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Abstract 

Mutations in calreticulin (CALR) are phenotypic drivers in the pathogenesis of 

myeloproliferative neoplasms (MPN). Mechanistic studies have demonstrated that mutant 

CALR binds to the thrombopoietin receptor MPL, and that the positive electrostatic charge of 

the mutant CALR C-terminus is required for mutant CALR- mediated activation of JAK-STAT 

signaling. Here we demonstrate that although binding between mutant CALR and MPL is 

required for mutant CALR to transform hematopoietic cells, binding alone is insufficient for 

cytokine independent growth. We further show that the threshold of positive charge in the 

mutant CALR C-terminus influences both binding of mutant CALR to MPL and activation of 

MPL signaling. We find that mutant CALR binds to the extra-cellular domain of MPL and that 

three tyrosine residues within the intracellular domain of MPL are required to activate 

signaling. With respect to mutant CALR function, we show that its lectin-dependent function is 

required for binding to MPL and for cytokine independent growth while its chaperone and 

polypeptide binding functionalities are dispensable. Together, our findings provide additional 

insights into the mechanism of the pathogenic mutant CALR-MPL interaction in MPN.
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Introduction 

Recurrent mutations in calreticulin (CALR), an endoplasmic reticulum (ER) resident 

chaperone protein, represent the second most common mutation in patients with 

myeloproliferative neoplasms (MPN) after JAK2V617F (1-4). CALR mutations in MPN occur 

as a heterogeneous set of indel mutations in exon 9 of CALR that all result in a +1 base pair 

frameshift in the CALR reading frame (5, 6). Although the mutant CALR C- terminal 

alterations vary, all CALR mutations lead to loss of most of the C-terminal acidic domain and 

concomitant gain of a novel C-terminus consisting of 36 amino acids which are enriched for 

positively charged residues. Mechanistic studies have demonstrated that mutant CALR 

(CALRMUT) binds to the thromobopoietin receptor, MPL to activate the MPL-JAK-STAT 

signaling axis (7-10), and that the positive charge of the CALRMUT C- terminus is required to 

mediate this interaction (9). 

Several unanswered questions remain regarding the molecular and functional basis of 

CALRMUT oncogenic activity. In this report, we use a series of mutagenesis experiments to 

address some of these questions, focusing on the structural determinants of CALRMUT and 

MPL that are necessary for hematopoietic cell transformation. 

Materials and Methods 

Ba/F3 Cell Growth Assays. Ba/F3 cells expressing CALRMUT or MPL variants were generated 

by retroviral transduction and assayed for cytokine-independent growth as previously 

described (9). 

In Vitro Binding Assay. V5-tagged purified recombinant CALRWT, CALRMUT, CALRMUT- D135L 

and CALRMUT-D317A proteins were incubated with purified recombinant ERp57 or MPL for 30 

minutes at 4°C, and washed with HEPES-acetate buffer. Bound proteins were eluted from 
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beads and analyzed by SDS-PAGE. 

Results and Discussion 

To resolve which amino acids within the CALRMUT C-terminus are required for CALRMUT 

activity, we generated CALRMUT variants harboring serial truncations of the mutant C- terminal 

tail in blocks of 8-10 amino acids (Figure 1A) and tested their ability to associate with MPL in 

pull-down assays. All CALRMUT variants examined retained the ability to bind MPL (Figure 

1B). However, the most severely truncated form (CALRMUTA36) failed to activate JAK-STAT 

signaling (Figure 1C), stimulate phosphorylation of MPL (Figure ID), and transform Ba/F3-

MPL cells to IL-3 independence (Figure 1E). Further truncation of an 11 amino acid positively 

charged stretch (QRTRRMMRTKM) that is also present in CALRMUT protein species 

generated by the 52 bp deletion (CALRMUTA47, Supplemental Figure S1A) led to loss of 

MPL binding (Supplemental Figure S1B) and inability to transform Ba/F3-MPL cells 

(Supplemental Figure S1C). A CALRMUT variant where these 11 residues are deleted but the 

distal 36 mutant-specific amino acids are retained (CALRMUTA37-47) was still able to bind to 

MPL and transform Ba/F3-MPL cells (Supplemental Figure S1A-C), suggesting that the 

QRTRRMMRTKM stretch is sufficient but not strictly required for MPL binding. Our data also 

suggest that whilst CALRMUTA36 can bind to MPL, this binding is insufficient to activate MPL 

signaling. To our knowledge, these data provide the first evidence that physical interaction 

between CALRMUT and MPL is not ipso facto sufficient to activate MPL. Rather, our data 

argue for a model whereby different thresholds of positive charge in the CALRMUT C-terminus 

are required to enable binding of CALRMUT to MPL and to activate MPL signaling. As MPL 

phosphorylation is dependent on homodimerization of single MPL chains, these data may 

suggest that CALRMUTA36 retains the ability to interact with single MPL chains but is unable to 

induce homodimerization which is required for receptor activation. Further studies are 
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warranted to fully resolve the threedimensional structure of the CALRMUT-MPL interaction. 

