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Abstract 

 

Peatlands globally are at risk of degradation through increased susceptibility to erosion as a 

result of climate change. Quantification of peat erosion and an understanding of the 

processes responsible for their degradation is required if eroded peatlands are to be 

protected and restored. Owing to the unique material properties of peat, fine-scale 

microtopographic expressions of surface processes are especially pronounced and present 

a potentially rich source of geomorphological information, providing valuable insights into the 

stability and dominant surface process regimes. We present a new process-form conceptual 

framework to rigorously describe bare peat microtopography and use Structure-from-Motion 

(SfM) surveys to quantify roughness for different peat surfaces. Through the first 

geomorphological application of a survey-grade structured-light hand-held 3D imager (HhI), 

which can represent sub-millimetre topographic variability in field conditions, we demonstrate 

that SfM identifies roughness signatures reliably over bare peat plots (<1 m2), although some 

smoothing is observed. Across 55 plots, the roughness of microtopographic types is 

quantified using a suite of roughness metrics and an objective classification system derived 
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from decision tree analysis with 98% success. This objective classification requires just five 

roughness metrics, each of which quantifies a different aspect of the surface morphology. 

We show that through a combination of roughness metrics, microtopographic types can be 

identified objectively from high resolution survey data, providing a much-needed 

geomorphological process-perspective to observations of eroded peat volumes and earth 

surface change. 

 

Keywords: peat; microtopography; Structure-from-Motion; structured-light imager; 

roughness 

 

1. Introduction 

 

Globally, peatlands contain 30−50% of all carbon stored in soils (Gorham, 1991) much of 

which is at risk of degradation through climate change (Gallego-Sala and Prentice, 2012), 

increasing its susceptibility to erosion. Once vegetation is removed, bare peat surfaces can 

be subject to accelerated erosion, the rate of which is determined by the dominant agent of 

erosion. Bare upland peat is particularly subject to erosion by water, wind and frost, 

alongside chemical oxidation (peat wastage) (Evans and Warburton, 2007). Thus, there is 

an urgent need to understand erosion drivers and ways of building resilience into human-

disturbed peatland systems. Yet, existing geomorphological data is very sparse. 

 

Blanket peat covers 7.5% of the British Isles (Tallis et al., 1997) where there has been 

widespread erosion and large carbon losses exacerbated by human interventions over the 

past century (Evans and Warburton, 2007). Erosion by flowing water is the dominant 

component in most UK peatlands; but local topography exerts a strong control in determining 

process dominance (Evans and Warburton, 2007). This has yet to be quantified accurately. 

Bare peat surface microtopography is especially dynamic and patchy; different surface 
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processes leave distinctive topographic roughness signatures and local surface 

microtopography can adjust rapidly in response to changing processes over relatively short 

timescales (Foulds and Warburton, 2007). For example, rainsplash leaves a pitted surface 

while surface wash results in linear grooves distinguished from wind-formed features due to 

their orientation (Evans and Warburton, 2007). Areas of peat deposition are smoother, while 

processes that increase sediment supply (freeze-thaw, desiccation) result in highly 

fragmented surfaces of small-scale roughness and aggregates (Repo et al., 2006). 

Roughness varies subtly with dominant process and can be classified according to process 

regimes (Bower, 1959; Evans and Warburton, 2007). The microtopography which results 

has a major impact on local water tables (Charman, 2002), surface aerodynamic roughness 

(Warburton 2003), overland flow hydraulics (Dunkerley, 2002), aeration (oxidation) of the 

acrotelm surface layer (Birnie, 1993) and gaseous emissions (Repo et al., 2009). 

 

Quantification of peat erosion has traditionally relied on sediment budgets extrapolated from 

local point-based direct measurements of erosion and deposition (e.g. erosion pins) (Evans 

and Warburton, 2005; Evans et al., 2006). While such measurements provide valuable 

information on peatland dynamics, they are limited in terms of process understanding by the 

paucity of specific process measurements and inherent spatial and temporal averaging 

(Warburton, 2003). High-resolution topographic survey techniques can be applied to partly 

address these limitations. Airborne LiDAR (or ALS) provides high-resolution (~m) 

topography with decimetre accuracy at landscape scales. In peatlands ALS has been used 

to explore the topographic context of gully erosion (Evans and Lindsay, 2010); however, 

gully erosion is only one component of peat erosion. Small-scale erosion features cannot be 

detected and the contribution of other peat surface processes such as surface wash, 

rainsplash and wind erosion to total erosion volumes remains unclear.  

 

High resolution topographic survey data can quantify sediment losses from peatlands and 

thereby evaluate the effectiveness of peatland restoration schemes (e.g. to feed into the UK 
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Peatland Code; IUCN UK Peatland Programme, 2017). Similar methods are now relatively 

commonplace throughout geomorphology (Williams, 2012). However, high resolution data 

sets contain a wealth of hitherto untapped information on surface properties that can help 

elucidate not just the extent of topographic change, but also infer the process through which 

these changes occurred by quantifying and examining topographic roughness signatures 

(Smith, 2014). The roughness of bare peat surfaces is important because surface roughness 

has feedbacks with near-surface sediment transfer mechanisms (Evans and Warburton, 

2005) while the relative magnitude and direction of the sediment transfer process can be 

inferred from close inspection of the surface roughness at small scales. Peatlands represent 

an ideal case study of such an approach, since the low dry density of peat (~0.1 t m-3) 

means that volumetric removal of peat is ~15 times greater than that represented by an 

equivalent dry mass of mineral material (Evans and Warburton, 2007). This property renders 

peat more susceptible to entrainment and transport; consequently, a wide range of surface 

features have been observed representing a range of processes. Moreover, it also means 

that these systems, being more susceptible to large volumetric changes, are ideal for the 

construction of morphometric sediment budgets. If peat microtopographic-types can be 

identified objectively from topographic data sets, this opens up a wealth of new information 

to inform geomorphological process interpretations. 

 

Recent work has identified the potential of terrestrial laser scanning (TLS) to represent fine-

scale topographic variability of peatlands (Anderson et al., 2010; Luscombe et al., 2015) and 

to quantify erosion and deposition in peatlands (Grayson et al., 2012) through the 

construction of morphometric sediment budgets. In addition, Structure-from-Motion (SfM) 

has emerged as a potential alternative (Mercer and Westbrook, 2016) and has been used 

extensively to quantify the microtopography and erosion of soil surfaces (e.g. Castillo et al., 

2012; Ouédraogo et al., 2014; Nouwakpo et al., 2014;  Bauer et al., 2015; Kaiser et al., 

2015). SfM, typically coupled with Multi-View Stereo (MVS) algorithms, generates point 

clouds from aerial or oblique imagery using consumer-grade digital cameras, without the 
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need for expensive hardware (James and Robson, 2012; Westoby et al., 2012; Fonstad et 

al., 2013; Smith et al., 2015). SfM-MVS data are typically less precise than obtained with 

TLS though this depends on survey range. A recent synthesis of 50 SfM surveys in 

geomorphology by Smith and Vericat (2015) demonstrated the dependence of SfM-MVS 

accuracy (root-mean squared error, RMSE) on survey range, observing a ratio of 1:639 

(though James et al. (2017) suggest that this can be improved to 1:1000 with more robust 

photogrammetric workflows). Thus, SfM from 150 m altitude imagery is of similar accuracy to 

ALS and is potentially better than TLS from short ranges using ground-based imagery (Smith 

and Vericat, 2015). However, validating the capabilities of SfM-MVS at short ranges in the 

field is problematic owing to the lack of superior reference data (Eltner et al., 2016).  

 

Most recently, portable 3D hand-held imagers (HhI) have become available that use a 

single-frame coding method from structured light imaging. They are typically used in surface 

metrology to test the quality of finished manufactured surfaces, as part of forensic crime 

scene investigations and in the construction industry to survey areas with limited access 

(OR3D, 2015). The mobility, ruggedness and versatility of HhIs renders them ideal for 

peatland geomorphology. While other researchers have adapted the similar and more 

affordable (~£100) Microsoft® KinectTM sensor for geomorphological data collection (e.g. 

