressions with the word forms kicked

the bucket, passed away, and died, are all linked with the same lexome DIE. As will become clear below, lexomes are

placeholders for (or pointers to) meanings that themselves are formally represented in a vector space defined by a

second network.

TABLE 1 Sentences, lexomes in themessage, and frequency of occurrence (F ). The total number of learning events

is k = 771.

Sentence Lexomes in themessage F

1 Mary passed away MARY DIE PAST 40

2 Bill kicked the ball BILL KICK PAST DEF BALL 100

3 John kicked the ball away JOHN KICK PAST DEF BALL AWAY 120

4 Mary died MARY DIE PAST 300

5 Mary bought clothes MARY BUY PAST CLOTHES

for the ball FOR DANCEPARTY 20

6 Ann bought a ball ANN BUY PAST INDEF BALL 45

7 John filled the bucket JOHN FILL PAST DEF BUCKET 100

8 John kicked the bucket JOHN DIE PAST 10

9 Bill ate the apple pie BILL EAT DEF APPLEPIE 3

10 Ann tasted an apple ANN TASTE PAST INDEF APPLE 33

Is it possible to discriminate between the targeted “meanings” (lexomes) given the letter trigrams in the sentences?

Wewill showthat considerableheadwaycanbemadebyanerror-driven incrementalmulti-label classifier that comprises

two simple networks, each with only an input layer and an output layer. In what follows, we first provide a formal

definition of the algorithm, and illustrate it for the sentences in Table 1, our working example. We then turn to amore

realistic example inwhich lexomes targeted in around amillion of utterances have to be discriminated from some52,000

other lexomes.
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2 | AN ALGORITHM FOR MULTI-LABEL CLASSIFICATION

The problem of incremental learning of multi-label classification is defined by a sequence of events at which a set of

features (henceforth cues) are present and generate predictions about classes (henceforth outcomes), only some of

which are actually present in the learning event. Themismatch between predicted outcomes and the outcomes which

are actually present in a learning event provides the error driving learning.

From a total of n distinct cues andm possible outcomes, only small subsets will be present in a given learning event.

Let k denote the number of learning events (learning events may repeat, cf. goodmorning and tickets please). The learning

events are presented in a specific order, which has an influence on the actual estimates of the algorithm. This is a desired

property and built in on purpose as things that have been experienced in the near past should leave a stronger impact

on the estimates than those which occurred a long time ago.

The classification problem can be phrased as learning the association between the cues and the outcomes. Here we

restrict these associations to be linear and additive between the different cues. Equation 1 depicts this linear association

in matrix notation. The target labels in the event are represented by t, a binary vector of zeros and ones, of length

m . Each dimension in this vector corresponds to one unique outcome, such that t is 1 in all those dimensions where

outcome lexomes are present in the event and 0 otherwise. The cues are represented by a binary vector c of length n

that is 1 for the cues present in the event and 0 otherwise. Each dimension in c corresponds to one unique cue. We refer

toW as theweightmatrix as it linearly transforms, as far as possible, the cue vector to the target or outcome vector.

ThereforeW has the dimensionsm × n . The weight matrix is not determined a priori but has to be estimated:

t = Wc. (1)

For any specific learning event, equation (1) usually can be solved perfectly, if we would allow for a differentW for each

learning event. Usually, one either demands to have a fixedW over all learning events and estimates the bestW under

this constraint, or one implements a learning rule which allows to updateW deterministically from learning event to

learning event. For themodeling of human lexical learning, stepwise updating is preferred.

One of the learning rules that shows a goodmatch to human behaviour is the learning rule suggested by Rescorla

andWagner (1972). It implements a two-step approach where the learner first predicts the outcomes with the current

weights and then in a second step updates the efferent weights from the cues that appeared in the learning event

according to the error or mismatch of the predictions.

