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Abstract Wet granular materials are three-dimensionally simulated by the Discrete Ele-

ment Method (DEM) with water bridges incorporated between particles. The water bridges

are simplified as toroidal shapes, and the matric suction is constantly maintained in the ma-

terial. A comparison with experimental tests in the literature indicates that the toroidal shape

approximation may be one of the best choices with high practicability and decent accuracy.

Mechanical behaviours of wet granular materials are studied by triaxial tests. Effects of

particle size distributions and void ratios are investigated systematically in this study. The

hydraulic limit of the pendular state is also discussed. It gives the capillary cohesion func-

tion which is not only determined by the degree of saturation but also positively correlated

to relative density and particle size polydispersity and inversely proportional to mean par-

ticle size. Furthermore, the capillary strengthening effect is also analysed microscopically

in aid of the Stress-Force-Fabric (SFF) relationship, mainly in fabric anisotropy, coordina-

tion number and stress transmission pattern, which revealed the micro-mechanisms of the

additional effective stress induced by capillary effect.
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1 Introduction

Dry granular materials have specific repose angles, however, by adding a small amount of

water the materials are strengthened and a sand castle can stand [19, 46]. Further increase of

water content may lead the sand castle to collapse. Theoretically, it can be explained that the

change of moisture content in this water-air-solid mixture alters the suction (defined as the

pressure difference between air and water phases) and increased the ’effective stress’ for the

partially saturated cases [2, 1, 33]. Microscopically, with the increase of water content, the

morphology of the water phase in a granular media can be categorised as the pendular state,

the funicular state and the capillary state [40, 38] as illustrated in Fig. 1. In the pendular state,

usually less than 10% of degree of saturation, isolated water bridges are formed between

particles and the attractive forces acting through the water bridges raise the material cohesion

significantly. With the increase of water content, the water bridges begin to coalesce with

each other to form liquid clusters. In this state, it is argued that the capillary force is slightly

reduced and the rupture distance may be extended [50, 60], thus the combination effect

from capillary force and rupture distance lead the capillary cohesion to be about constant

[46]. When the material reached the capillary state, as the material is nearly saturated with

only small air bubbles, the material cohesion is also reduced to about zero. Therefore, to

discuss the limit of the pendular state and the water bridge effect could explain the capillary

strengthening effect and the capillary cohesion of granular materials.
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Fig. 1: States and cohesion of wet granular material

The capillary bridge effect between two idealised grains (spheres) has been well studied

in the literature. The initial work is done by Haines and Fisher [15, 16, 8] in which the liquid

bridge between two mono-sized discs in contact is simplified as toroidal shape (the profile of

the water bridge is in a circle). Later, Rose [44] addressed the effect from separation distance

and water-air-solid contact angle on liquid volumes. Experimental tests done by Mason and

Clark [35] measured the capillary force and rupture distance of the liquid bridge between

two spheres. The ’gorge method’ to calculate the capillary force is then expressed as the

sum of pressure and surface tension acting on the neck section by Hotta [20]. Following

the pioneer’s work and by introducing the Young-Laplace equation, the capillary force of a
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capillary bridge with a constant volume is solved [28, 51]. This solution is also expressed in

a constant suction condition [48] for further numerical implementations. Besides the solu-

tions from the Young-Laplace equation, the toroidal approximation is still employed in the

recent research by providing reasonable results on both capillary force and liquid volume by

comparing with other solutions [12, 17].

The Discrete Element Method (DEM) is firstly proposed for the micromechanical study

of granular materials [5]. By implementing the water bridge solutions between spherical

grains, wet granular materials are simulated and studied by DEM method in the recent two

decades. It is firstly simulated in two-dimensional conditions [10, 29, 21] and then extended

to three-dimensional spaces by later authors. In the simulated materials by some authors

[42, 52, 43, 9], the water bridges between particles are based on the Young-Laplace solution

and the sample moisture content is constant, while the toroidal shape water bridge model is

also adopted by some other researchers [7] and they obtained similar material behaviours.

