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Abstract: The success and wider adaptability of smart phones has given a new dimension to
the gaming industry. Due to the wide spectrum of video games, the success of a particular
game depends on how efficiently it is able to capture the end users’ attention. This leads to
the need to analyse the cognitive aspects of the end user, that is the game player, during game
play. A direct window to see how an end user responds to a stimuli is to look at their brain
activity. In this study, electroencephalography (EEG) is used to record human brain activity during
game play. A commercially available EEG headset is used for this purpose giving fourteen channels
of recorded EEG brain activity. The aim is to classify a player as expert or novice using the brain
activity as the player indulges in the game play. Three different machine learning classifiers have been
used to train and test the system. Among the classifiers, naive Bayes has outperformed others with
an accuracy of 88%, when data from all fourteen EEG channels are used. Furthermore, the activity
observed on electrodes is statistically analysed and mapped for brain visualizations. The analysis has
shown that out of the available fourteen channels, only four channels in the frontal and occipital brain
regions show significant activity. Features of these four channels are then used, and the performance
parameters of the four-channel classification are compared to the results of the fourteen-channel
classification. It has been observed that support vector machine and the naive Bayes give good
classification accuracy and processing time, well suited for real-time applications.

Keywords: electroencephalography (EEG); machine learning; consumer gaming; feature extraction;
classification

1. Introduction

The video game industry is one of the major industries that incorporates many sub-disciplines.
The target audience of this industry has grown from a more narrow clientele base to the main stream
in recent years. The biggest catalyst has been the availability and accessibility of computer systems.
Gaming has been a major part of the entertainment industry and is now becoming a way of life in
learning, task management and simulation activities. A positive effect is seen on the gaming industry
with an advancement in computing capabilities. The user experience with games is improved by the
advanced computing graphics due to the availability of more computing power. At the same time,
the game industry is going through a transformation due to a wider availability of smart phones and
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tablet devices. Games for smart devices now compete with classical console- and computer-based
games and have attracted the attention of people from all walks of life. This renewed interest is mostly
seen in mobile- and handheld device-based games as compared to console games [1]. The focus of
recent development in the gaming industry covers both entertainment and educational purposes [2].

In the last few years, different methods have been proposed to assess the cognitive aspect of human
response to video games [3,4]. For instance, electroencephalography (EEG) has been employed to analyse
stress in computer game players [5]. Physiological signals are employed to analyse the learning outcome
of digital games [6]. It has also been observed that video game training enhances cognitive control in
older adults [7]. EEG-based experiments have been conducted in healthy, as well as diseased persons [8].
A neuro-feedback game has been used to enhance the attention in players [9]. EEG has also been used to
enhance the game play experience of players [10]. The classification of the expertise level of a mobile
game player during earlier stages of the game play can be fed back to the user. This would further entice
players’ interest in the game and allow assessing the cognitive aspects, as well.

Brain computer interfaces (BCIs) have already been used in game development [11].
Automated controls within the game play that come from human brain signals can be the next
big thing in the gaming industry. This would also increase the spectrum of game users to those
people who have some physical impairment and are not able to perform game controls by physical
movements. The time and money spent on mobile games has increased considerably. This fact becomes
obvious by looking at the application download patterns on various mobile-based platforms [12].
This directly translates into a massive increase in the number of mobile game players, and hence,
their analysis and cognitive assessment have gained significant importance. In [13], an analysis of the
mobile game players’ experience was performed based on different BCI controls. Electrophysiological
measurements have been used to examine the players’ response to games [14,15]. EEG has also been
used to measure the cognitive state of the brain such as stress [16]. In [17], field experts discussed
the methodological advancements within player experience and playability research considering
EEG as a good measure for cognitive processing. In [18], several methods were proposed to extract
useful information from the observed human EEG activities. These methods involve three common
operational steps. In the first step, data are preprocessed for noise reduction. Secondly, useful features
are extracted from the preprocessed data. In the third step, classification is performed using the
extracted features. The motivational states have been predicted based on brain activity for game
play [19]. A non-EEG-based method to classify expert and novice levels of a game player is presented
in [20], where objective-based action sequences are used. However, the approach only measures how
certain objectives are achieved during game play for classification, which is a subjective measure.
In [21], an analysis of the experience of a video game player is presented based on recorded EEG
signals and shows that wearable EEG devices can be used for game analytics and to differentiate
various cognitive processes.