Predictions are calculated by summing over all the association weights between present cues and all known

outcomes. The resulting activation vector a is of lengthm , with dimensions corresponding to the different outcomes:

a = Wc. (2)

The real-valued activation vector a can be compared to the actual outcomes in the binary target vector t. The difference

between these two is the error. The algorithm updates the weights in the weight matrix representing the association

strengths between the cues present in the input and a given outcome j with a proportion η of the error:

∆wi j =





0 if cue ci is absent

η(t j − aj ) if cue ci is present.
(3)

Calculating the elementwise difference in equation (3) can be summarized in matrix notation because of the binary



4 SERING ET AL.

nature of the cue vector c. The update∆W can be calculates as:

∆W = η(t − a)cT , (4)

Note that we use amatrix product between the difference vector (t − a) and the cue vector cT , therefore the update

∆W is am × n matrix. The actual updating from learning event i − 1 to learning event i requires adding the update to the

weight matrix:

Wi
= Wi−1

+ ∆W. (5)

The learning rule described by Rescorla andWagner includes specific parameters αi that relax the asssumption that all

cues are equally salient, and parameters βj that weight the error differently depending onwhether a given outcome is

present or absent. The learning rate η is identical to α × β assuming all alphas are the same (α = αi ) and both betas are

the same (β = β1 = β2). As a consequence, ourmodel has η as its only free parameter. In practice, η itself is not fitted,

but is set to 0.01 or 0.001 depending on the number of cues n and outcomesm and the number of learning events k .

Rescorla-Wagner learning is independent in its outcomes. This is beneficial computationally as we can calculate

the rows of the weight matrix in parallel. It is also convenient for actual modeling, as it allows us to consider subsets of

outcomes. Given the same cues and the same learning events, the model will generate exactly the same predictions

for a single outcome regardless of what other outcomes are included in the computation. As the number of outcomes

in large text corpora can be huge (hundreds of thousands, or evenmillions of different outcomes can be at issue), it is

convenient to be able to zoom in on subsets of outcomes without affecting the results. The same is not true for the

cues. If we choose to select a subset of cues, in general this will change all weights and results obtained will depend

on the choice of this subset. On the downside, the independence of the outcomes implies that the network is blind to

commonalities between outcomes. Because it is completely agnostic about the number of outcomes in the world, it

cannot benefit from any knowledge pertaining to the distribution of outcomes.

In this study, we propose a second network, which is stacked on the first network, but is trained independently. This

second network takes the activations a of lengthm of the first network as input andmaps these linearly on the expected

outcomes t. This linear mapping can be expressed as a decisionmatrixD of dimensionsm bym .

t = Da. (6)

We apply the same learning algorithm as used for the first network, with the notable difference that the cues are no

longer associatedwith a binary vector, but with the real-valued vector of activations produced on the output layer of

the first network. As before, we first calculate the predictions p over the outcomes:

p = Da. (7)

The error in the second network is the difference between the binary target vector t and the real valued prediction

vector pweighted by its activation a. The update of the decisionmatrix ´D, with learning rate ηD is shown in equation (8)

and has the same form as equation (4) in the first network. The notable difference is that now the error is not filtered

with a binary vector but weighted by the real valued vector a.

∆D = ηD (t − p) · aT (8)
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The update ´D from learning event i − 1 to learning event i is added to the decisionmatrix:

Di
= Di−1

+ ∆D. (9)

This way of training the network is equivalent to the learning rule ofWidrow and Hoff (1960). Thus, a learning rule

from physics and engineering, and an independently developed learning rule from animal learning in psychology, are

essentially the same and differ only in that the latter takes a binary-valued input vector and the former a real-valued

input vector. As the number of cues in a learning event tends to be quite small compared to the total number of cues,

the updating of weights of the first network is effectively restricted to the efferent weights from the few cues that are

present. Updating the second network involves adjusting all weights, which renders the training of the second network

computationally muchmore expensive.