Furthermore, suction controlled simulations are carried out [47, 48, 58], in which matric

suction is constantly maintained through the sample. Recently, Gladkyy and Schwarze [11]

compared the DEM simulation results by using different water bridge model, and it is ob-

served that the macroscopic results are closed to each other. Recently, Melnikov et al. [36]

proposed a novel and interesting numerical method with DEM in which they attempted to

extend the liquid bridge model to liquid clusters. However, this method can only be applied

to relatively static structures (the applied deformation is less than 4%) and the granular

packing is monosized. Nevertheless, the water bridge model is still a mature way to dis-

cuss various micro-features of wet granular materials. So far, the present investigations of

wet granular materials by DEM are mainly on a limited number of particle size distributions.

Based on laboratory test results, it has already been proven that the grain size distribution has

a significant effect on the material hydraulic and strength properties [61, 59]. The material

cohesion could be significantly changed if the grain size polydispersity is altered. A system-

atic study from the grain scale approach is necessary to explain the micro-mechanisms.

Experimental study of the capillary strengthening effect in granular materials can be

done through the measurement of the material cohesion or tensile strength. Schubert [49]

and Turner et al. [53] measured the tensile strength of wet agglomerates and limestone

powder respectively. Furthermore, Pierrat and Caram [41] tested the tensile strength of

glass beads, and the experiment results of the tensile strength of wet sands can be seen in

[23, 31, 24]. These work quantified the capillary effect in a wide range of water content, and

results in the range of low degree of saturation can be referenced for the DEM simulations

with a liquid bridge model. On the other hand, the microscopic behaviours of wet granular

materials are recently investigated by using X-ray computed tomography. Manahiloh and

Muhunthan [34] characterised the orientations of liquid bridges and clusters from the X-

ray image as a fabric tensor, and the liquid phase is observed to be an anisotropic phase.

Moscariello et al. [39] investigated the micro-structure evolution during the wetting induced

collapse of an unsaturated sand. Based on X-ray tomography, Khaddour [22] also points

out that the number of liquid bridges or cluster numbers in granular material plays a sig-

nificant role in the capillary strengthening effect. However, quantitative study of the role of

liquid phase micro-structure still has limited numbers and a micro investigation by DEM

simulation could be an alternative approach.

The Stress-Force-Fabric (SFF) relationship, firstly proposed by Rothenburg and Bathurst

[45], is a theory which explained granular material strength from fabric and force anisotropies

characterised by the particle scale interactions. Its tensorial form is then expressed in [26,

27]. Based on the capillary stress tensor definition [48], which is a homogenization tech-

nique over the liquid bridge effect, a Stress-Force-Fabric (SFF) relationship for wet granu-
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lar materials has been introduced [57, 62]. This SFF relationship explicitly formulates the

macro stress tensor by the micro parameters associated with mean particle interactions and

anisotropies in the solid phase and water phase, which can be a fundamental theory to anal-

yse the micro-mechanisms of the capillary effect.

The work will carry out a systematic study of capillary strengthening effect on granular

materials from macro behaviours to micro-mechanisms. The main objectives are as follows:

– To validate the capillary bridge model in [57] and [62] by comparing with experiment

data and other solutions in the literature.

– To clarify the limit of the pendular regime assumption for different granular assemblies.

– To conduct DEM-based numerical experiments to investigate the capillary strengthening

effect.

– To study the effect of particle size, polydispersity and void ratio systematically.

– To discuss the micro-mechanics and effective stress definition in aid of SFF.

2 Numerical Simulations

2.1 The capillary bridge model

A complete contact model comprising the capillary effect and the mechanical force induced

by the particle contact has been adopted for the DEM simulation. The Hertz-Mindlin model

[18, 37] is employed to represent the mechanical force induced by inter-particle deformation

and the capillary force is calculated by the suction controlled water bridge model introduced

in [57] and [62]. The toroidal shape approximation is adopted for the liquid bridge shape in

which the meridian profile of the water bridge surface is described as a circular arc, which

is same to the method I in [12]. In this contact law, the normal contact force Fn is a function

of the inter-particle distance D, satisfying the following conditions (Fig. 2(a)):

– There is no interaction between two particles when D > Drupture where Drupture is

the rupture distance.

– For 0 ≤ D ≤ Drupture there is only the cohesive capillary force functioning, and

the solved capillary bridge force is implemented in the DEM source code by a linear

interpolation method.

– When D < 0 the normal interactive force is the sum of the attractive capillary force and

the repulsive mechanical force. By assuming the inter-particle overlapping is minuscule

so that the capillary force is the value as when D = 0.