In summary, there are various EEG-based methods presented in literature for game analytics and
the evaluation of human response, as well as non-EEG-based methods for the classification of video
game player expertise level. To the best of our knowledge, the same task has not been achieved using
EEG and is presented in this study by using a method that classifies the expertise level of a game player
into two classes, i.e., expert and novice. The aim is to explore whether, EEG can be used to tell how
good a player is in a video game just by looking at the brain activity recorded during the game play
and how certain brain areas play a more significant role than others. Game analytics and the human
psychological response comprise a very interesting field of research as seen from the literature and the
increasing use of mobile games in different fields of life. Video game play holds exciting promise as
an activity that may provide generalized enhancement to a wide range of perceptual and cognitive
abilities. Looking at these patterns, this study is conducted with a wider perspective of advancing
research applications in psychology, BCI and the human cognition process. The study expands on the
pilot study in [22] where initial data were recorded and the hypothesis of predicting the expertise of
a game player was tested. In this study, data have been collected more rigorously to avoid artefacts
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and gender bias by adding more data to the experimental design. After noise reduction, features are
extracted in the time domain from fourteen, as well as four selected EEG channels showing significant
brain activity. Multiple classification algorithms are used to predict the expert-novice level of the
player, and the results are evaluated using multiple performance metrics. The major contributions of
this study are,

1. EEG-based data are recorded from multiple participants during the play of a mobile game to
automatically classify the player as expert or novice on the basis of brain activity.

2. Those significant brain areas are highlighted and selected as being affected during the game play
after a careful statistical analysis.

3. Thirteen morphological features are extracted in the time domain for classification purposes.

In Section 2, the proposed methodology and experimental setup to classify the players’ expertise
level are provided. Experimental results are presented and discussed in Section 3, followed by the
conclusion and future work in Section 4.

2. Proposed Methodology

The steps involved in analysing the brain signals recorded using wearable EEG for the
expert-novice classification of a game player are shown in Figure 1. The detail of each step is as follows.

Player

Mobile
Device

14 Channel
EEG Headset

EEG Data
Acquisition

Preprocessing
Feature

Extraction
Classification

Expert

Novice

Figure 1. Block diagram of various processing steps used in this study for the purpose of expert-novice
classification of game players on a consumer gaming machine using electroencephalography (EEG).

2.1. EEG Data Acquisition

The electrical activity of the brain is recorded using EEG by electrodes placed on the human
scalp. The recorded brain activity is represented as waves with varying frequencies and amplitudes.
The frequency variation of the signal is measured in hertz (Hz), whereas the amplitude variation is in
the micro-volt range and represents the electrical activity of the brain. The frequency behaviour of the
EEG signals is generally classified into five different bands i.e., alpha, beta, theta, gamma and delta,
where each band could signify different physiological states of mind. A particular state of mind can be
activated by using different stimuli such as audio and video [23]. The details of stimuli, participants
and procedures used in this study are presented as follows.

2.1.1. Stimuli

In most EEG-based studies, a stimulus is required to activate the desired response. The game
named TempleRunis selected as a stimulus for this study. The game has been widely downloaded and
played and is selected due to its popularity among smart phone and tablet device users. Temple Run
is a never-ending game developed by IMANGI studios http://imangistudios.com/. In this game,
a character that runs in the temple after stealing the treasure is controlled by the mobile game player.
The character is followed by “demonic monkeys” that can eat the character. The game ends in the
case of character death either by falling from the temple or being eaten by the monkey. The player can
manoeuvre the character in left and right directions, jump and slide to avoid obstacles. The direction
of the character can also be controlled by tilting the smart phone and hand-held devices.

http://imangistudios.com/
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2.1.2. Participants

The EEG data are recorded using a wearable device for 20 healthy subjects including 70% male
and 30% female participants. The age of these participants ranged between 18 and 23 years, with
a mean age of 20.33 years. The participants are selected from a relatively younger age group, since
this age group is most likely to engage in mobile game play. All participants belonged to the Asian
Pacific ethnicity, having a similar educational background with no self-reported mental illness. The
participants involved in this experiment used to play mobile games with an average frequency of four
days per week. This frequency of game play is self-reported by the participants and is recorded to
analyse the expertise level. Informed consent was taken from all participants for using the recorded
brain signals for the purpose of this research.