Mankoff and Russo, 2013; Hämmerle et al., 2014; Chávez et al., 2014; Tortini et al., 2014; 

Thomsen et al., 2015; Nicholson et al. 2016), the KinectTM was initially designed to detect 

human motion in an indoor environment and is not best suited to use in the field, being 

readily saturated by sunlight in an outdoor setting (Chávez et al., 2014). 

 

The overall aims of this study are (i) to establish an objective and reproducible 

classification of bare peat surface microtopography from high resolution topographic data; 

and (ii) to test whether close-range SfM-MVS can provide topographic data of sufficient 

precision to allow this classification to be used in practice. To address these aims, we 

present three objectives: 
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(1) To outline a new conceptual framework of peat surface roughness types by relating 

observed forms to the dominant processes responsible for their formation; 

(2) To establish whether SfM-MVS can meaningfully reproduce millimetre-scale 

roughness metrics that can be used to examine topographic roughness signatures 

of peat surfaces through validation against HhI data; and 

(3) To objectively define a typology of peat roughness based on plot-scale (<1 m2) SfM-

MVS surveys and a range of roughness metrics. 

 

2. Conceptual framework of peat surface roughness 

Bare peat is highly responsive to changing environmental forces acting at the near surface 

and characteristic microtopographies emerge in response to rainfall, surface wash, wind 

action and fluctuations in surface temperature (both heating (drying, desiccation) and 

freezing) (Bower, 1959; Evans and Warburton, 2007) (Figure 1).  Bower (1959) was one of 

the first observers to recognise that the detailed surface features of bare peat retain 

evidence in their microtopography of relative importance of the interaction between material 

properties and the main agents of surface erosion. Therefore spatial and temporal variations 

in surface roughness reflect contrasts in the physical properties of the peat and key erosion 

processes acting in combination (Evans and Warburton, 2007).  

 

[FIGURE 1] 

 

In terms of the processes which generate small scale irregularities of the peat surface, the 

direct impact of rainfall, surface wash, wind action and changes in surface temperature 

(freezing and drying) are recognised as the key natural drivers in conditioning bare peat 

roughness (Evans and Warburton, 2007). Figure 2 provides a conceptual model of process-

form linkages of bare peat surfaces. The diagram is a matrix showing the relationships 

between the four key surface processes and the typical surface roughness characteristics 

resulting from these interactions. The framework proposed in Figure 2 provides a 
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comprehensive assessment of the ‘natural’ processes operating on bare upland peat 

surfaces and is designed to capture the key process-form relationships caused by wind, rain 

and temperature variations acting on bare peat surfaces. Each of the panels in the matrix 

represents a schematic showing the typical two dimensional (cross-section) form and scale 

of the surface roughness. Each panel shows a length scale of 1 m and a vertical scale of 0.1 

m. Generally the scale of the observed roughness will increase with intensity of process, e.g. 

roughness increases along a trajectory from the bottom-left to top-right in each of the panels. 

The 1 m length scale is significant because for the purposes of this paper bare peat surface 

microtopography is operationally defined as small-scale surface features whose repeated 

structures are recognised at scales of < 1 m. The scale of these features is therefore 

generally smaller than the typical microforms (e.g. mounds, haggs, and ridges) included in 

the ecological classification of mires (Lindsay, 1995; Warburton, 2003) but generally larger 

than the engineering classification of peat structure which is based on texture and 

macrofossil content (Radforth, 1969). In the square matrix shown in Figure 2, examples of 

surface roughness types associated with the four panels of the leading diagonal are also 

shown in Figure 1 for comparison with the schematic. 

 

[FIGURE 2] 

 

The physical basis for this framework is well-established from decades of field observations 

(Bower, 1959; Bower, 1961; Warburton, 2003; Evans and Warburton, 2007; Foulds and 

Warburton, 2007) but this is the first time this has been brought together in terms of a 

process-form conceptual model. Peatland scientists have had a long-term interest in surface 

microtopography but this has mostly concentrated on vegetated surfaces (Pearsall, 1956; 

Lindsay et al., 1985; Pellerin et al., 2006). Bare peat surfaces have not been systematically 

described. The conceptual framework shows the typical roughness types associated with the 

key process regimes, shown in the panels of the leading diagonal. Rainfall results in a pitted 

surface whose roughness increases with intensity resulting in a typical toothed surface of 
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raised pedestals (Figure 1a) (Bower, 1959). If this occurs in association with surface wash 

and/or wind-driven rain then there is a directional flux of eroded peat which leads to the 

development of asymmetrical roughness aligned in the direction of the prevailing wind or 

local slope (Warburton, 2003). If the flux is high enough then small microterraces or 

benches (vertical relief c. 0.1 m) can develop (Figure 1f) (Evans and Warburton, 2007). 

Surface wash will tend to transport eroded peat along hydraulic gradients ponding in surface 

depressions, infilling the local microtopography and generally producing a smooth surface 

(Figure 1b). If this occurs in association with wind, microterraces can develop whose upper 

surfaces are smoothed by the wash process forming small peat flats (Hulme and Blyth, 

1985; Warburton, 2003).  

 

Prolonged exposure of bare peat surfaces to wind results in surface desiccation and the 

development of a surface crust (Foulds and Warburton, 2007) (Figure 1c). With increased 

duration the crust may be locally entrained and rolled over producing ridges of dry peat 

projecting up to 0.1 m above the general surface. Under wet conditions and high wind-driven 

sediment flux features akin to climbing ripples are observed and these leave distinct small-

scale wind ridges (Figure 1e) (Evans and Warburton, 2007). Changes in temperature also 

have an important impact on surface roughness. Both prolonged warm temperatures (local 

drought) and cold winter temperatures (surface freezing) can lead to surface desiccation 

resulting initially in small scale cracking which with prolonged duration can result in large 

desiccation cracks exceeding several decimetres in depth (Figure 1d) (Francis, 1990). In the 

presence of moisture (under rain and surface wash conditions) freezing temperatures can 

result in local frost heave which breaks up the surface and produces frost-fluff or nubbins 

(Washburn, 1979; Repo et al., 2006). Therefore it can be seen that there is a clear link 

between the dominant process regimes acting on a bare peat surface and the characteristic 

types of roughness which evolve. Although some equifinality is evident in the resultant 

microtopography (e.g. surface wash and wind-driven rain), subtleties in the roughness can 
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be used to differentiate the dominant processes which have acted to produce the 

characteristic roughness forms. 

 

The framework proposed in Figure 2 applies to ‘natural’ processes operating on bare upland 

peat surfaces and is based on past research and direct observations of surfaces over 

multiple years (Evans and Warburton, 2007). It provides a clear framework for generating 

hypotheses that can be tested by quantitative measurements and usefully identifies 

examples where different processes result in similarity of form (equifinality). The 

classification in Figure 2 can be extended to include other processes such as peat mining 

(Campbell et al., 2002; Tuukkanen et al., 2014), animal trampling (Pellerin et al., 2006) and 

burning (Maltby et al., 1990) which also act to influence surface roughness; but in this initial 

test our assessment is deliberately restricted to include the dominant natural processes 

acting on peat surfaces.  

 

3. Methods and Study Site 

 

3.1 Study Site 

The study area is located in the Moor House–Upper Teesdale National Nature Reserve in 

the North Pennine uplands in Northern England (Figure 3). The bedrock geology is part of 

the Carboniferous series composed of interbedded sandstone, shale and limestone which is 

overlain by periglacial deposits of reworked till and overbank deposits. The clay-rich nature 

of the basal sediments allows development of blanket peat even on limestone bedrock. 