By Young-Laplace equation, the matric suction, which is defined as the difference be-

tween air pressure and water pressure (S = ua − uw), has a relationship with the curvature

of the water-air interface as:

S = T

(

1

rext
−

1

rint

)

(1)

where the air-water surface tension T is a physical constant (T = 0.073N/m for distilled

water at 20◦), rext is the external radius of the toroidal shape meridian profile and rint is

the internal radius of the water bridge at the neck as shown in Fig. 2(b).

The Young-Laplace equation can also be written in a dimensionless term to represent

the scale effect. By normalising the matric suction with the mean particle size R̄ and water

surface tension T , the dimensionless matric suction S∗ is as:

S∗ =
2R̄S

T
=

R̄

rext
−

R̄

rint
(2)
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Fig. 2: Water bridge model

At the same dimensionless suction, the water bridge share the same term of
(

R̄
rext

− R̄
rint

)

regardless the particle size. By knowing the normalised inter-particle distance D/R̄, which

is related to particle size distribution and void ratio in an assembly, R̄
rext

and R̄
rint

will be

obtained. This means a determined local degree of saturation on one particle pair. Approx-

imately, for granular assemblies, with the same dimensionless suction, the degree of sat-

uration is the same in different samples with parallel particle size distribution and same

void ratio. In another word, at the same degree of saturation, the matric suction is inversely

proportional to the mean particle size.

For given values of suction, particle size, inter-particle distance and contact angle, the

water bridge geometry is solved iteratively by the process introduced in [62]. The capillary

force can then be obtained by the ‘gorge method’ [20] as the sum of the pressure difference

acting on the section of the bridge neck and the surface tension acting on the air-water

interface:

Fcap = Sπrint
2 + T (2πrint) (3)

The water volume of the capillary bridge is an integration of the water bridge profile function

from xc1 to xc2 in Fig. 2(b), subtracting the volume of the solid between xc1 and xc2 as:

Vcap =

∫ xc2

xc1

πy2dx−

∫ x1

xc1

πy1
2dx−

∫ xc2

x2

πy2
2dx (4)

where y is the function of the distance between the water surface and the x axis and y1 and

y2 are functions of the distance between the particle profile and the x axis for particle 1 and

particle 2 respectively. In summary, in this water bridge model, suction is a constant input

value as suction is assumed to be constant throughout the specimen. The capillary force and

liquid bridge volume are determined by the particle pair geometry, inter-particle distance,

surface tension and contact angle as {Fcap, Vcap} = f(R1, R2, D, S, T, θ).

Besides the toroidal shape approximation, other methods to solve the liquid bridge are

mainly on the basis of the numerical solution of the Young-Laplace equation on the mean

curvature [28, 52, 51, 47, 48]. In these solutions, the external radius of the liquid bridge is

no longer a constant value. By using the ‘gorge method’, these solutions have almost the

same value for the capillary force at the same suction (with the same mean curvature at the

neck), but the liquid bridge volume solutions differ with each other.
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2.2 Comparison with experimental measurements

Gras et al. [13] introduced a suction controlled inter-grain water bridge laboratory test to

measure the liquid bridge induced force and the water volume. A water bridge is formed be-

tween two metal spheres (5mm in radius) while the inter-particle distance is adjustable. The

air pressure and the pressure in the water bridge are constantly maintained so the suction is

controlled at 40Pa, 70Pa and 140Pa respectively. The shape of the water bridge is measured

by image analysis, and then the water bridge volume can be calculated by the determined

geometry. Due to the water impurity in the experiment apparatus, the water surface tension

was measured as 0.051N/m and the water-solid-air contact angle θ was roughly measured

from the image as around 20◦. By using the same geometry, surface tension, contact an-

gle and suction parameters above, the experimental tests can be reproduced by the toroidal

shape solution we used.
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Fig. 3: Comparison between the numerical solution and experimental results of the liquid

bridge

The experiment results by Gras et al. [13] (denoted as ‘exp’) and the toroidal shape nu-

merical solutions (denoted as ‘num’) are compared in Fig. 3. Fig. 3(a) illustrates internal

radius rint under different suctions and the capillary forces are compared in Fig. 3(b). It
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can be seen that the rupture distance by the toroidal shape approximation is close to the

measured value in the experiment. Slight overestimation on rint and Fcap appears at a

smaller inter-particle distance by the numerical solution but the discrepancies between the

measured and calculated values reduced in higher suction conditions. The higher suction

corresponding to a smaller amount of water gives higher accuracy for the numerical solu-

tion. Fig. 3(c) compares the experimental and numerical results for water volume between

the particles. The numerical solutions based on the toroidal approximation overestimate the

water bridge volume. A comparison has made by Gras et al.[12] between different solu-

tions (see the reproduced comparison in Fig. 3(d)). Method I represents the toroidal shape

approximate solution used in this study and methods II, III and IV are numerical solutions