2.1.3. Apparatus

The raw EEG data are recorded using a commercially-available EMOTIV (San Francisco, CA,
USA) EPOC EEG headset with the EMOTIV Premium SDK software development kit (SDK) v 3.3.3,
San Francisco, CA, USA. The observed data are stored in the European data format (EDF). The headset
provides fourteen micro-electrodes for recording EEG activity including F3, F4, F7, F8, AF3, AF4, P7,
P8, T7, T8, FC5, FC6, O1 and O2. The even- and odd-numbered channels represent electrodes for
the right and left hemispheres of the brain, respectively. In addition to the fourteen channels, there
are two additional electrodes that act as the reference for each hemisphere of the head. Saline liquid
is used to hydrate the electrodes to reduce the resistance of connection between electrode and skull.
Figure 2 shows the reference location of electrodes on the player’s scalp providing coverage in the
frontal, temporal, parietal and occipital regions of the brain. The spatial placement of electrodes of the
EMOTIV EPOCH EEG fourteen-channel headset follows the international 10–20electrode positioning
system [24]. The exact location of these channels can vary depending on the head size and hair length
of participants. The EMOTIV headset is made flexible to adjust to all head sizes. The recorded brain
waves represent the activity in a local brain region, and with the sparse placement of electrodes, it is not
effected by slight displacement in location. The recorded data are transmitted over a wireless Bluetooth
interface using a proprietary dongle that is connected through a USB connection to a computer system
running the EMOTIV SDK.

T8

P8

O2

F8

AF4

F4

FC6

T7

P7

O1

F7

AF3

F3

FC5

Figure 2. The 10–20 electrode positioning supported by EMOTIV [24].

2.1.4. Procedure

The data were recorded in a room where participants were provided with a comfortable
environment and a smart phone for game play. The sources of environmental noise were kept to a
minimum by avoiding electric cabling near the setup. The wireless headset and the SDK were properly
synchronised to avoid any error in EEG signal acquisition during the game play. The sequence of
steps, including the setup, game play and rest durations, is shown in Figure 3. Each participant was
given a briefing on the sequence of steps, and the device was properly placed on the participant’s head.
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For each individual, five turns of playing temple run were used for the purpose of data recording
separated by a rest time of one minute. The time for each turn varied for each participant and was
represented by T1, T2, T3, T4 and T5. The average time taken to record the complete data for five turns
for a single participant was 14.3 minutes with a total of 286 minutes of EEG recording used in this
study. Since the expertise level cannot be reliably judged with a single turn, to be more rational, five
turns were used.The number of turns was selected after careful experimentation, where the average
scores were able to differentiate between an expert and novice player in the training set. For supervised
learning, each player was assigned a novice or expert label based on a threshold, Z, calculated by
adding and averaging the scores as,

Z =
1

U × R

U

∑
i

R

∑
j

Score(i, j), (1)

where U is the number of users, R is the number of turns and Score(i, j) is the score for the j-th
turn by the i-th player. The assigned labels corresponded to the self-reported expertise level of
players. Participant average scores and the threshold value are shown in Figure 4. This resulted in 8
players classified as expert and 12 players classified as novice and are shown by blue and orange bars,
respectively. The time taken by each participant in all turns is presented in Table 1, where T1, T2, T3, T4
and T5 represent the time for five turns, and R1, R2, R3 and R4 represent the rest time. The rest time
between each turn is 60 seconds.

Table 1. The time taken for different turns by all users involved in the study (times for T1, T2, T3, T4,
T5, R1, R2, R3 and R4 are in minutes).