Ombrotrophic blanket peat is the dominant soil type and varies in depth from 1 to 3 m, but 

can locally exceed 9 m. It is estimated that approximately 17% of the blanket peat cover is 

eroded (Garnett and Adamson, 1997), with dendritic gullying dominating on lower angled 

slopes and linear gullying on the steeper slopes (Bower, 1961).  
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On flatter ground areas of bare peat occur and the study site, Moss Flats, is a 0.5 ha area of 

bare peat (2014 estimate) which forms a significant erosional subsystem of the Rough Sike 

catchment (Figure 3). Average erosion rates are 0.47 t ha a-1 (Warburton, 2003). The bare 

peat surface (Figures 1 and 3) consists of a mosaic of flats, terraces, pedestals, wind ridges 

and haggs representing an assemblage of typical erosional and deposition forms associated 

with an active area of upland bare peat. The climate is ‘Upland Maritime’ being characterized 

by cool, cloudy and wet conditions (Manley, 1942, 1943; Smithson, 1985). High winds are 

common and annual precipitation is approximately 2000 mm. The prevailing wind direction is 

from the southwest. In winter ground surface freezing occurs in the upper few centimetres of 

the peat and during summer periods of reduced rainfall, short periods of drought result in 

surface desiccation of the peat (Foulds and Warburton, 2007). Surveys took place in April 

2016 on a mild day with no rainfall. As such, some roughness types were not exhibited (e.g. 

desiccation cracking, frost fluff). 

 

[FIGURE 3] 

 

3.2 Structure from Motion Multi-View Stereo (SfM-MVS) Surveys 

 

To characterize the millimetre-scale variability of peat surface microtopography, 55 bare peat 

plots were surveyed using Structure-from-Motion with Multi-View Stereo (SfM-MVS) 

photogrammetric techniques, following the guidance outlined in Smith et al. (2015) and 

detailed below. Plots were between 0.5 and 0.9 m2 and were typically surveyed in groups of 

four within a single SfM-MVS survey. Using a Panasonic DMC-TZ60 camera (focal length 4 

mm which is a 35-mm focal length equivalent of 25 mm), oblique convergent 18 Megapixel 

images were taken from viewpoints surrounding the plots that were ~1.5 m above ground to 

mitigate against the doming effect as described in James and Robson (2014). Approximately 

34 images were taken for each survey and angular changes of < 20° between adjacent 

camera locations were ensured to facilitate correct identification and matching of keypoints 
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(Moreels and Peronas, 2007; Bemis et al., 2014). The resulting ground pixel size was sub-

mm (~0.7 mm). Plots were distributed over Moss Flats to incorporate the greatest possible 

range of surface roughness types and topographic variability and to provide good spatial 

coverage across the bare peat area (Figure 3). The clustering of plots in groups of around 

four permitted the evaluation of both the inherent variability in the microtopography (at a 

single location) and larger-scale effects of aspect, topographic position and exposure to the 

wind (i.e. to check that the results were consistent across the site for a given 

microtopographic type). Plots were classified according to their microtopography into a four-

fold classification system based upon the scheme outlined in Section 2: peat flats (14 plots), 

pedestals (8 plots), wind ridges (20 plots) and microterraces (13 plots). Note that not all of 

the microtopographic types outlined in Section 2 were identified at the site during the April 

2016 surveys as several roughness types are only emergent following particular 

environmental conditions. 

 

Photographs were imported into Agisoft Photoscan Professional 1.2.5 and SfM algorithms 

implemented, estimating simultaneously camera positions, camera intrinsic parameters and 

scene geometry. See James and Robson (2012) and Smith et al. (2015) for further details. 

Georeferencing was performed using 5 survey disc targets of 50 mm diameter surrounding 

each survey area that were surveyed using a Leica TS15i reflectorless total station (TPS). 

Three-dimensional co-ordinates were recorded in a local co-ordinate system. Averaging ten 

readings for each target yielded a sub-mm precision in TPS co-ordinates. Survey disc 

targets were identified in the imagery and the 3D co-ordinates from the total station survey 

were then imported and a linear similarity transformation performed to scale and 

georeference each SfM point cloud. Georeferencing errors were all sub-cm, with the majority 

of surveys <4 mm and identified to within ~3 pixels. MVS image matching algorithms were 

performed to produce final dense point clouds with an average point density of ~1.4 Mn 

points m-2 (i.e. 1.4 points mm-2). Point clouds were then imported into CloudCompare 
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(Girardeau-Montaut, 2016) and plots were linearly detrended and normal vectors of each 

point computed. 

 

Since some roughness metrics are calculated using a Digital Elevation Model (DEM) while 

others are calculated using the point cloud directly, two output topographic data products 

were required for roughness analysis (section 3.4):  

(1) A 5 mm resolution DEM was generated using the mean point elevation in each cell 

(following Mercer and Westbrook, 2016); 

(2) A sub-sampled point cloud was generated through octree subsampling (level 7), a 

data decimation step that reduces the point density, ensures a more uniform point 

distribution in 3D space where data are available (octree cell size was typically 7 

mm) and prevents clusters of points from influencing the results.  

 

Neither DEMs nor point clouds were interpolated. For the three plots used to evaluate SfM 

against the HhI, an additional 1 mm resolution DEM was generated using the mean 

elevation observed in each cell to examine the limits of the SfM data, though the 5 mm 

DEMs were used for roughness analysis. 

 

3.3 Hand-Held Imager 

 

Three plots comprising a range of roughness types were also surveyed using a Mantis 

Vision F5 Short-Range 3D Imager to provide a reference topographic data set. Since, to the 

authors’ knowledge, this study represents the first use of a survey-grade hand held 3D 

imaging system in geomorphology, the instrument will be described in detail. 

 

The Mantis Vision F5-Short Range Hand-held 3D Imager (hereafter referred to as a Hand-

held Imager or HhI) operates using near infrared structured light technology similar to the 

aforementioned KinectTM sensor. Near infrared light is projected through a mask containing a 
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proprietary single-coded-light pattern. This pattern is projected onto a 3D surface in a single 

instantaneous snapshot. The deformation pattern is then sensed by the instrument and 

using index information in the structured light, active triangulation algorithms can determine 

a full 3D image. The nature of the codification method permits a point density of ~50,000 

points per frame that is an order of magnitude greater than alternative systems. With a rate 

of 10 frames-per-second, the HhI is thus capable of acquiring 0.5 Mn points per second 

(OR3D, 2015). The data is then downloaded into Mantis Vision’s 3D production software 

where each frame is converted into a dense point-cloud. Owing to the short time interval 

between frames (0.1 s) each frame is then registered with the previous to create a final 

dense model and an automatic global alignment process reduces any misalignment during 

the cloud registration process. The point spacing of a single frame is ~1.6 mm (at 0.5 m 

range) though since the 3D surface is derived from a composite of multiple frames, the final 

point density is unlimited. The stated 3D point accuracy of the F5-SR is 0.05 mm, though 

trials suggest such accuracies are not always achievable (Kersten et al., 2016). The system 

compares favourably with the maximum point accuracy of the Kinect TM (~1 mm; Tortini et al., 

2014) which Lachat et al. (2015) found to be challenging for accurate 3D modelling even in 

an indoor setting.  

 

The HhI hardware consists of a video camera and a projector, both of which are integrated 

into a grab handle (Figure 4). It is ideally suited to small-scale geomorphological 

investigation as it weighs just 0.6 kg, is rugged for use in an outdoor environment and can be 

used in a wide range of lighting conditions (from complete darkness to direct sunlight as it is 

resistant to sun flashes). The operating range is 0.3 – 0.8 m with a maximum field of view of 

0.55 x 0.65 m (though note that a longer range version of the F5 is also available with a 

maximum range of 4.5 m). The short exposure time (3 ms) means that the device captures 

scene geometry in free motion and thus can be mobile around complex scene geometries. 

Video data are displayed on an attached control unit; however, data processing does not 

take place until after the survey is complete. Manual movements of the sensor require co-
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ordination with the display live-view, and in practice the speed and quality of data collection 

are influenced by operator experience (Kersten et al., 2016). For this study, high resolution 

plot surveys were conducted in a matter of seconds. To improve the registration of individual 

frames (especially on flat relatively featureless surfaces), geometric objects (cuboids, 

cylinders, etc.) were placed near each plot corner. In addition, despite the low sensitivity to 

ambient light, the plot was kept in the shade during the final surveys which took place on a 

bright sunny day. 