[51] based on the differential equations established from Young-Laplace law. Method II is

from a fitted equation introduced in [51] and employed in [48] and methods III and IV are

based on polynomial (order of 5) and trapezoidal approximations. It can be seen although

the toroidal approximation has an overestimation in water bridge volume, it is still the clos-

est solution among the listed methods. For the purpose of representing the capillary effect in

DEM simulations, the toroidal shape numerical solution could be a good choice, with both

high practicability and accuracy.

2.3 Granular material properties

The capillary effect from the water bridge between particles is then implemented in the

open source DEM code LIGGGHTS [25] to carry out DEM simulations for both dry and

unsaturated granular materials. Dry and wet granular packings are simulated in a cubic Rep-

resentative Volume Element (RVE) surrounded by smooth boundaries with edge length 20

times the mean particle diameter. The total particle number will then be around 10,000, de-

pending on the relative density. The material of the grains in the simulation is assumed to be

quartz. The corresponding parameters are listed in Table 1 in which the inter-particle friction

coefficient µ is 0.5, the material density of the grains is 2500kg/m3 and Young’s modulus

and Poisson’s ratio of the particles are 70GPa and 0.2 respectively. The energy dissipa-

tion of particle collision is represented by the coefficient of restitution, which is a physical

parameter defined as the ratio between the relative velocities between the two particles af-

ter and before a collision. In the simulations of wet granular materials, the water phase in

the material is assumed to be pure water thus the water-air surface tension is 0.073N/m (at

20◦C).

Water Surface Tension 0.073 N/m

Water-solid-air Contact Angle 0

Inter-particle Friction Coefficient 0.5

Particle Density 2500 kg/m3

Particle Young’s Modulus 70 GPa

Particle Poission’s Ratio 0.25

Particle Coefficient of Restitution 0.2

Table 1: Parameters in the DEM simulation

There are five kinds of particle size distributions (PSD) studied. The particles are uni-

formly distributed in percentage by mass from the minimum to the maximum size. Fig. 4
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plots these PSDs in a passing percentage diagram. Samples I and II are silty sands. Sample

III is closed to a glass bead size in an experiment study[41] while the PSDs of IV and V

are similar to commercial sands of Leighton Buzzard sand Fraction E and Ottawa sand F-75

respectively. It should be noted that PSDs of samples III and V in DEM are parallel with

those of I and II respectively.
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Fig. 4: Particle size distribution

2.4 Sample preparation

The five types of materials (in Fig. 4) are tested in the RVE at four confinements of 10kPa,

20kPa, 100kPa and 200kPa respectively and both the dry and wet conditions at different

matric suction values are simulated. The parameters are summarised in Table 2. The dry

specimens are firstly prepared with the specific particle size distributions by using the radius

expansion method. Firstly, the particles are inserted into the cell with a reduced particle size

from the desired size without contacts. Then the radii of the particles are expanded to the

targeted PSD in several steps. The particle may collide with each other during the expansion

and a number of time steps will be run after each expansion to eliminate the motion until

the sample reaches to a rather static condition. Inter-particle friction angle is set to be 0

during the expansion to obtain a dense material. After the radius expansion, the inter-particle

friction coefficient in different materials is reset to 0.5. For sample type I, two more void

ratios (0.688 and 0.733) are generated to investigate the void ratio effect. The inter-particle

friction coefficient is set as 0.1 and 0.9 respectively during the radius expansion process.

Then, the specimens with different void ratios are isotropically compressed to 10kPa,

20kPa, 50kPa and 100kPa gradually. Servo-controls are employed for the boundary move-

ment by adjusting the boundary velocity to reach the equilibrium state of the desired stress.