The weight matrixW is initialized with zeros and the decisionmatrixD is initialized with ones on themain diagonal

elements and is set to zero elsewhere. InitializingDwith the identity matrix enables this network to take what the first

network has learned as its starting point. It is worth noting that the target vector t and the cue vector c are usually

sparse. The independence of outcomes in the first network depends on the initialisation of theweight matrixWwith

zeros. For any other initialisation the independence does not hold true.

As learning ofD depends on the actual values in the weight matrixW, when training the two networks we have

three options. The first option is to run through all learning events and learnW and then to run through all the learning

events again to learnDwith the fixedweight matrixW resulting from the first run:

∆Di
= (ti −Di−1Wk ci ) · (Wk ci )T . (10)

The second option is to use an interleaved approach where for each learning event we first update the weight matrixW

and thenwith this updatedweight matrix update the decisionmatrixD:

∆Di
= (ti −Di−1Wi ci ) · (Wi ci )T . (11)

As a third option, we can update the decisionmatrix and the weight matrix interleaved, but always using the weight

matrix of the preceding event:

∆Di
= (ti −Di−1Wi−1ci ) · (Wi−1ci )T . (12)

Cognitively, only the second and third options are realistic as models of incremental learning.

Note that the two networks use the error independently: the target vector t appears both in equation (4) and in

equation (8). There is no backpropagation of error across the two networks.

2.1 | Computational shortcuts for large data sets

The above algorithm works well for small numbers of cues, outcomes and learning events. For the first network an

efficient implementation exists which scales up to 100,000 cues and 100,000 outcomes and several millions to billions

of learning events. The implementation is written in Python and implements the described incremental learning of the

weight matrixW and is available as free software at https://github.com/quantling/pyndl (Sering et al., 2018). The

implementation heavily exploits the fact that the cue vector and the outcome vector are binary vectors with only a few
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cues present in each learning event.

For the decisionmatrixD, we do not know of any efficient algorithm that scales up to 50,000 to 100,000 outcomes.

Work is in progress to develop an efficient implementation, and the possibility of using the Kalman filter (Kalman, 1960)

instead of theWidrow-Hoff learning rule is simultaneously being explored. For the time being, we therefore fall back on

a regression like approximation of the decisionmatrix. This approximation implements option 1with equation (10). In a

first step, we calculate the final weights matrixWend by going once through all the learning events with the efficient

algorithm for Rescorla-Wagner learning. In the second step, we stack all the cue vectors column-wise to an n × k

cue matrix C and left multiply the cue matrix with the final weight matrixWend. This step effectively calculates the

activations of all the learning events with respect to the final weight matrix. In the third step, we need to solve

T = DWendC (13)

for the decisionmatrixD. Here the target matrix T denotes the column-wise stackedm × k matrix consisting of all the

target vectors.

As the number of the learning events usually is much larger than the number of outcomes, i.e.,m ≪ k , when dealing

withmany learning events we do not want to solve equation (13) by calculating the generalized inverse of them × k

activationmatrixA = WendC). Calculations are simplified by first right multiplying with the transpose of the activation

matrixAT and then calculating the inverse of them ×m matrix (AAT ):

T = DA

TAT
= DAAT

TAT (AAT )−1 = DAAT (AAT )−1

TAT (AAT )−1 = D. (14)

Note that although the cue matrix C and the target matrix T are sparse binary matrices, the activation matrix A is

dense. Furthermore, (AAT ) for largem usually is nearly regular and therefore its inverse has to be calculated with the

generalized inverse or similar algorithms ignoring eigenvalues below a predefined cutoff.

2.2 | Evaluatingmodel performance

We can base the prediction of the outcomes (or class labels) for each event, given the cues present in that event, in two

ways. Baseline performance is assessedwith the first network only by using the activation a to predict outcomes. The

performance of the two networks jointly is calculated from the prediction vector p. The closer the value for an outcome

in the activation or prediction vector is to 1, the more the system believes that this outcome should be classified as

present in the event. Concrete predictions can be generated in several ways.