 

[FIGURE 4] 

 

Alignment of the HhI point clouds with those derived from SfM-MVS was achieved by 

manually picking >5 common tie-points in each survey. Since alignment errors are similar to 

anticipated differences between survey methods, the focus of this study is not of a direct 

quantitative evaluation of point elevations (e.g. through a DEM of Difference). Instead, the 

focus of this study is to compare the ability of each method to represent individual features 

on the peat surface and, crucially, to quantitatively compare roughness metrics calculated 

from each data set. A 1 mm resolution HhI DEM of each plot was generated, again using the 

mean elevation within each cell. 

 

3.4 Roughness Analysis 

 

Roughness metrics each provide a particular summary of the topographic variability of a 

given surface (typically at a ‘sub-grid’ scale) focusing on a specific aspect of that surface. As 

such, no single quantity can be defined uniquely as roughness (Smith, 2014) and complex 

surfaces cannot be described fully by a finite number of parameters (Gadelmawla et al., 

2002). In this exploratory analysis, a range of roughness metrics were computed to 

determine those that best discriminate different peat surface microtopographic types. In this 

application we use the methodology to distinguish between peat flats, microterraces, wind 
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ridges and pedestals (Figures 1 and 2). Following the classification of roughness metrics and 

discussion in Smith (2014), the parameters examined here are divided into six categories 

(see Table 1): 

 

(1) Bulk amplitude parameters: these quantify elevation variance of the points normal 

to a surface (often described as ‘relief’) and do not take into account the spatial 

relationship between each point. Such amplitude parameters are often calculated 

from the probability distribution of elevation values, by far the most common of which 

is the standard deviation of elevations ız that is seen almost as a ‘default’ roughness 

parameter in geomorphological literature (e.g. Sankey et al., 2010; Nield et al., 2011; 

Brasington et al., 2012). In addition to ız, skewness and kurtosis of the probability 

distribution were calculated (Aberle and Nikora, 2006; Aberle et al., 2010) and, since 

the topographic data were non-normally distributed (albeit with only minor departures 

from normal), the inter-quartile range is calculated as a non-parametric alternative. 

 

(2)  Localised elevation differences: while the above parameters provide a summary 

over the whole plot (~0.7 m2), other authors have estimated roughness at a much 

smaller scale (relative to the DEM extent) and summarised these localised elevation 

variance values over the whole plot (e.g. Riley et al., 1999; Sankey et al., 2011). 

Here three scales of local calculation were evaluated. First, using a 50 mm sampling 

window (identified as the typical dimension of a pedestal or wind ridge) the deviation 

of each point from a best-fit plane over the sampling window was calculated and the 

median value across the plot reported. To represent the largest local roughness 

features in the suite of roughness metrics, the 95th percentile of the plot deviations 

was also reported. Second, following the tradition of reporting nearest-neighbour 

elevation differences for DEMs (in this case of 5 mm resolution), the maximum and 

root-mean squared (RMS) differences between neighbouring grid cells were 
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computed (the latter of which is termed ‘ruggedness’ by Riley et al., 1999). Finally, at 

the finest scale, the mean elevation range within each 5 mm cell was calculated. 

 

(3) Spacing parameters: these evaluate the density of features identified on the 

surface. Using the 5 mm DEM of each plot, peaks and pits were identified through 

analysis of the elevation of each cell relative to the 8 neighbours and the density of 

these features within each plot calculated.  

 

(4) Hybrid parameters: these combine both elevation variability and spacing aspects 

and, as such, are typically slope-related terms. Compared with amplitude 

parameters, hybrid parameters are much more dependent on sample spacing. The 

mean and standard deviation of all local slopes on the 5 mm DEM were calculated, 

with the latter found to be a useful measure for morphometric analysis by Grohmann 

et al. (2011). The statistical variability of the normals of the slopes can be an 

informative roughness metric; Woodcock (1977) and McKean and Roering (2004) 

use the orientation tensor method to compute the three normalised eigenvalues (S1, 

S2, S3) that describe the amount and nature (i.e. uniaxial cluster or girdle) of 

clustering of vector orientations. The logarithms of two ratios (ln(S1/S2) and ln(S2/S3)) 

are computed. Where S1 is higher than other eigenvalues, orientation data are 

clustered (as might be expected of a smooth surface); where both S1 and S2 are 

higher than S3, a girdle-like pattern is observed (McKean and Roering, 2004). 

Although these metrics are often computed together for graphical analysis, here they 

are both individually included in the exploratory search for an objective classification 

of peat surface roughness types.  

 

So-called ‘tortuosity’ measures as used commonly in geomorphology (e.g. Morgan et 

al., 1988; Moser et al., 2007) are also considered as ‘hybrid’ parameters. These 

compute the ratio of a measured surface profile length with that of the equivalent 
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straight line. Here the tortuosity of orthogonal profiles from all rows and columns of 

the DEM was calculated and the mean value reported. Similarly the frontal area per 

unit planar area was calculated and averaged across all cardinal directions. As wind 

erosion is commonly observed on peat surfaces, the aerodynamic roughness height 

z0 (a combination of frontal area and amplitude measurements, following the raster-

based implementation in Smith et al., 2016) was also estimated for each cardinal 

direction and the mean value reported.  

 

(5) Geostatistics and multi-scale parameters: semivariograms are commonly used to 

represent the variation of a vertical length scale with increasing lag distance. 

Semivariograms were calculated for each plot and, where a spherical model provided 

a good degree of fit (in all but two cases), the fitted range and sill values recorded 

(Oliver and Webster, 1986). Power spectra were also calculated for each surface; 

these also represent the way in which roughness or spectral power varies with 

wavelength. Radially-averaged power spectra decompose the observed topographic 

variation into different scales (following a two-dimensional Fourier decomposition) 

and have been shown to exhibit scale invariance such that a power-law equation can 

be fit between spectral power and wavelength (Turcotte, 1997). The slope of the 

power spectral density function was calculated following Aberle et al. (2010). 

 

(6) Anisotropy parameters: these evaluate the extent to which topographic variability is 

isotropic and may identify features aligned to prevailing wind or water flow directions, 

for example. The geostatistical range and sill described above were calculated in 

directional semivariograms with 22.5 degree windows (as per Vázquez et al., 2005) 

and the ratio of the minimum and maximum values used to represent the degree of 

anisotropy (with values approaching unity being isotropic). z0 and surface frontal area 

were also calculated for each cardinal direction and the anisotropy of these estimated 
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in the same way. The anisotropy of tortuosity was also calculated in this manner 

using just the orthogonal profile values. 

 

[TABLE 1] 

 

In total, 26 roughness metrics were computed for each surface. For a metric to be useful, it 

must be robust for characterising the feature of interest given the data quality available. 

Rarely is SfM-MVS evaluated in its ability to represent roughness (Eltner et al., 2016); 

however, such validation is essential if peat surface types are to be identified from SfM-MVS 

derived roughness values. Thus, each roughness metric was calculated using both SfM-

MVS data and HhI data on the three plots where both data were available (5mm DEMs were 

used for roughness calculation). Differences between roughness values reflect both the 

differences between the survey methods (as discussed in a recent methodological 

comparison by Thomsen et al., 2015) and the robustness of the roughness metric in 

representing the feature of interest. If a roughness metric is sensitive to methodological 

differences, then it is of limited use for an objective classification using SfM data. Thus, for 

inclusion in the objective classification of bare peat surface types, it needs to be 

demonstrated that the roughness metric is reliable and can discriminate between surface 

types regardless of survey method. In comparing roughness metrics between surface types 

and survey methods, there are 4 possible scenarios: 

(i) Identical values for each method: differences in survey precision have no 

effect on the value of the roughness metric. The values for each surface type are 

identical for the different survey methods. 

(ii) Systematic offset: the SfM model may not be able to recreate the sub-mm 

details observed in the HhI model so differences between the absolute values of 

a roughness metric would be expected. However, if the difference between them 

is systematic (e.g. HhI values consistently higher than SfM values) then it will not 

influence the objective classification.  
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(iii) Offset is bigger than differences between microtopographic types: the order 

of microtopographic types may be the same for each survey method, but there is 

some overlap in the roughness metric values. While not ideal, this would still be 

acceptable for the objective classification as, crucially, the order is preserved. 