We next sought to elucidate the regions of MPL that are essential to support CALRMUT activity. 

We observed that CALRMUT binds to full length MPL and to the extracellular and 

transmembrane (EC+TM) fragment of MPL, but not to the intracellular and transmembrane 

(IC+TM) fragment (Figure 1F). Furthermore, a MPL variant where the thrombopoietin (TPO) 

binding site is mutated (D235A/L239A) (11) was still able to bind to CALRMUT (Supplemental 

Figure S1D) and could support CALRMUT-mediated cytokine-independent growth in Ba/F3 

cells (Supplemental Figure S1E). This suggests that CALRMUT does not occupy the same 

binding pocket as TPO and is consistent with CALRMUT-driven hematopoietic transformation 

being a TPO-independent process (7). 

Analysis of the intracellular portion of MPL reveals three tyrosine residues (Y591, Y626 and 

Y631) which may also be important for CALRMUT-MPL signaling (12). MPL variants were 

therefore generated where these residues were systematically mutated to phenylalanine 

individually (FYY, YFY, YYF), in tandem (FFY, FYF, YFF) or altogether (FFF). As expected, 

all MPL variants were able to physically interact with CALRMUT in FLAG-pull down assays 

(Figure 1G). However, we found differences in their ability to support CALRMUT signaling. MPL 

variants harboring intact Y626 (MPL-FYY, MPL-YYF, MPL-FYF) supported robust Stat5 

phosphorylation (Figure 1H) in association with cytokine-independent growth (Figure 1I), but 

not MPL variants in which the Y626 is mutated (MPL-YFY, MPL-YFF, MPL-FFY, MPL-FFF). 

These data indicate that Y626 plays a more prominent role than Y591 and Y631 in MPL 

signaling downstream of CALRMUT, which is consistent with a previous report identifying Y626 

as the major signaling tyrosine in canonical TPO-MPL signaling (12). Our data therefore 

highlight the importance of tyrosine-mediated MPL signaling as a pathway co-opted by 
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CALRMUT to effect cytokine-independent proliferation. Our studies do not rule out a role for 

nontyrosine residues of MPL, which may be required for CALRMUT-mediated activation of 

other downstream signaling pathways (e.g. ERK) (13) and future studies to explore this 

question are warranted. 

Finally, we sought to gain functional insights into how CALRMUT interacts with MPL to confer 

cytokine independent growth. Wild-type calreticulin is an ER-resident chaperone that interacts 

with glycoproteins by binding to Glc1Man9GlcNAc2 oligosaccharides and the polypeptide 

backbone to facilitate proper protein folding. We therefore created variants of CALRMUT 

harboring mutations in critical residues implicated in three key functionalities of wild-type 

CALR - (i) polypeptide binding, (ii) chaperone activity, and (iii) lectin activity - and tested their 

capacity to bind to MPL and confer cytokine- independence (Figure 2A). 

We observed that both polypeptide binding-deficient variants of CALRMUT (CALRMUT- 

P19K/V21E and CALRMUT-W244G) and chaperone-deficient variants of CALRMUT (CALRMUT-

H153G and CALRMUT-EEDE) (14-15) retained MPL binding ability (Figure 2B) and conferred 

cytokine-independent growth (Figure 2C). Consistent with the nonessentiality of chaperone 

functionality in CALRMUT oncogenic activity, CALRWT exhibits strong, direct binding to the 

ERp57 co-chaperone, whereas CALRMUT does not (Figure 2D). In contrast, lectin-deficient 

CALRMUT variants harboring mutations in Asp-135 and Asp-317 (CALRMUT-D135L and 

CALRMUT-D317A) (16-17) were both unable to bind to MPL or confer cytokine independence 