A naive but simple way of gauging classification performance is to calculate the lowest empirical rank for the set of

outcomes known to be encoded in an event, and to compare this rank to the cardinality of the set of outcomes present

in the learning event. Ideally, the lowest empirical rank is identical to the cardinality. The more the two diverge, the

more intruders are present.

As an example, the sentence “everyone was quiet” has the outcomes BE, QUIET and EVERYONE. The predictions of the

models are BE, QUIET and EVERYONE, therefore no intruders are present and the lowest empirical rank is 3 which is the

same as the cardinality of the three true outcomes. In contrary the sentence “not so smart at all” has the outcomes SO,
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NOT, ALL, AT and SMART but the worst rank of the predictions of one of these true outcomes is at rank 10 compared

to the cardinality of 5. This is due to the presence of five intruders, namely BE, HEART, PART, SMALL and START. These

examples show that in order to calculate the number of intruders it is necessary to know the true outcomes in advance.

More in general, it is desirable to predict outcomes without knowledge of what outcomes are actually encoded in

the language input. Under this constraint, the simplest option is to set a fixed cutoff value so that every outcomewith

an activation or prediction that exceeds this cutoff value is classified as present. This option has the property that the

classification of an outcome as present or absent is independent of the activation or prediction values of all the other

outcomes. As learning events may have very different numbers of cues, due to very different sentence lengths, this

method has the risk of incorrectly accepting as present more words for shorter sentences.

Another option is to sort the activation or prediction values by magnitude in decreasing order and to inspect

the differences between consecutive values. A marked, abrupt drop in values, followed by a sequence of gradually

and slowly diminishing values, if present, could be used as cutoff point, with only outcomes with values higher than

this cutoff being classified as present. Another option is to generate an expected rank distribution of activations or

predictions under random cue sampling for each given number of cues. For example, one could generate an expected

rank distribution of activations for 10 cues by uniformly sampling 10 cues out of all possible cues. The 10 sampled cues

are used to calculate the activations of all outcomes, which are then ordered bymagnitude. This gives us one sample

of a rank distribution under random cue sampling. If we generate 10,000 of such sample rank distributions, we can

calculate themean and the standard error of the activations at each rank. We call themean activations at each rank the

expected by-rank activation distribution. By comparing the observed activation at a given rankwith its by-rankmean

activation distribution for the event with the expected rank distribution, all outcomes with empirical scores higher than

the expected rank distribution are classified as present.

Let {T }e denote the set of true outcomes for event e , and let {P }e denote the set of predicted outcomes. For our

data, the number of true outcomes | {T }e | is small compared to the total number of outcomesm . As a consequence,

the number of correct rejections, i.e., the outcomes correctly classified as not being present, are not of interest. We

consider here four performancemetrics. The Hamming loss for an event e is the fraction of wrong labels, false positives

fe andmissesme , to the total number of outcomesm in themodel:

Hamming =
fe +me

m
(15)

A value closer to zero is better and a value of 0means a perfect match. As for our datam is large, values of this statistic

will all be close to zero. The Jaccard index is defined as the number of correctly predicted outcomes divided by the

cardinality of the union of predicted and true labels:

Jaccard =
| {T } ∩ {P } |

| {T } ∪ {P } |
. (16)

Precision is the number of true outcomes within the predicted outcomes. If no outcome is predicted and true outcomes

exist, the precision is assumed to be zero:

precision =
| {T } ∩ {P } |

| {P } |
. (17)

Recall is the proportion of correctly predicted labels to the number of all true labels:

recall =
| {T } ∩ {P } |

| {T } |
. (18)
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TABLE 2 Classification performance according to four metrics, for the small working example (left) and the TASA

corpus (right), using activation (a) or prediction values (p for incremental learning, available only for the working

example, and p′ using equation (14) to estimateD) with a cutoff value of 0.4. For the TASA corpus, values are reported

based on the last 1000 learning events and the first 1000 learning events, in this order.

metric working example TASA corpus

a p p′ a p′

Hamming loss 0.00065 0.05584 0.00000 0.0000482 0.0000489

0.0000395 0.0000354

Jaccard index 0.99676 0.74017 1.00000 0.74725 0.76113

0.78120 0.80961

Precision 0.99676 0.91616 1.00000 0.91168 0.90778

0.91819 0.92320

Recall 1.00000 0.81321 1.00000 0.78142 0.80414

0.82036 0.84995

As the number of true labels differs between the different events, we first calculate themetrics for the individual events

and then average over events.