(iv) Metric is non-robust to survey precision: the lower precision of the SfM data 

influences the roughness metric in a non-systematic way. Relative to the HhI 

value, some surfaces exhibit higher roughness values while others exhibit lower 

roughness values. The order of the surface types is not preserved and thus the 

surface is not adequately represented by the SfM topographic model when 

judged on this roughness metric. 

For the objective classification described below, scenarios (i) and (ii) are advantageous, 

though (iii) is also acceptable. Scenario (iv) is not appropriate as the roughness value is 

dominated by the survey method rather than reflecting the ‘true’ surface. 

 

3.5 Objective classification of microtopographic surfaces 

 

Decision trees were used to identify and describe structural patterns in the data and identify 

peat microtopographic type (i.e. an objective variable) in terms of a suite of roughness 

metrics (i.e. explanatory variables). Decision tree analysis has been used previously in many 

geomorphological investigations, including landform detection from remotely sensed imagery 

(e.g. Schneevoigt et al., 2008); landslide susceptibility assessment (e.g. Saito et al., 2009) 

and to classify land cover (e.g. Pal and Mather, 2003). It is a computationally fast technique 

that makes no statistical assumptions. The Weka software programme was used to produce 

a method of classifying the peat surfaces based on the calculated roughness metrics. The 

J48 top-down recursive ‘divide-and-conquer’ classification method was used, based on the 

C4.5 statistical classifier and used to generate a decision tree (Witten et al., 2011). The J48 

classifier was used to identify the minimum number of roughness metrics needed to correctly 

classify peat microtopographic roughness with information theory-based heuristics used to 
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select each node based on quantification of entropy in terms of ‘information gain’. All 

roughness metrics were normalized prior to analysis. The classification program was run 

using all the peat surfaces as a training data set to establish the maximum accuracy and 

produce the best possible decision tree.  

 

While the final decision tree used all surfaces to train the classifier, two tests the decision 

tree approach were performed, separating the data into training and validation sets. First, 

66% of the total data were used as training data and the model then evaluated on the 

remaining 34% to provide an independent check on the ability of roughness metrics to 

distinguish between these surface types. As a second test of model performance, a ten-fold 

cross-validation was performed where instances are split into ten equal sized sets divided 

into two groups (9 sets for training and 1 set for validation). The performance of the model is 

computed as the average of ten repetitions with a different set as the training set for each 

repetition. 

 

4. Results 

 

First, section 4.1 examines the ability of SfM to represent the fine details of the peat surface 

through comparison of the 1 mm DEMs generated through SfM and the HhI. Section 4.2 

then quantitatively tests the ability of SfM to reproduce roughness metrics of peat surfaces, 

using the HhI data as a reference. Section 4.3 then summarises roughness values for all 

SfM plots. Finally, an objective classification of bare peat surfaces is presented in section 4.4 

using these SfM-derived roughness metrics. 
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4.1 SfM-MVS Comparison with HhI data 

 

Registration of each of the HhI point clouds with the corresponding SfM-MVS point cloud 

yielded an RMSE between tie-points of 1.25-1.77 mm (Table 2). These values are similar to 

the overall cloud-to-cloud (C2C) elevation differences of 1.40-2.95 mm calculated between 

all points in the clouds (Girardeau-Montaut, 2016). Therefore, absolute differences between 

point co-ordinates are not analysed further as point precision is more likely to limit the 

roughness analysis than accuracy. The stated precision of the HhI was also tested by 

scanning a planar target surface adjacent to a plot. Based on ~26,600 observations, the 

median absolute deviation from the plane was just 0.197 mm. 

 

[TABLE 2] 

 

To demonstrate clearly the differences between HhI and SfM-MVS topographic data, 1 mm 

resolution DEMs are presented (without interpolation of missing points; see Figures 5 and 6); 

however, roughness analysis are conducted at 5 mm more suited to the SfM-MVS data. The 

1 mm DEMs below clearly demonstrate the superior precision of the HhI data which is less 

apparent in the 5 mm DEMs. However, since some roughness metrics use sub-grid scale 

information, this finer scale is still important and allows identification of the limits of the SfM-

MVS method as applied here. At 1 mm DEM resolution, the lower point density of the SfM-

MVS surface models is apparent (Figure 5). The largest differences between the two survey 

methods were observed at either elevation extreme: the HhI presented microtopographic 

protrusions as being higher and pits as being deeper than the SfM-MVS model. Features are 

resolved more sharply with the HhI, indicating that some smoothing is taking place in the 

SfM-MVS workflow.  

 

These differences are clearer when comparing a smaller subsection of each comparison plot 

as the fine details are more readily apparent (Figure 6). The HhI resolves tiny details of the 
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surfaces; for example, small fibrous elements lying on the peat flat surface are seen as a 

sharp peak (2.73 mm wide, 1.45 mm high) in the transect across the HhI data (Figure 6, right 

panel). From the orthophotograph (left panel) it appears that this feature is just 2.5 mm in 

width, but is not detectable in the SfM-MVS DEM (left arrow). Given the linear nature of the 

feature and lack of surrounding peaks, this is unlikely to be an alignment error. The co-

incidence of this peak with a feature in the orthophotograph, along with the sub-millimetre 

plane deviations described above, lends support to the use of the HhI data as a validation 

dataset, able to reproduce sub-millimetre topographic variability that is smoothed out of SfM-

based models. 

 

A similar comparison can be made on the microterrace plot, where elevation profiles cover 

both a small particle of unfragmented plant material (arrow close to A) and a pronounced 

bird footprint indented into the otherwise relatively flat peat surface. In both cases, the 

vertical extent of the feature is greater in the HhI model (wood 3.0 mm high, footprint 10.7 

mm deep) than in the SfM model (1.7 mm and 8.7 mm respectively) (Figure 6). Inspection of 

elevation ranges of each plot confirms that this effect is present throughout the data. 

Smoothing does appear to have taken place in the SfM-MVS data with the footprint 

appearing 25% wider in the SfM model; visual inspection of each DEM, particularly the 

microterrace, confirms the effect with sharper images more clearly resolved in the HhI 

DEMs. 

 

At the pedestal plot, the HhI had difficulty in representing the full surface microtopography, 

with large data gaps evident throughout the plot. From Figure 6 it seems that while some of 

these gaps are located in shadows, others are not and (from comparison with the SfM DEM) 

cover areas of both high and low elevation. The gaps are most prevalent on surfaces with a 

normal vector facing towards the top of the plot as displayed in Figures 5 and 6, which 

suggests that the most likely cause is that an insufficient range of viewpoints were sampled 

during the field survey. 
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[FIGURE 5] 

 

[FIGURE 6] 

 

4.2. Comparison of roughness metrics by survey method 

 

Roughness metrics were calculated based on the full plots, like the examples shown in 

Figure 5. Here we describe the ability of SfM to characterise a roughness metric robustly in a 

way that is consistent with the more accurate HhI values. Both SfM and HhI data were 

available for 3 plots covering a range of roughness types; where the ordering of roughness 

values is consistent between methods, the metric is considered reliable, especially so when 

there is no overlap between values for different plots. Figure 7 shows each value scaled to 

represent the proportion of the range between the smallest and largest value (i.e. all smallest 

values plot at 0, all largest values plot at 1, a value halfway between the two plots at 0.5). 

Owing to data gaps in the HhI topographic models (Figure 6), some caution is required in the 

interpretation of the roughness differences, as the reference HhI topographic models do not 

fully represent the true surface, especially for the pedestal plot. However, the roughness 

values were calculated on a 5 mm resolution DEM (whereas the DEMs in Figures 5 and 6 

are 1 mm resolution) or the octree-resampled point cloud (~ 7 mm resolution), therefore the 

data gaps are reduced in these DEMs.  

 

In general, the pedestal plot exhibits the highest roughness values and the peat flat plot the 

lowest, though with a substantial number of exceptions. The HhI values also typically plot 

higher than the SfM-MVS values, again, suggesting some smoothing in the SfM-MVS 

workflow. Encouragingly, only four roughness metrics show inconsistent ordering between 

survey methods: the ratio of the first two eigenvalues, the gradient of the power spectral 

density function and the anisotropy ratio of both the geostatistical sill and tortuosity.  