(Figure 2B-C). In accordance, we also found that only recombinant CALRMUT protein directly 

binds to recombinant MPL in an in vitro binding assay, whereas neither CALRWT nor lectin-

deficient CALRMUT bind (Figure 2E).These data explain the previously reported essential role 

for Asp-135 in mediating CALRMUT-driven STAT5 activation (8) as being due to a requirement 
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for Asp-135 in mediating binding between CALRMUT to MPL. Finally, to determine the requisite 

glycosylation status of MPL that enables CALRMUT binding, we tested CALRMUT binding to 

MPL mutants where either two (2xNQ = N117/178Q) or all four (4xNQ = N117/178/298/358Q) 

glycosylation sites in the extra-cellular domain of MPL were abolished. We found that 

CALRMUT can still bind to MPL-2xNQ but not to MPL-4xNQ (Figure 2F). These data are 

consistent with a previous report which demonstrated that MPL variants devoid of the same 

four N-glycosylation sites failed to support STAT5 activation by CALRMUT (8), and suggests 

that this defect is due to an inability of unglycosylated MPL to bind CALRMUT. 

In conclusion, our data provide additional insights into the molecular mechanism by which 

CALRMUT interacts with MPL to induce MPN (Supplemental Table 1). Specifically, we (i) 

uncouple the binding of CALRMUT to MPL from MPL activation, (ii) define the key properties of 

MPL required for CALRMUT binding and for its activation and (iii) decipher the key 

functionalities of CALRMUT required for its oncogenic activity. 

Acknowledgements: This work was supported by the NIH (R01HL131835 to AM), a Damon 

Runyon clinical investigator award (AM), the Starr Cancer Consortium (AM), the Leukemia 

and Lymphoma Society (LLS) (AM), the Wellcome Trust (EC), an Academy of Medical 

Science Springboard Award (EC), a Leuka John Goldman Fellowship (EC), and the 

Gabrielle’s Angel Foundation for Cancer Research (GB). SE is a recipient of a T32 molecular 

hematology training award (NHLBI) and an LLS Special Fellow Award. 

Authorship Contributions: SE, NSA, EC, and AM designed the study, while GB provided 

guidance on experimental design. SE, NSA, AJB, DB, GB, JFR, AK, and NF, performed 

experiments and collected the data, SE, NSA, AJB and DB analyzed the data. SE, NSA, EC, 

and AM wrote the manuscript. 



8 

 

Disclosure of Conflicts of Interest: The authors have no conflict of interest to declare. 

References 

1. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, 
Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR. Acquired mutation of the 
tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet (London, England). 
2005;365(9464):1054-61. Epub 2005/03/23. doi: 10.1016/s0140- 6736(05)71142-9. PubMed 
PMID: 15781101. 
2. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJP, Boggon TJ, 
Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, 
D’Andrea A, Frohling S, Dohner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin 
JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG. Activating mutation in 
the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid 
metaplasia with myelofibrosis. Cancer Cell.7(4):387-97. doi: 10.1016/j.ccr.2005.03.023. 
3. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, Garcon L, 
Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, 
Vainchenker W. A unique clonal JAK2 mutation leading to constitutive signalling causes 
polycythaemia vera. Nature. 2005;434(7037):1144-8. Epub 2005/03/29. doi: 
10.1038/nature03546. PubMed PMID: 15793561. 
4. Kralovics R, Passamonti F, Buser AS, Teo S-S, Tiedt R, Passweg JR, Tichelli A, 
Cazzola M, Skoda RC. A Gain-of-Function Mutation of JAK2 in Myeloproliferative Disorders. 
New England Journal of Medicine. 2005;352(17):1779-90. doi: doi:10.1056/NEJMoa051113. 
PubMed PMID: 15858187. 
5. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, 
Them NC, Berg T, Gisslinger B, Pietra D, Chen D, Vladimer GI, Bagienski K, Milanesi C, 
Casetti IC, Sant'Antonio E, Ferretti V, Elena C, Schischlik F, Cleary C, Six M, Schalling M, 
Schonegger A, Bock C, Malcovati L, Pascutto C, Superti-Furga G, Cazzola M, Kralovics R. 
Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 
2013;369(25):2379-90. doi: 10.1056/NEJMoa1311347. PubMed PMID: 24325356. 
6. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, Avezov E, Li J, 
Kollmann K, Kent DG, Aziz A, Godfrey AL, Hinton J, Martincorena I, Van Loo P, Jones AV, 
Guglielmelli P, Tarpey P, Harding HP, Fitzpatrick JD, Goudie CT, Ortmann CA, Loughran SJ, 
Raine K, Jones DR, Butler AP, Teague JW, O'Meara S, McLaren S, Bianchi M, Silber Y, 
Dimitropoulou D, Bloxham D, Mudie L, Maddison M, Robinson B, Keohane C, Maclean C, Hill 
K, Orchard K, Tauro S, Du M-Q, Greaves M, Bowen D, Huntly BJP, Harrison CN, Cross NCP, 
Ron D, Vannucchi AM, Papaemmanuil E, Campbell PJ, Green AR. Somatic CALR Mutations 
in Myeloproliferative Neoplasms with Nonmutated JAK2. New England Journal of Medicine. 
2013;369(25):2391-405. doi: doi:10.1056/NEJMoa1312542. PubMed PMID: 24325359. 
7. Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M. Calreticulin 
mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to 
myelofibrosis. Blood. 2016;127. doi: 10.1182/blood-2015-11-679571. 
8. Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu R-I, Marty C. Thrombopoietin 
receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 
2016;127. doi: 10.1182/blood-2015-11-681932. 
9. Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A, Peisker F, Florescu 
N, Giannini S, Wolach O, Morgan EA, Tothova Z, Losman JA, Schneider RK, Al-Shahrour F, 
Mullally A. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin 
Receptor for Oncogenic Transformation. Cancer Discov. 2016;6(4):368-81. doi: 
10.1158/2159-8290.CD-15-1434. PubMed PMID: 26951227; PMCID: PMC4851866. 
10. Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, Mizukami Y, Kan S, 