Player T1 R1 T2 R2 T3 R3 T4 R4 T5 Total Time (Minutes)

1 0.70 1 0.90 1 0.60 1 0.50 1 1.30 8
2 1.60 1 1.80 1 2.20 1 2.05 1 2.42 14.07
3 7.60 1 5.40 1 6.00 1 5.95 1 6.80 35.75
4 1.20 1 1.40 1 1.20 1 1.70 1 1.80 11.30
5 2.45 1 2.68 1 2.20 1 2.90 1 2.10 16.33
6 0.84 1 0.64 1 0.76 1 0.90 1 0.54 7.68
7 2.60 1 3.30 1 1.10 1 2.47 1 2.33 15.83
8 0.61 1 0.72 1 0.90 1 0.40 1 0.80 7.44
9 0.95 1 0.89 1 0.84 1 0.87 1 0.80 8.35

10 0.50 1 0.70 1 0.70 1 0.80 1 0.30 7.00
11 7.30 1 6.70 1 3.20 1 8.10 1 7.70 37.00
12 0.40 1 0.80 1 0.60 1 0.25 1 1.10 7.15
13 0.25 1 0.45 1 0.70 1 0.40 1 0.80 6.60
14 2.10 1 0.60 1 1.50 1 1.02 1 0.90 10.12
15 3.20 1 2.20 1 1.50 1 2.65 1 2.10 15.65
16 0.80 1 0.70 1 0.50 1 0.40 1 1.20 7.60
17 6.40 1 3.00 1 6.80 1 5.20 1 5.90 31.30
18 0.50 1 0.60 1 0.80 1 0.90 1 0.65 7.45
19 0.30 1 0.45 1 0.60 1 0.45 1 0.89 6.69
20 3.30 1 2.40 1 5.80 1 4.80 1 4.40 24.70

Figure 3. The experimental procedure used to record the data of game players.
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Figure 4. The average score of players and the threshold value for the players as novice or expert.
The horizontal solid line shows the threshold value calculated using Equation (1).

2.2. Preprocessing

The EEG data recorded by the wireless EMOTIV headset are affected by different kinds of
artefacts and need to be preprocessed to improve the quality of signals. These artefacts include
noise from electrical lines, muscle movement, heart beat, sweating, electrode movement, and so on.
The EEG signals have a bandwidth between 0.2 and 100 Hz and are recorded with 128 samples
per second. In order to remove the DC offset, the mean value is subtracted from the entire data.
For noise removal, a two-step process is applied including filtering and independent component
analysis (ICA). The artefacts caused by physical movements such as heart beat and eye blink appear in
the frequency range between 1.2 Hz and 5 Hz. The muscular movements effect the EEG oscillations
above 45 Hz. The high gamma band is shown to have the highest correlation with motor-evoked
potentials (MEPs) [25]. A first-order band-pass Butterworth filter with a pass-band of 5–45 Hz is used
to remove artefacts caused by biological movements. The filtering process removes part of the delta
and gamma waves, but the experimental procedure does not include any audio source. The selected
game for this study does not rely on memory, as the game play is random for each turn. The filtering
process is also useful in removing the power interference that occurs at 50 Hz. The proposed method
also finds the significant channels that can be used for classification of player expertise level. It is a
known fact that EEG recordings from multiple channels represent information that is a mixture of
underlying sources from different brain areas. Hence, ICA is used to estimate independent sources
from highly correlated EEG data [26]. ICA is a blind source separation technique, which statistically
separates uncorrelated signals. ICA is performed using EEG lab [27] on the raw EEG data, and the
separate components are used for feature extraction.

2.3. Feature Extraction

The important information contained in the data can be retained using features that are significant
and uncorrelated. In the feature extraction stage, thirteen morphological features in the time domain
are extracted from all the recorded EEG data. The features represent the underlying structure of the
EEG signal that is expected to vary with the expertise level of game players. The mathematical details
of the features are as follows and are reported in [28].