The wet specimens are prepared from the dry specimens at each stress level. Without mov-

ing the boundary, after applying the capillary model with a specific matric suction value,

the cohesive effect bonds the particles together and the stress measured from the boundary

is slightly reduced. Then a further consolidation will be applied to the wet sample after it
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Soil Type Particle Size Range(µm) Void Ratio Matric Suction (kPa)

I 18-22 0.629, 0.688, 0.733 20 50 100 200 300 700 dry

II 10-30 0.539 20 50 100 200 300 700 dry

III 81-99 0.629 4.5 11 22 44 67 156 dry

IV 90-150 0.605 3 8 17 33 50 117 dry

V 110-330 0.539 2 4.5 9 18 27 64 dry

Table 2: Summary of parameters in the tests

reached the equilibrium state of the targeted stress. It has been observed that the void ratio

change during this process is negligible.

2.5 Triaxial shear

Then, the triaxial tests on the prepared specimens are following the conventional triaxial

loading path in which the lateral pressure (σ2 and σ3) is constantly maintained at the cor-

responding stress level while the axial strain (ε1) is increased. The strain increment at each

time step is controlled to be small enough to satisfy the ’quasi-static’ condition. The average

unbalance force ratio, which is the ratio between the average unbalance force per particle

and the average inter-particle force, is maintained less than 0.01 during the deformation.

Fig. 5 plots a set of example results of the dense specimen of sample I with void ratio of

e = 0.629 at 10kPa confining stress. The evolution of deviatoric stress q = σ1 − σ3 and

volumetric strain εv of the unsaturated granular materials in the triaxial shearing is plotted.

The stress-strain behaviour of the dry specimen with the same void ratio is also presented as

a reference.

The capillary effect in the granular soil altered the mechanical behaviour significantly.

With the decrease in the matric suction from 5000kPa to 20kPa (an increase in water satu-

ration from 0.0012% to 14%), the shear strength of the unsaturated soil raises accordingly

from that of the dry soil. The capillary effect also increased the volumetric strain, so that,

with the reduction in the suction value, the dilation angle is enlarged. The same triaxial test

is implemented on different materials at different stress levels and the mechanical response

will be discussed in Sections 4.

3 Study of Hydraulic Properties

3.1 Range of the pendular regime

The water retention curves can be obtained by summing up the volume of water bridges and

calculating the degree of saturation at different suction values. Due to the limitation of the

water bridge model, the range of the pendular state should be clarified. A criterion to check

the maximum pendular regime water content based on the half-filling angle is adopted. For

two water bridges on a particle (see Fig. 6(a)) a and b, the half-filling angles at a particular

suction for the two water bridges are βa and βb respectively and the angle between the two

water bridges are αab. For any two water bridges on the same particle if αab < βa + βb

that means the two water bridges begin to coalesce with each other and the water phase in

the specimen reached the funicular state.
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Fig. 5: Typical stress-strain behaviours (Sample I with e = 0.629 and σ2 = σ3 = 10kPa)

Fig. 6(b) shows the relationship between the maximum pendular state degree of sat-

uration and void ratio for different samples. The water-solid-air contact angle is 0. It can

be observed that with the increase of the polydispersity in the particle size, the range of

the pendular domain will be smaller and with the increase of void ratio the range of the

pendular domain is reduced. Another factor may change the pendular regime range is the

water-solid air contact angle. Fig. 6(c) depicts how the range of the pendular regime changes

with contact angle. With the increase of contact angle from 0 to 30, the maximum degree

of saturation within the pendular regime is increased accordingly. This means for granular

materials composed of hydrophilic materials the range of the pendular domain is less than

that of a relatively hydrophobic material. It also means that during a drying path, the range

of the pendular regime could be smaller than that of granular material in wetting. In the rest

of this article, the contact angle is set to be 0 as a conservative choice.

3.2 Water retention curves

The water retention curves of the isotropic samples at 10kPa total stress are plotted in Fig.

7(a). It can be seen that for samples I and II, relative density has a great impact on the water

retention curve that with a denser sample the water content is higher at the same matric
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(a) Half-filling angle and water bridge coalescence

(b) Maximum degree of saturation and void ratio (c) Maximum degree of saturation and contact angle

Fig. 6: Maximum degree of saturation within pendular regime

suction. For sample III, IV and V, as they have much larger grain size, the water retention

curves are shifted to the left which means to reach the same water content the matric suction

value is inversely proportional to the mean particle size.