3 | APPLICATION

3.1 | Working example

Our working example with 10 different sentences (see Table 1) comprises 771 events, 104 different cues and 20

different outcomes. On average each of the 771 events has 16.3 cues and 4.24 outcomes. The average number of

outcomes (labels) is known as the label cardinality. The label density is the average number of outcomes divided by the

total number of different outcomes. For the present example, the label density is 0.212.

The left part of Table 2 presents the values of the four metrics for classification. Themetrics are calculated by using

a cutoff value of 0.4. Performance is good according to all metrics, with classification based ona slightly outperforming

the prediction vector p obtained with incremental learning. Classification is completely error-free, however, when

theweight matrixW end of the first network is used to calculateA = W endC . Application of equation (14) yields the

estimate ofD, fromwhich the prediction vector p′ is obtained straightforwardly.

Figure 1 illustrates how learning develops in the two networks for sentences 8 and 9 in Table 1, for one random

order of the 771 learning events. The left panel shows the activations according to the Rescorla-Wagner network. Solid

lines represent key lexomes from sentence 8 in Table 1: KICK and BUCKET for the unintended literal reading and DIE for

the intended idiomatic reading. Dashed lines represent the competitors APPLE and APPLEPIE in sentence 9. The serrated

patterns of the learning curves in the left and center panels reflect the learning and unlearning that unfolds as outcomes

competing for the same cues are encountered. In the initial stage of learning, the lexomes DIE and APPLEPIE encoded in

the utterances are not recovered, instead, the model produces the false positives KICK, BUCKET, and APPLE). By the

end of learning, the proper lexomes have higher activation, but the ‘literal’ lexomes remain present with relatively high

activations. These kinds of developmental changes are well-documented in the child language acquisition literature,
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see, e.g., Ramscar et al. (2013), for detailed discussion andmodeling.
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F IGURE 1 Activations and predictions for the selected lexomes KICK, BUCKET and DIE in the learning event of “John

kicked the bucket” (sentence 8) and for the selected lexomes APPLE and APPLEPIE in the learning event of “Bill ate the

apple pie” (sentence 9) in Table 1, using only the Rescorla-Wagner network (left), and the coupled networks (center and

right). For the right panel, frequencies were increased tenfold to estimate the asymptotic behavior.

The center panel of Figure 1 shows the predictions generated by the second network, trained incrementally

according to equation (11). Learning does not proceed as quickly as in the first network: by the end of training, KICK and

BUCKET are still preferred above DIE, and APPLE receivesmore support than APPLEPIE. Themodel has learned that an

apple pie is not an apple, and that kick the bucket means die. When the frequencies of the learning events are increased

ten-fold, as shown in the right panel, the literal lexomes are properly suppressed, and predictions becomemore similar

to those of the non-incremental solution using equation (14).

An important property of this approach to language comprehension is that the correct lexomes are selectedwithout

any worries about regular or irregular verbs, literal versus idiomatic expressions, finding boundaries betweenwords,

decomposingwords into parts, or disambiguating homographs. Given the assumption that understanding drives the

recalibration of weights, the rich information available in the combinatorics of sublexical cues and lexomes appears

sufficient for multi-label classification to be effective. This conclusion raises the question of whether this approach to

language comprehension scales up to non-trivially small data sets.