 

 

This article is protected by copyright. All rights reserved. 

 

Over half of roughness metrics (14 out of 26) clearly discriminate between the plot types 

(scenario (i) or (ii)), suggesting that SfM-MVS surveys can recreate the relevant features of 

the peat surface for calculation of these roughness metrics. Three geostatistical metrics (sill, 

range and the anisotropy ratio of the range) all show a good degree of clustering for each 

plot. Summaries of vertical length scales across the entire plot (aside from skewness) also 

distinguish each plot, through there is only a small gap between the microterrace and 

pedestal surfaces. Metrics that focus on the localised elevation variability also distinguish the 

plot types, though when considered at the sub-5 mm scale, the HhI exhibits greater 

variability in elevation. This difference highlights the aforementioned greater prominence of 

peaks and pits in the HhI model. Considering the density of these peaks and pits, all HhI 

values were higher than all SfM-MVS values across the three plots. Examination of transects 

in Figure 6 indicates that this is a smoothing effect of SfM-MVS and thus, although the plot 

ordering is the same for both methods, point/pit density values from SfM-MVS data should 

be considered unreliable for further roughness analysis as they are sensitive to data quality.  

 

Hybrid parameters appear to distinguish between microtopographic types effectively. 

Individual normalized eigenvalue ratios could not distinguish the microtopographic types, 

though when the ratios are used in combination the plots are discriminated, with 

microterraces appearing the most like a uniaxial girdle (section 4.4). Only three of the 

roughness metrics summarising the anisotropy of surfaces (frontal area, z0 and geostatistical 

range) showed a consistent ordering between plots.  

 

[FIGURE 7] 

 

4.3. Roughness metrics between microtopographic types 
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Roughness metrics that either are non-robust or exhibit strong correlations with other metrics 

that measure a similar surface characteristic were excluded from further analysis. Based on 

the results in Figure 7, the tortuosity anisotropy and gradient of the power spectral density 

function were excluded from further analysis as they do not robustly characterise the feature 

of interest. Both eigenvalue ratios are retained as they are best considered in combination 

(and did distinguish microtopographic types when considered together) and the anisotropy 

ratio of the geostatistical sill was retained since the overlap in ordering was only very small. 

Owing to the big difference between absolute values, peak and pit density were also 

excluded. Standard deviation of elevations was also removed from analysis since elevation 

data were non-normal (albeit with minor deviations) and it exhibited a strong correlation (r = 

0.99) with inter-quartile range of elevations. Similarly, all metrics quantifying localised 

elevation differences were well correlated (all correlations >0.90); only the median deviation 

from the plane (50 mm kernel) and within-cell (5 mm) elevation range were retained since 

these had the lowest correlations with the inter-quartile range and covered two different 

scales. Skewness was excluded as all values were close to zero. 

 

Thus, 17 roughness metrics were retained for exploratory data analysis. These are 

summarised in Figures 8-11. Figure 8 presents the distribution of those metrics based on 

elevation variability, noting that each covers a different scale of analysis (~500 mm, 50 mm 

and 5 mm). The larger scale metrics (IQR and 50 mm deviation from a plane) clearly 

distinguish the flat microtopographic type from the others. The microterrace plots display 

larger variability at the plot scale (Figure 8A) than within a 50 mm window (B) or 5 mm cell 

(C) and can thus be easily distinguished within a bivariate plot space as seen in Figure 8D. 

Figure 8D summarises the data for (A) and (B) by providing a graphical description of the 

central part (approximately half) of each dataset and is created by transforming the 

coordinates of the data into polar coordinates, smoothing on a periodic scale and 

transforming back (Cleveland and McGill 1984; Cox 2005). Some differences between the 

pedestal and wind ridge microtopographic types can be seen in Figure 8D since the latter 
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typically exhibit a higher IQR and lower deviation within a 50 mm window, but substantial 

overlaps are observed. 

 

[FIGURE 8] 

 

A similar picture is observed for the 7 hybrid roughness parameters retained for analysis 

(Figure 9). The peat flat microtopographic type is easily distinguished for all metrics, as is the 

microterrace type for some metrics (Figure 9A, C and D). While small differences between 

pedestals and wind ridges can be seen (with pedestals showing higher mean slope, 

tortuosity and frontal area), the overlaps remain substantial. Eigenvalue ratios (Figure 9F) 

can distinguish peat flats and microterrace (both of which exhibit high degrees of clustering), 

but cannot distinguish between pedestals and wind ridges 

 

[FIGURE 9] 

 

A summary of geostatistical parameters is presented in Figure 10A-B while fitted spherical 

semivariogram models for the maximum, mean and minimum parameter values in each plot 

type are shown in Figure 10C. Both microterrace and wind ridge plots show similar ranges 

(Figure 10A). Interestingly the sill value of the pedestals is typically smaller than for the wind 

ridges, while microterraces show the largest range of values.  

 

Anisotropy ratios typically display a wide variability within each microtopographic type 

(Figure 11). With the anisotropy ratio representing the minimum value of a parameter as a 

proportion of the maximum value recorded for a given direction (and thus higher values 

exhibit a higher degree of isotropy), wind ridges generally display more anisotropy than 

pedestals, possibly because they are wind-aligned. This greater anisotropy is most evident 

for the frontal area and aerodynamic roughness metrics (Figure 11C-D). The anisotropy of 

microterraces, that are stepped in one direction, can also be seen. 
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[FIGURE 10] 

 

[FIGURE 11] 

 

4.4 An objective classification of peat roughness from high resolution topographic data 

 

The patterns in the roughness metrics described in the previous section clearly show distinct 

but variable relationships to the four peat microtopographies but the optimal combination of 

metrics required to robustly define these forms has not been objectively determined. Using 

the 17 roughness metrics described above, a decision tree analysis was performed. Metrics 

were standardised prior to analysis, though re-running the analysis on non-standardised 

data yielded no difference in the model performance. Therefore, values reported in Figure 12 

are non-standardised for clarity. The J48 classifier identified 5 roughness metrics that were 

required to classify the peat surfaces: Inter-quartile Range, Median Deviation from Plane (50 

mm), Frontal Area Anisotropy Ratio, Profile Tortuosity and the Geostatistical Sill. One 

roughness metric from each of the 5 categories of roughness metrics outlined in Table 1 is 

represented in the decision tree (noting that both spacing parameters were excluded above). 

 

The maximum accuracy using all the data as a training set was 98% (i.e. one plot was 

misclassified). This decision tree is shown in Figure 12 and described below. When this 

approach was established on 66% of the data and validated on 34%, the success rate was 

85%. The ten-fold cross-validation correctly classified 76% of instances, with the majority of 

misclassified instances (i.e. all but three) arising from a confusion of wind ridges and 

pedestals.  

 

In the full model (Figure 12), flats were readily distinguished using IQR (100% correctly 

classified) while wind ridges were identified as having a higher IQR but lower Median 

Deviation from the Plane (50 mm), as also seen in Figure 8D. However, one microterrace 
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can be seen as an outlier in Figure 8D and was misclassified as being a wind ridge plot 

owing to the larger local elevation variability. Of the remaining 29 observations comprising 

mostly wind ridges and pedestals, these were mostly separated using an anisotropy metric 

(Fani) with wind ridges exhibiting higher anisotropy (i.e. lower values of Fani) than pedestals. 

However, this alone was insufficient to separate wind ridges and pedestals, with 4 instances 

being routed incorrectly (2 of each type). A further layer was sufficient to correctly route 

these instances as pedestals were observed to have a higher Tortuosity and lower 

Geostatistical Sill than wind ridges. 

 

[FIGURE 12] 

 

With plots grouped together at different locations across Moss Flats, the effect of location on 

values of each of the 5 roughness metrics was analysed statistically for each 

microtopographic type using a Kruskal Wallis test with the location as the independent 

variable (a Wilcoxon Mann-Whitney test was used for pedestals which were present at only 

2 locations). In general, there were no statistically significant differences in roughness values 

for each microtopographic type other than for wind ridges, which displayed more location-

dependant variability than the other microtopographies, with differences in the bulk 

amplitude parameter (IQR) being significant to p < 0.01 (though frontal area anisotropy and 

tortuosity were stable across locations). 