1. Maximum value (smax):
smax = max{s(t)}. (2)

2. Maximum value time (tsmax ):
tsmax = {t|s(t) = smax}, (3)
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where smax is the signal maximum value.
3. Minimum value (smin):

smin = min{s(t)}. (4)

4. Minimum value time (tsmin ):
tsmin = {t|s(t) = smin}, (5)

where smin is the signal minimum value.
5. Maximum absolute value (MAV):

MAV = |smax|. (6)

6. Peak to peak signal value (spp):
spp = smax − smin. (7)

7. Latency to maximum value ratio (Lmax):

Lmax =
tsmax

smax
. (8)

8. Latency to minimum value ratio (Lmin):

Lmin =
tsmin

smin
. (9)

9. Peak to peak time window (tpp):
tpp = tsmax + tsmin . (10)

10. Sum of values (S):
S = ∑

t
s(t), (11)

where the summation is performed over a period of time.
11. Mean (µ):

µ =
1
N ∑

t
s(t), (12)

where N is the total number of samples.
12. Signal power (P):

P =
1
T

lim
t→∞ ∑

t
|s(t)2|, (13)

where T is the time period.
13. Signal energy (E):

E = ∑
t
|s(t)2|. (14)

2.4. Classification

The features are separated into different classes using different machine learning methods,
which are generally categorized into supervised and unsupervised techniques. Different classification
techniques have been successfully applied to EEG signal analysis such as K-nearest neighbour
(KNN) [29], Bayesian classifier [30], multi-layer perceptron (MLP) [31], linear discriminant analysis
(LDA) [32] and support vector machine (SVM) [33]. The following is a brief description of the
supervised classification algorithms used in this study.
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2.4.1. Support Vector Machine

A hyperplane is used in support vector machine to discriminate between different classes.
This hyperplane is selected on the basis of margin maximization. The generalization capability of SVM
is increased by maximizing the margins, that is the distance between the nearest training points. It is
generally considered insensitive to problems such as over-fitting and the curse of dimensionality. This
fact makes SVM suitable for the classification of expert-novice player classification. Linear, as well
as non-linear analysis can be used for the EEG data [34]. The SVM algorithm uses the kernel trick to
create non-linear decision boundaries, in which data are mapped to higher dimensional space by using
a kernel function.

2.4.2. Naive Bayes Classifier

Naive Bayes is one of the simplest and easiest to implement statistical algorithms. It calculates
the probability of each class member to assign them the best suited class. The method is based on
the assumption that the attributes used are not dependent on each other, which helps in reducing
the computational cost. A good classification performance has been observed with this underlying
assumption [29]. The naive Bayes classifier assumes that the samples are contained in a training
set Ck, having k class labels. For game player classification, there are two classes to be identified,
including C1 = Expert and C2 = Novice. X1, X2, · · · , Xn represents the samples, and A1, A2, · · · , An

represents the n measured values of attributes represented by,

P(Ci|X) > P(Cj) for 1 ≤ j ≤ m, j 6= i, (15)

where P(X1|Cj), P(X2|Cj), · · · , P(Xn|Cj) are the probabilities calculated from the training data.

2.4.3. Multilayer Perceptron

Neural network-based algorithms are widely used in data classification studies. A multi-layer
perceptron has a three-layered structure, consisting of an input layer, a hidden layer and an output layer.
The hidden layer could have multiple layers. In each layer, neurons are connected to the output
of neurons from the immediately preceding layer. The neurons in the input and output layers
only have outgoing and ingoing connections, respectively. The MLP algorithm is considered to
be adaptable to a large variety of problems, but is sensitive to the problem of overfitting for
noisy data. The inputs of neurons are mapped to the output using transfer functions such as sigmoid,
rectified linear unit and hyperbolic tangent [35]. In this case, a sigmoid function has been used to
determine the activity yj with the help of a function of the total weighted input given as,

yj =
1

1 + e−xj , (16)

The total weighted input Xj of a unit is computed as,

Xj =
n

∑
i

yiWij, (17)

where the level of activity and the weight between the ith and jth connection are represented by yi
and Wij, respectively.