3.2 | A52kmulti-label classification problem

To assess whether our approach scales up to real data, we trained themodel on the TASA corpus (Zeno et al., 1995), a

collection of texts comprising 10,807,146words representing 109,338 string types. Lemmatizationwas carried out

with TreeTagger (http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/, which distinguished 90,339

lemmata, of which 37,938 occurred once. To keep computations tractable, themodel was trained on all words occurring

at least twice and 351 hapax legomena that occurred in a precompiled list of words. Hapax legomena that were

not included were replaced by the dummyword HAPAX, resulting in a total of 52,402 lexomes. Learning events were

sentences in the TASA corpus. Sequences of more than 8words were split at the next available occurrence of and or or.

This resulted in a total of 993,080 learning events.

The classification problem is defined by the TASA corpus thus comprises 993,080 events, 11,725 cues, and 52,402

outcomes. Evaluation of themodel trained to discriminate between all outcomes was first carried out on the last 1000
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F IGURE 2 Deciles 0–0.9 and the 0.95 percentile for the number of intruders (left) and the ratio of intruders to true

outcomes (right) for the one-network and the two-networkmodel evaluated on the first 1000 learning events in the

TASA corpus. The three largest numbers of intruders for the one-networkmodel were 2070, 52333, and 52385. For the

two-networkmodel the three largest numbers of intruders aremuch smaller (328, 412, and 1275).

learning events. For these learning events, the average number of cues was 47.1, the label cardinality was 10.1, and

the label density 0.000193. The right half of Table 2 shows good classification performance, with a lowHamming loss,

precision around 0.9 and recall around 0.8. Performance based on activations and performance based on predictions,

using the computational shortcut in equation (14), is very similar. The even rows of Table 2 list the same performance

metrics also for the first 1000 learning events, learning events that were subsequently followed by a 992,080 further

learning events. Results were nearly identical. (As calculation of themetrics for a single learning event requires about 12

seconds, and to keep the carbon footprint of this study within bounds, we did not evaluate performance for all 993,080

learning events.)

It is also informative to assess model performance from the perspective of the number of intruders, i.e., lexical

candidates that have activation or prediction values that are higher than those of at least one true outcome. The

left panel of Figure 2 shows that for around 40% of the learning events, there are no intruders at all. More than 100

intruders (out of 52k possible intruders) are present only for 28 learning events. The right panel presents the ratio of

intruders to true outcomes. It is only for deciles > 0.8 that the number of intruders is larger than the number of true

outcomes in the learning event. Examples of intruders are DOWN for the sentence “The aleuts were housed in abandoned

rundown gold mines or fish canneries”, and FIELD and SUCCESS for the sentence “He is an ecologist who studied succession in

abandoned cornfields”. The intruders are high-frequency words that are part of less-frequent complex words.

We have evaluatedmodel performance on samples of the learning events onwhich themodel was trained. Cross-

validation is possible, but a complicating factor is that decisions have to bemade concerning out-of-vocabulary words,

i.e., words in out-of-bag samples that are not available to the model during learning. Such words can be discarded

during evaluation; experiences with a model for auditory comprehension using only the first weight matrix suggest

good generalization performance under this form of cross-validation (Arnold et al., 2017). A further complication that

arises when evaluatingmodel performance is that a fewwords are re-used time and again, while manywords occur very

infrequently. Since words that are encountered rarely have little chance of being learned well, the misses will tend to be

low-frequency words and the false alarms orthographically similar higher-frequency words.

The performance of themodel does not depend on ‘memorizing’ individual learning events. Instead, themodel is
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TABLE 3 Performancemeasures for 8866words presented in isolation to themodel.

hamming jaccard precision recall median number of intruders

activations 0.000023 0.0949 0.0949 0.0959 13

predictions 0.000023 0.1825 0.3361 0.1868 7

productive in the sense that it can deal with novel utterances, provided the lexomes have been encountered during

training. By way of illustration, consider the sentence “After playing the boys and girls went home to eat”, which does not

occur in the TASA corpus. There are no intruders for this sentence: The encoded lexomes have the highest activations

of all 52-k lexomes. Given the 0.4 threshold used above, EAT is a miss, but its prediction value is, with 0.397, very close

to the threshold. Furthermore, the next most-activated competitor is EACH, which, however, hasmuch lower support

(0.155). Thus, at least for this example, the model is highly successful in discriminating between the intended and

unintended lexomes.