9 

 

Shirane S, Edahiro Y, Sunami Y, Ohsaka A, Komatsu N. Activation of the thrombopoietin 
receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 
2016;127(10):1307-16. Epub 2016/01/29. doi: 10.1182/blood-201509-671172. PubMed PMID: 
26817954. 
11. Chen WM, Yu B, Zhang Q, Xu P. Identification of the residues in the extracellular 
domain of thrombopoietin receptor involved in the binding of thrombopoietin and a nuclear 
distribution protein (human NUDC). The Journal of biological chemistry. 2010;285(34):26697-
709. Epub 2010/06/10. doi: 10.1074/jbc.M110.120956. PubMed PMID: 20529857; PMCID: 
PMC2924112. 
12. Drachman JG, Kaushansky K. Dissecting the thrombopoietin receptor: functional 
elements of the Mpl cytoplasmic domain. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2350-
5. PubMed PMID: 9122198; PMCID: PMC20091. 
13. Han L, Schubert C, Kohler J, Schemionek M, Isfort S, Brummendorf TH, Koschmieder 
S, Chatain N. Calreticulin-mutant proteins induce megakaryocytic signaling to transform 
hematopoietic cells and undergo accelerated degradation and Golgi- mediated secretion. J 
Hematol Oncol. 2016 May 13;9(1):45. doi: 10.1186/s13045-016- 0275-0. PubMed PMID: 
PMID: 27177927 PMCID: PMC4894373 
14. Kapoor M, Ellgaard L, Gopalakrishnapai J, Schirra C, Gemma E, Oscarson S, 
Helenius A, Surolia A. Mutational analysis provides molecular insight into the carbohydrate-
binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate- 135 in carbohydrate 
recognition. Biochemistry. 2004 Jan 13;43(1):97-106. PubMed PMID: 14705935 doi: 
10.1021/bi0355286 
15. Thomson SP, Williams DB. Delineation of the lectin site of the molecular chaperone 
calreticulin. Cell Stress Chaperones. 2005 Autumn;10(3):242-51. PubMed PMID: 16184769 
PMCID: PMC1226022 
16. Guo L, Groenendyk J, Papp S, Dabrowska M, Knoblach B, Kay C, Parker JM, Opas 
M, Michalak M. Identification of an N-domain histidine essential for chaperone function in 
calreticulin. J Biol Chem. 2003 Dec 12;278(50):50645-53. Epub 2003 Oct 1. 
doi:10.1074/jbc.M309497200. PubMed PMID: 14522955. 
17. Martin V, Groenendyk J, Steiner SS, Guo L, Dabrowska M, Parker JM, Muller- Esterl 
W, Opas M, Michalak M. Identification by mutational analysis of amino acid residues essential 
in the chaperone function of calreticulin. J Biol Chem. 2006 Jan 27;281(4):2338-46. Epub 
2005 Nov 16. DOI: 10.1074/jbc.M508302200. PubMed PMID: 16291754 
Figure Legends 