3. Experimental Results

The details about the experimental settings and performance analysis are presented in this section.
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3.1. Configuration and Parameter Settings

The data are divided with a 70–30 ratio, where 70% of the data is used for training purpose and the
remaining 30% data to test the proposed system. The experiments are performed on a core i5 system
with 6 GB RAM. To classify the recorded EEG data into expert-novice level based on extracted features
from the fourteen-channel headset, three different classification algorithms were trained, including
naive Bayes, SVM and MLP. The MLP used in this study consists of a hidden layer with 15 neurons,
and the network is fully connected such that all neurons in each layer have a connection with all
neurons in the following layer. The network is trained using the back-propagation algorithm, and
cross entropy is used as the cost function. The weights are initialized randomly from a zero mean
Gaussian distribution. The learning follows the stochastic gradient descent (SGD) algorithm and
selects the optimized weights for the neuronal connections giving an accurate classification of game
player expertise level. The network hyper-parameters including the learning rate are selected using
grid search. For the SVM classifier, a linear kernel is used.

3.2. Channel Selection

A statistical analysis is performed to select the most significant channels for classifying the
expertise level. A box-plot for the normalized power spectral densities (PSDs) of the fourteen EEG
channel recordings for expert and novice players is shown in Figure 5. The + symbol indicates the
outliers, and the red lines within the box represent the median value. The rectangular box lies in
between the first and third quartile of the data values. The results show that on average, expert players
have more brain activity as compared to novice players. A t-test is applied on the PSD values of expert
and novice players. A t-test is used to compare the averages of two results, and the resulting t-score
and p-value are a measure of the significance of the results. A p-value of less than 0.005 indicates that
the difference between averages is significant and not by chance. The results show that only channels
F7, O1, F4 and AF4 are significant for the purpose of player classification with a p-value < 0.005.

The data of fourteen channels are also analysed on the basis of their activity using brain
visualizations. Figure 6 shows the brain activity maps of the average power spectral densities for each
channel of an expert and novice player. The colours in the figure represent brain activity as depicted
using the PSD, where shades of blue show no or lesser activity, which increases as the colour turns red.
It is evident that channels F7, O1, F4 and AF4 are most active during game play of the expert player
and do not show a significant activity in the case of the novice player. This further adds credence to the
statistical analysis for which the results were presented earlier. This clearly shows that the activities
of the frontal and occipital regions are responsible for determining the expertise level in video game
play. The frontal lobe is involved in cognitive aspects and decision making. The major portion of the
occipital lobe deals with visual functions. The features mentioned in Equation (2)–Equation (14) are
used for the selected channels, which are then used to train the set of classifiers as is done for the
fourteen channels.
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Channels
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Figure 5. Box-plot for the normalized power spectral densities of fourteen EEG channels for (a) expert
players and (b) novice players. The + symbol represents the outliers; the rectangular box shows the
region between the first and third quartile; and the red line shoes the median values.

Figure 6. Brain visualization using the average power spectral density for an expert and a novice player.

The brain maps are also visualized for the expert and novice player during the resting state.
The results are shown in Figure 7. During resting periods, players were instructed to relax, and no
mental task was performed. The baseline EEG is recorded with eyes open, and the brain maps show
the corresponding activity on the frontal and occipital regions.

Figure 7. Brain visualization for baseline activity using the average power spectral density for an
expert and novice player.
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3.3. Performance Analysis

The performance of these algorithms is evaluated using different performance metrics for
both cases, i.e., by using data from all fourteen EEG electrodes and those selected channels that
give higher activity. The performance parameters include classification accuracy, computation time,
kappa statistic, precision, recall and area under the curve (AUC) of the receiving operator characteristic
(ROC) curve. Cohen’s kappa statistic is used to measure the inter-observer agreement and has a value
that ranges between zero and one. A value close to zero represents agreement by chance, and a value
closer or equal to one represents near perfect or perfect agreement. For a classification task, precision
is defined as,

precision =
TP

TP + FP
, (18)

where TP and FP represent the true positive and false positive values, respectively. The recall value is
calculated as,

recall =
TP

TP + FN
, (19)

where FN represents the false negative values. The AUC of the ROC curve represents the classification
performance of a classifier. A value closer to one shows that the classifier has a good performance.