The combined networks perform slightly better in terms of recall and the Jaccard index. For precision andHamming

loss, results are ambiguous. This raises the question of whether the second network is actually necessary. Interestingly,

the second network turns out to be a true enrichment to ourmodel, for two reasons. The first reason is that whenwords

are presented in isolation to the network, without the supporting cues from the other words in the context, the second

network is essential.

Table 3 summarizes the performance for 8866words presented in isolation to themodel. Precision and recall are

almost twice as high when based on predictions instead of activations, and themedian number of intruders is reduced

from 13 to 7.

For a sample of 100 words that have at least one intruder, we calculated activations and predictions as well as

numbers of intruders when presented in isolation and when presented together with other words in a (randomly

selected) utterances containing the targeted word. The sample was create by randomly selecting 10 words out of

the groups of 1, 2, . . ., through 9 intruders and by selecting 10words out of all isolatedwords that hadmore than 10

intruders when presented in isolation. Intruders for the presentationwithin the utterance were only counted if they

had a rank lower than the target word. Figure 3 shows the distribution of activation and prediction values (left) and the

number of intruders (right). Distributions of activation values are shifted down compared to distributions of prediction

values, and utterances outperform single-word presentation. This indicates that the cues of other words are co-learned

with the cues of the target word, strengthening its discriminatibility. The right panel of Figure 3 shows that the number

of intrusions tends to be higher for activations than for predictions, and that there aremore intruders for utterances

than for single-word presentation. Given the larger number of words in utterances, this is unsurprising.

A second reason for maintaining the second network is that it turns out to be useful for defining high-dimensional

spaces in which words that are perceived to bemore similar in meaning tend to bemore strongly correlated.

Given a set of k unique learning events andm unique outcomes, anm × k matrixP defines, for each event, the

predictions p for all m outcomes. As the number of learning events in the TASA corpus is close to a million, it was

necessary to reduce the number of learning events to keep computations tractable. We therefore randomly selected

two learning events for the same 8866wordsmentioned above, resulting in a total of 17,152 learning events (in 580

cases there was overlap with two ormore lexomes in the same event). The total number of outcomes in this subset of

learning events was 19,251. We trained the first network on the TASA data as described above, and then used themore

restricted subset to calculate thematricesA (19,251 lexomes × 17,152 learning events),D (19,251 × 19,251 lexomes)

and P (19,251 lexomes × 17,152 events).
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F IGURE 3 Values of activations c.q. predictions (left) and number of intruders+1 (right, log-scale) cross-classified by

presentation as single words versus presentation in utterances. Values increase for prediction for utterances, but due

tomultiple words being present in utterances, the number of intruders also increases.

P defines a semantic vector space (Landauer and Dumais, 1997): correlations between the row vectors of P predict

the perceived semantic similarity betweenwords. We illustrate this for the semantic similarity ratings collected byBruni

et al. (2014). A generalized additivemodel (Wood 2017, for the evaluation of significance of smooth seeWood 2012)

fitted to the human similarity ratings for 2369word pairs, using as predictor the correlations of the corresponding row

vectors of P, yields the partial effect shown in Figure 4. For 90% of the data points, a nearly linear relation is observed,

with larger positive correlations predicting higher reported semantic similarity.

4 | CONCLUDING REMARKS

Multi-label classification is a hard problem, not only for statistics, but also for humans. For instance, in auditory word

recognition, isolatedwords taken from conversational speech have recognition rates between 20% and 40% (Arnold

et al., 2017). In the visual lexical decision task, undergraduate students perform near chance on the lower-frequency

words (Baayen et al., 2017). From this perspective, themodel’s performance, with training on amere 10million words,

is remarkably successful. Given that in lexical decision tasks withmany items, undergraduate students classify some

20% of the words presented to them as nonwords, and given that in single-word presentation the eighth decile is at 47

intruders, we speculate that in this task smaller numbers of intruders are tolerated, but larger numbers of intruders

lead to false rejections.