 

5. Discussion 

 

This research brings together decades of field observations into a coherent conceptual 

model of peat surface roughness that, in combination with high-resolution topographic 

survey methods, is shown to usefully discriminate dominant surface process regimes from 

topographic data alone. We demonstrate that close-range SfM-MVS surveys provide 
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topographic data of sufficient precision and resolution to enable field application of the 

conceptual model we present. While more work is required to expand our approach to the 

other bare peat surfaces depicted in Figure 2, these results establish a clear methodology 

for integrating much-needed process understanding into morphometric sediment budgets of 

bare peat and enable testing of a series of hypotheses about peat erosion mechanisms. 

Moreover, the general approach is of broader interest to geomorphologists beyond 

peatlands. 

 

Single roughness metrics are often used to summarise sub-grid topographic variability in 

geomorphology. However, the analysis presented here indicates that different 

microtopographic surface types can only be identified when multiple roughness metrics are 

used in combination. Interrogation of morphological data to infer geomorphological 

processes has a long history; the study presented here is aligned closely with calls to make 

the best use of the recent developments in high resolution topographic survey (Passalacqua 

et al., 2015) and attempts to interrogate high-resolution topographic data for this purpose 

(e.g. the work of McKean and Roering (2004) using multiple roughness metrics to create an 

objective classification of landslide occurrence).  

 

The decision tree analysis demonstrated that each of the 5 categories of roughness metric 

included were represented as discriminatory variables. This result emphasises the 

importance of representing a range of surface properties by considering different types of 

roughness metric. These roughness metrics yielded consistent values for each 

microtopographic type across different areas of Moss Flats, with the exception of wind ridges 

which displayed greater variability, perhaps indicating differential sheltering. However, the 

anisotropy metric that best discriminated wind ridges from other types was stable across the 

study area.  
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Structure-from-Motion photogrammetry is well-placed to provide the high resolution 

topographic data needed to capture fine-scale roughness signatures in peat and is well-

established in geomorphology (James and Robson, 2012; Westoby et al., 2012; Fonstad et 

al., 2013; Smith et al., 2015). While validation studies have taken place at a range of scales 

(see summary in Smith and Vericat, 2015), field validation at this small scale is complicated 

by the absence of clearly superior reference data. Here we describe the first 

geomorphological application of the F5-SR hand-held imager to provide such reference data. 

A survey of a planar target suggests that HhI errors are ~0.2 mm; however, data gaps 

observed in the HhI point clouds (see Figures 5 and 6) indicate that field data acquisition 

using the HhI is not problem-free. 

 

From comparison of SfM-MVS with HhI topographic data, it is clear that SfM-MVS can 

generally reproduce millimetre-scale topographic variability (with 3D differences between 

point clouds comparable with the georeferencing error at ~2 mm). This finding is in-keeping 

with laboratory-based SfM-MVS evaluations at similar survey ranges (Nouwakpo et al., 

2014). However, SfM-MVS workflows do smooth the topography and do not completely 

represent the prominence of peaks or the depth of surface depressions and the very finest 

scale variability is not represented (e.g. elements ~ 1 mm tall). This smoothing is most likely 

introduced during the Multi-View Stereo stage of the SfM-MVS workflow, arising from patch-

based MVS algorithms. Most importantly for the application presented herein, comparison 

with the HhI values indicates that SfM-MVS data are able to use a range of roughness 

metrics to reliably discriminate between peat microtopographic types (Figure 7). While 

spacing parameters (e.g. peat and pit density) and some anisotropy parameters (e.g. 

tortuosity anisotropy) are too sensitive to the sub-mm (or mm-scale) differences between the 

true surface (approximated by the HhI) and the SfM-derived data, most metrics tested here 

were sufficiently robust such that the different surface types could be distinguished using 

SfM at the plot scale. 
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Peat flats were clearly identifiable through the low amplitude-based roughness values 

obtained. Microterraces were identifiable through higher overall amplitude of roughness, but 

a value that is lower when evaluated at smaller spatial scales (50 mm). Distinguishing 

between pedestals (formed through rain splash processes) and wind ridges (moulding of 

peat surfaces by high winds) was perhaps the most problematic. Anisotropy ratios were 

most effective in distinguishing between these two types (Figure 11), as wind ridges 

exhibited a greater degree of anisotropy, presumably through their alignment to the 

prevailing wind direction. Wind ridges showed a more uneven distribution of frontal area 

between each cardinal direction and, interestingly, a more uneven distribution of 

aerodynamic roughness height, a metric often calculated to relate morphological surface 

properties to wind velocity profiles. Pedestals also had a lower Geostatistical Sill than wind 

ridges, suggesting that they have a lower limit of topographic variability at longer lag 

distances. 

 

This study considered a simple four-fold classification of bare peat microtopography; 

however, other microtopographic forms exist but were not directly observed in this study, 

especially seasonal features such as surface desiccation cracking and frost-fluff (so-called 

nubbins) (Figure 2). Further work is required to expand this approach into other bare peat 

microtopographic forms within the new conceptual framework, and also to examine the effect 

of land management practices (e.g. burning, grazing) on surface microtopography. 

Furthermore, through fine-scale monitoring of these distinctive microtopographic patterns, 

the persistence of each surface type would be observed. This would yield valuable insight 

into the legacy of near-surface conditions and the identification of hybrid forms (e.g. frost fluff 

superimposed on an underlying microterrace) would allow reconstruction of successive near-

surface processes regimes. 

 

Using the approach developed here the morphometric framework of bare peat roughness 

shown in Figure 2 has been quantified using the decision tree analysis for the first time 
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(Figure 12). This is important because it paves the way for the automated classification of 

bare peat surfaces into dominant process regimes which will help improve peatland 

sediment budget studies and inform restoration strategies for bare peat surfaces 

(determining, for example, whether a surface should be  protected from wind or water 

erosion). 

 

The focus here is necessarily on bare peat; however, where sparse vegetation is present, 

high resolution topographic data can be classified automatically to identify and remove 

vegetation (e.g. the multi-dimensionality criterion of CANUPO; Brodu and Lague, 2012). 

Further analysis of the type demonstrated here, coupled with meteorological (i.e. 

temperature, rainfall, wind speed and direction) and geomorphological measurements (i.e. 

runoff, sediment transport) could identify associations of roughness metrics with the extent 

and magnitude of peat surface processes alongside expanding the objective classification to 

include other microtopographic types. Where such information is available, collection of high 

resolution morphometric data would then become an efficient way to monitor and better 

understand the spatial and temporal variability of geomorphological processes operating in 

upland peat. 

 

6. Summary 

 

Owing to the unique material properties of peat, detailed analysis of the form of bare peat 

surfaces provides valuable information about the dominant process that formed that surface. 

By carefully considering the range of processes that take place on peatlands, pioneering 

work by early peatland geomorphologists (e.g. Bower, 1959) has been extended to present 

the first systematic process-form conceptual model of peat microtopographic types. Further 

work is needed to establish rates of change for the recognised roughness types and the 

sedimentary processes that sustain the microtopography. The methodology proposed here 
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is ideally suited to this task as it is easily deployed and can be used to efficiently compile 

multiple time series of surface change. Utilising new developments in high-resolution survey 

methods, we use detailed surface roughness metrics to objectively discriminate between 

these peat microtopographic types. This research presents opportunities and the tools to 

embed a greater understanding of geomorphological processes into sediment budget 

studies and peat management; and can be extended to include bare peat surfaces  

impacted by anthropogenic processes such as peat mining (Tuukkanen et al., 2014), animal 

trampling (Pellerin et al., 2006) and burning (Maltby et al., 1990). 
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Figure 1. Characteristic surface topography related to dominant process regimes: (a) rainfall 

– ‘toothed’ peat pedestals; (b) surface wash – smooth surface infilling of surface 

irregularities; (c) wind action – surface drying and crusting; (d) surface temperature driven 

drying and desiccation; (e) wind-ridges – wind-driven rain; and (f) microterrace – wind-driven 

rain and surface wash. Scale in (a) is approximately 0.5 m long axis of photography. Scales 

in (b), (c), (d), (e) and (f) shown by notebook (0.15 m long axis), compass (long axis 0.12 m), 

survey pin (length 0.25 m) and wooden dowels (length 0.12 m). 
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Figure 2. Framework describing process-form relationships for bare peat surface roughness. 