The results are presented in Table 2 and show an accuracy of 88% for the naive Bayes classification
when data from all fourteen available channels are used. Moreover, the naive Bayes algorithm
classified the data in 0.03 seconds. The kappa statistic of 0.6218 is achieved by both the SVM
and MLP, which is 0.1 greater than the naive Bayes classifier. On the other hand, MLP takes the
longest time to build when the fourteen channel data are used. Table 2 also shows the results for the
selected performance parameters when four significant channels are selected. It is evident that the
performance parameters of the four-channel classification have a slight difference as compared to
the fourteen-channel case. In particular, the classification accuracy improves for SVM and MLP and
is slightly reduced for naive Bayes. The time taken for all algorithms is now reduced to acceptable
levels for real-time applications except for MLP, which is still comparatively higher. SVM gives the
best classification accuracy of 86% with a classification time of 0.04 s with four channels. This shows
that by selecting the significant channels, both SVM and naive Bayes can be reliably used for player
classification in less time.

Table 2. Performance parameters of classification algorithms using the four selected channels and all
fourteen available channels.

Number of Classification Correctly Incorrectly Time Taken kappa Precision Recall ROC
Channels Algorithm Classified Classified (s) Statistics

Naive Bayes 84 16 0.01 0.6543 0.839 0.84 0.881
4 channels SVM 86 14 0.04 0.6998 0.859 0.860 0.846

MLP 84 16 0.94 0.6604 0.840 0.840 0.900

Naive Bayes 88 12 0.03 0.7356 0.886 0.880 0.899
14- channels SVM 82 18 0.10 0.6218 0.822 0.820 0.821

MLP 82 18 7.5 0.6218 0.822 0.820 0.907

Figure 8 shows the performance of the algorithms used in terms of mean absolute error (MAE),
root mean squared error (RMSE), relative absolute error (RAE) and root relative squared error (RRSE)
using fourteen and four channels. The MAE is calculated using,

MAE =
∑n

i=1 |oi − bi|
n

, (20)
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where n is the number of observations and oi and bi are the observed and actual values, respectively.
The RMSE is calculated using,

RMSE =

√
∑n

i=1 (oi − bi)
2

n
, (21)

The RAE is calculated using,

RAE =
∑n

i=1 |oi − bi|
∑n

i=1 |ōi − bi|
, (22)

where ōi is the mean of oi. The value of RRSE is calculated using,

RRSE =

√√√√∑n
i=1 (oi − bi)

2

∑n
i=1 (ōi − bi)

2 . (23)

It is clear from Figure 8a that the naive Bayes classifier gives the minimum error magnitude for
all the error measuring parameters as compared to other classifying algorithms. Figure 8b shows
the error performance of the algorithms used in four-channel classification. It can be observed that
error performance in the case of fourteen channels is slightly better, but in the four-channel case,
the computational cost has been reduced. Feature vector reduction has resulted in the reduction of the
time taken by each classifier. Moreover, there is not much difference in terms of the kappa statistic.

 

(a)

 

(b)

Figure 8. Error magnitudes of different algorithms used: (a) fourteen channels; (b) four selected
channels with higher activity.
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4. Conclusions

The expertise level of a game player on a consumer-based gaming device has been classified
using EEG recordings, where the classification is based on the brain activity recorded using a wearable
EEG device. Multiple classifiers are used to classify the player’s expertise level during game play on
a smart phone, by extracting thirteen morphological features from the recorded EEG data. Among
the classifiers, the naive Bayes algorithm has given the best error performance, as well as accuracy,
computation time and kappa statistic for both fourteen- and four-channel classifications, although
SVM also gave good accuracy and computation time for four-channel classification. These results
show that the naive Bayes and SVM classifier have the potential to be used in gaming applications,
which can suggest the player’s expertise level from EEG data recordings. On the basis of brain activity
maps, four significantly active channels are identified for classification instead of all fourteen channels.
A small difference is observed between the two cases in terms of performance and error parameters,
whereas using four channels has reduced the computational cost. In combination with only a minor
difference in the kappa statistic, we can say that the four-channel approach is a more suitable candidate
with a good balance between performance and complexity. In future, we plan to predict the score of
the mobile game player by recording his/her EEG activities and applying regression-based techniques.
This can be applied to make mobile games more attractive for users and also used to assess the
effectiveness of training a subject in educational applications and game analytics. The number of
subjects will also be increased in future studies, and players will be analysed for multiple game genres.
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