Given that the model presents a simplified perspective on the first stage of comprehension — understanding

the words — several of its features are remarkable. First, the traditional linguistic assumption that language is a

(de)compositional system is replaced by a perspective in which the language signal is a code that discriminates between

possiblemessages (Ramscar, 2013; Shannon, 1956). Here, we have shown that sublexical features of surroundingwords

enhance discrimination.

Second, the model is parsimonious in its parameters. For each network, there is only one free parameter, the

learning rate η. We used the same learning rate for both networks, thus, the weightsW andD are determined almost

completely by the data. It is worth noting that althoughW andD can be very large, most of the weights are very close to
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F IGURE 4 Partial effect in a generalized additive model (gam) of the correlations between pairs of row vectors of P

as predictors of human semantic similarity ratings for the corresponding pairs of words. The red vertical line indicates

the 90% percentile. The gamwas estimatedwith themgcv package for Rmodeling both themean and variance as

nonlinear functions of the correlations using the gaulss family (edf = 7.485, ref.df = 8.386, χ2
= 1278.7, p < 0.0001).

zero. For instance, forW, only 4496weights exceed 0.1 (0.000000073% of the total number of weights), and only 191

weights are greater than 0.5. Arnold et al. (2017) show for auditory comprehension thatW can be pruned down to a

fraction of the original weights without noticeable loss of accuracy.

Third, the classifier implements a three-layer network that differs from backpropagation networks in that there is

direct error injection twice, once forW using the Rescorla-Wagner equations, and once forD, usingWidrow-Hoff (or

the generalized inverse). The secondmatrix makes classification robust whenwords are presented in isolation, without

the sentential context in which they are normally embedded.

Fourth, more sophisticated features than letter trigrams can be used as cues, such as the frequency band summary

features used by Arnold et al. (2017) for modeling auditory word recognition, and for reading the histogram of oriented

gradients feature descriptor proposed by Dalal and Triggs (2005) and implemented in Linke et al. (2017) for predicting

lexicality decisions in baboons.

Fifth, themodel promises to scale up to realistic data sets. The 52-k classification problem addressed in this study,

although not trivial, is still at the lower boundary of the lexical knowledge that speakers have at their disposal, and it

remains to be shown that the present approach will work as well for 100-k multi-label classification problems. The

problemwill become harder, but then, there is a cost to knowingmore also for speakers, as is evident of the increasing

costs of the accumulation of knowledge over the lifespan (Ramscar et al., 2014).

Finally, the model offers a more dynamic perspective on the vexed question of what words’ meanings actually

are. Although we talk about words as if they ‘have’ meanings, and that these meanings are fixed and immutable as

in printed dictionaries, the context in which words appear is a crucial for proper interpretation (Firth, 1968). In our

approach, the sublexical cues of a full utterance give rise to a pattern of predictions over all lexomes, a pattern that

we anticipate will differ depending onwhether the input is auditory or visual. This distribution of predictions in turn

creates a distribution over experienced events. In the present implementation, we selected a large number of event

‘exemplars’ that were a subset of the total number of events. It is computationally infeasible, and cognitively implausible,
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to workwith prediction vectors with the dimensionality of all events encountered. In humanmemory, events cluster

and merge, and we suspect that attentional mechanisms restrict the event space even further. A topic for further

investigation is how to properly reduce the event space and how to allow attention to zoom in on further subsets of

events. In such a system, meaning is the state of the event space that the system is moved into after experiencing the

input. Importantly, in this approach, lexomes are not ‘meanings’ in the dictionary sense— they are theoretical constructs

that are the crutches that we have to lean on tomove forward towards a formalization of meaning in terms of the state

of a high-dimensional system, in the hope that future research will allow us to get rid of the construct altogether.
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