Each panel shows a schematic of the typical two dimensional (cross-section) form and scale 

of the surface roughness (length scale 1 m, vertical scale of 0.1 m). Examples of surface 

roughness types associated with the four panels of the leading diagonal are also shown in 

Figure 1 (a-d) together with examples of (e) wind-ridges and (f) microterraces. 
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Figure 3. Moss Flats study site, Moor House and Upper Teesdale National Nature Reserve 

(NNR), North Pennines, Cumbria, UK. Aerial Photograph reproduced under the Open 

Government Licence v3.0 (OS Open Data). 
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Figure 4. (A) The Mantis Vision F5 Short Range Hand-held Imager (OR3D, 2015); (B) Use 

of the HhI on a bare peat plot. 
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Figure 5. Digital Elevation Models (1 mm resolution) of the three comparison plots. Red 

boxes on the orthophotographs (left) indicate the zoomed area of Figure 6. HhI DEMs are 

shown (middle) alongside SfM-MVS DEMs (right) for each plot. The minimum elevation of 

each survey has been set to zero, to indicate the variable height ranges. 
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Figure 6. Comparison of HhI and SfM DEMs for a smaller area of interest within the broader 

plots (Figure 5). Topographic profiles have been taken as indicated and are presented on 

the right. SfM-derived profiles have been vertically offset to aid visual interpretation. Arrows 

indicate features evident in the orthophotograph. Dashed lines in the bottom panel indicate 

interpolation through data gaps. 
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Figure 7. Comparison of roughness values between survey methods and microtopography 

types. Roughness values have been scaled to represent the proportion of the range between 

the smallest and largest value (i.e. all smallest values plot at 0, all largest values plot at 1). 

Roughness metrics in italics show inconsistent plot ordering between survey methods 

(scenario (iv)) whereas metrics in bold are consistent between survey methods and show no 

overlap between values for different plot types (scenarios (i) and (ii)). 
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Figure 8. Summary of roughness parameters based on elevation variability (types 1 and 2 in 

Table 1) evaluated to distinguish between microtopographic types. Variability of (A) IQR 

(mm); (B) Median deviation from a plane fitted over a 50 mm window (mm); (C) Mean 

elevation range within 5 mm cells (mm); and (D) polar smooths of IQR against Median 

deviation over a 50 mm window. Boxes in this and subsequent figures show upper quartiles, 

medians and lower quartiles; whiskers extend to cover all points within 1.5 times the 

interquartile range of the quartiles; other points are shown separately. 
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Figure 9. Summary of retained hybrid roughness parameters by microtopographic type: (A) 

Mean slope (degrees); (B) Slope Standard Deviation (degrees); (C) Mean tortuosity; (D) 

Mean frontal area; (E) Mean aerodynamic roughness; (F) polar smooths of normalised 

eigenvalue ratios. 
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Figure 10. Summary of geostistical parameters by microtopographic type: (A) Range (mm); 

(B) Sill (mm). (C) fitted spherical semivariogram models for the maximum (dash), mean 

(solid line) and minimum (dash) parameter values in each plot type. 
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Figure 11. Summary of anisotropy ratios by microtopographic type: (A) Range; (B) Sill; (C) 

Frontal Area per unit planar area; (D) aerodynamic roughness. 
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Figure 12. Decision tree for peat surfaces based on roughness metrics. Numbers in 

parentheses represent the number of instances routed along each path. For wind ridges, the 

number of correctly routed instances is shown followed by the total number routed along that 

path. 
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Tables 
 
Table 1. Overview of roughness metrics calculated for each plot. Plots were linearly 
detrended prior to roughness analysis. Metrics in bold were used in the decision tree 
analysis. 
Roughness Metric Notation Units Description Data 
[1] Bulk Amplitude Parameters (Elevation Probability Distribution-Based) 
Standard deviation 

of elevations ız m Standard deviation of elevations over the whole plot Cloud 

Inter-quartile range IQR m Inter-quartile range of elevations over the whole plot Cloud 

Skewness zsk - Skewness of above elevation distribution Cloud 

Kurtosis zk - Kurtosis of above elevation distribution Cloud 
[2] Localised Elevation Differences 
Median deviation 
from plane (50 mm 
window) 

z50-50 m Median point deviation from a fitted plane (50 mm kernel 
size) 

Cloud 

95th %ile deviation 
from plane (50 mm 
window) 

z50-95 m As above, but the 95th percentile to highlight the roughest 
areas Cloud 

Ruggedness RMS RugRMS m Root-Mean-Squared (RMS) of nearest neighbour elevation 
differences  DEM 

Ruggedness max RugMAX m Maximum of nearest neighbour elevation differences DEM 
Within-cell 
elevation range zR-5 m Mean of height ranges within each 5 mm cell DEM 

[3] Spacing Parameters 
Peak density Pk m-2 Density of peaks DEM 
Pit density Pt m-2 Density of pits DEM 
[4] Hybrid Parameters 
Mean slope  sm ° Mean of cell slopes  DEM 
Standard deviation 
of slopes sı ° Standard deviation of cell slopes  DEM 

Ratio of 1st and 2nd 
eigenvalues ln(S1/S2) - Normalised eigenvalue ratios of directional data calculated 

from the orientation tensor 
Cloud 

Ratio of 2nd and 3rd 
eigenvalues ln(S2/S3) - As above Cloud 

Profile tortuosity T - Ratio between surface profile and straight line length, 
averaged over each row and column of the DEM DEM 

Frontal area (per 
unit planar area) F - Roughness element frontal area per unit ground area, 

averaged for each cardinal direction DEM 

Aerodynamic 
roughness z0 mm 

Following Lettau (1969) and Smith et al. (2016). Calculated 
as the mean height of points above a detrended plane 
multiplied by a drag coefficient (0.5) and the ratio between 
the frontal area (above the detrended plane) and full plot 
planar area 

DEM 

[5] Geostatistics and Multi-Scale Parameters 
Geostatistical 
range a m Range of fitted semivariograms Cloud 

Sill c mm Sill of fitted semivariograms Cloud 
Slope of power 
spectral density 
function 

PSD - Slope of the power law relationship between radially-
averaged spectral power and wavevectors DEM 

[6] Anisotropy Parameters 

Range anisotropy 
ratio  aani - 

Anisotropy ratio (i.e. minimum:maximum) of the ranges of 
directional semivariograms calculated in 22.5 degree 
windows 

Cloud 

Sill anisotropy 
ratio cani  As above for the sill of fitted semivariograms Cloud 

z0 anisotropy ratio z0ani - Anisotropy ratio of z0 calculated for all cardinal directions DEM 
Frontal area 
anisotropy ratio Fani - 

Anisotropy ratio of frontal area calculated for all cardinal 
directions DEM 

Tortuosity anisotropy 
ratio 

Tani - Anisotropy ratio of tortuosity calculated on perpendicular 
transects DEM 
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Table 2. Differences between HhI and SfM surveys. Point density is calculated prior to 
octree subsampling. 
 

Plot Tie point 
RMSE 
(mm) 

Mean C2C 
Elevation 
Difference (mm) 

Point Density 
(HhI)  
(points mm-2) 

Point Density 
(SfM)  
(points mm-2) 

Flat 1.252 1.404 4.744 1.087 
Microterrace 1.486 2.954 7.520 2.353 
Pedestals 1.766 1.162 4.742 3.388 
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Microtopography of bare peat: a conceptual model and objective classification 

from high-resolution topographic survey data 

 

Smith, M.W.* and Warburton, J. 

 

 Detailed analysis of the form of bare peat surfaces provides valuable information 

about the dominant process that formed that surface. 

 We outline a new conceptual framework of peat surface roughness types by relating 

observed forms to the dominant processes responsible for their formation. 

 Peat microtopographic types can be identified objectively from high resolution survey 

data. 

 

 

 

 