Figure 1. Binding of mutant calreticulin to MPL is required to transform hematopoietic 

cells but binding alone is insufficient for cytokine independent growth (A) Schema 

depicting serial C-terminal truncation mutants of mutant CALR. (B) Immunoblotting of FLAG 

immunoprecipitated proteins and whole cell lysates from 293T cells co-transfected with FLAG-

CALR wild type (CALRWT), FLAG-CALR 52 bp deletion (CALRmut), or FLAG-CALR 52 bp 

deletion serial C-terminal truncation mutants (CALRMUT A10-A36) demonstrates that mutant 

CALR truncated up to A36 still binds to MPL. (C) Immunblotting demonstrates 

phosphorylation of Stat5 and Stat3 in Ba/F3-MPL cells expressing CALRMUT and truncation 
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variants A10, A18, and A28, but not A36. (D) Immunoblotting demonstrates phosphorylation 

of MPL in Ba/F3-MPL cells expressing CALRMUT and A28, but not A36. (E) Growth curves in 

Ba/F3-MPL cells expressing CALRwt, CALRmut, or CALRMUT C-terminal truncation variants 

demonstrates that only severe truncation of the mutant CALR C-terminus (A36) abolishes the 

transforming capacity of mutant CALR. (F) Immunoblotting of FLAG immunoprecipitated 

proteins from 293T cells co-transfected with FLAG-CALR 52 bp deletion (CALRMUT) and GST-

tagged full length MPL, GST-tagged MPL intracellular + transmembrane domains (IC+TM), or 

GST-tagged MPL extracellular + transmembrane domains (EC+TM) demonstrates that 

mutant CALR binds to the extracellular domain of MPL. (G) Immunoblotting of FLAG 

immunoprecipitated proteins from 293T cells co-expressing FLAG-tagged mutant CALR and 

MPL YF variants demonstrates that mutations of intracellular tyrosine residues on MPL does 

not affect the ability of mutant CALR to bind to MPL. (H) Immunoblotting demonstrates that 

phosphorylation of Stat5 is abrogated in Ba/F3 cells expressing MPL YF variants harboring 

loss of Y626. (I) Growth curves in Ba/F3 cells stably expressing MPL-YF variants 

demonstrates that all three intracellular tyrosines play a role in supporting cytokine 

independent growth in Ba/F3 cells mediated by mutant CALR. 

Figure 2. The lectin-dependent function of mutant CALR is required for cytokine 

independent growth while its chaperone and polypeptide binding functionalities are 

dispensable (A) Schema depicting mutations introduced into the lectin (dark red), 

polypeptide binding (blue), and chaperone (light green) domains of mutant CALR. (B) 

Immunoblotting of FLAG immunoprecipitated proteins from 293T cells co-transfected with wild 

type CALR, mutant CALR, or mutant CALR lectin-, chaperone- and polypeptide binding-

deficient variants demonstrates that binding between mutant CALR and MPL is lost when 

residues required for lectin binding are mutated but binding is retained when residues critical 

for CALR chaperone and polypeptide binding functionality are mutated. (C) Growth curves in 
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Ba/F3-MPL cells expressing wild type CALR, mutant CALR, or mutant CALR lectin- (left), 

chaperone- (middle) and polypeptide binding-deficient (right) variants demonstrates that 

mutant CALR loses its ability to drive cytokine independent growth when residues required for 

lectin binding are mutated but retains its ability to drive cytokine independent growth in when 

residues critical for CALR chaperone and polypeptide binding functionality are mutated. (D) In 

vitro binding assay between purified recombinant CALRWT or CALRMUT and purified 

recombinant ERp57 demonstrates that CALRWT binds directly to ERp57 but CALRMUT does 

not. (E) In vitro binding assay between purified recombinant CALRWT, CALRMUT, CALRMUT-

D135L or CALRMUT-D317A demonstrates that CALRMUT binds directly to MPL but not CALRWT 

or altered CALRMUT variants. (F) FLAG pulldown in 293T cells co-expressing CALRMUT and 

MPL glycoslylation mutants (2xNQ = N117/178Q; 4xNQ = N117/178/298/358Q), shows 

CALRMUT binding to MPL-2xNQ but not to MPL-4xNQ. 