(a) Water retention curves (b) Comparison with experiments

Fig. 7: Water retention properties
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The water retention curves are converted into normalised forms (normalised matric suc-

tion as 2R̄S
T ) in Fig. 7(b) to avoid scale effects. It can be seen from samples II, IV and V that

with larger polydispersity it has slight higher water content at the same normalised suction.

Yang et al.[63] measured the drying and wetting path water retention curves for a gravelly

sand with 4.7 mm mean diameter and a fine sand with 0.3 mm mean diameter. The exper-

iment results are also compared with the DEM simulation results in the normalised form.

It can be found that the normalised curves for sand and gravel are close to each other after

adopting the normalised suction definition. It is also observed that the granular assemblies

consisting of capillary bridged spheres have a soil water retention property relatively close

to those of fine sand and gravel on wetting. This implies that during the drying process the

water phase of an unsaturated soil is distributed more continuously in which water clusters

may exist. This causes a higher degree of saturation for soils in drying path. Due to the

limitation of the numerical model (water bridges are isolated and suction is uniform), the

hystersis effect can only be considered by contact angle change. For wet granular materials

with larger contact angles, the degree of saturation is even lower at the same suction [12, 6]

and the contact angle effect is much less sensitive than the drying-wetting hysteresis in lab-

oratory experiments. Thus the capillary bridge models without considering water clusters

may only be suitable for the wetting path.

3.3 Water bridge distributions

The liquid bridge distributions for the isotropic specimens can be investigated by charac-

terising water bridge numbers on each particle. The probability density distributions of the

water bridge number on each particle are plotted in Fig. 8. In Fig. 8(a,b,c), the water bridge

distributions for samples III, IV and V are illustrated with the increase of water content and

the dry state distributions of solid contact numbers on each particle are plotted as refer-

ences. It can be seen that with the decrease of matric suction (increase in water content) the

probability density distributions of water bridge number per particle are shifted to the right

side. This means a higher average water bridge number in the assembly and the possible

maximum water bridge number on a particle is also raised correspondingly. At the dry state,

there are small particles do not contact with any other particles as the gravity effect is not

included in this study. With the increase in size polydispersity, the number of particles with-

out a physical contact increased from 5% in sample III to 30% in sample V. This means the

smaller particles are filled in the space between the large grains without support the granular

structure and the stress transmission is mainly through the large particles as investigated by

Voivret et al. [54, 55].

Fig. 8(d) illustrates the probability density distributions of water bridge numbers on

particles at the maximum water content within the pendular domain. For samples I and III,

with a relatively narrow particle size distribution, the water bridge number distribution is

like a normal distribution and with the increase of the void ratio the mean water bridge

number per particle reduced accordingly. The possible maximum water bridge number is

not affected by the void ratio and stays at 12. From samples I, III and IV to samples II and

V, the particle size polydispersity is increased and the particle size span is getting wider. It

can be seen that with the increase in particle size span, the water bridge number distribution

changed from a normal distribution to a Gamma distribution, in which the distribution is no

longer symmetric with the peak value reduced from 8 to 5 and the maximum water bridge

number on a particle increased from 12 to 19. It is easy to understand that for a large grain

there could be more water bridges connecting it with surrounded smaller grains.
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Fig. 8: Water bridge distributions

4 Material strength of wet granular materials

4.1 Contact and capillary stresses

In the particle scale, the inter-particle interaction in a wet granular material is raised from

the mechanical contact force and the capillary force as F = Fcont +Fcap. The mechanical

contact force is originated from the grain deformation on the contact and it is pushing the

neighbouring particle away, so that it is a repulsive force. On the other hand, the capillary

force is attractive force. Therefore, Fcont and Fcap have opposite signs. Scholtès et al.[48]

interpreted the stress tensor as the sum of the contact stress tensor and capillary stress tensor

by the homogenization techniques. This definition is followed by Wang et al. [62] and it can

be expressed as:

σij = σcont
ij + σcap

ij =
1

V

∑

c∈V

vcont
c
iFcont

c
j +

1

V

∑

w∈V

vcap
w
i Fcap

w
j (5)

where c and w are denoting the c-th solid contact and w-th water-particle interaction respec-

tively, V is the total volume, vcont and vcap are vectors pointing from the centre of a grain
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to the contact or water bridge centre. The positive direction of forces is defined as the acting

direction to the particle, thus the repulsive contact force Fcont is positive and the capillary

force Fcap is negative to the defined direction. The capillary stress tensor represents the

stress from matric suction and the contact stress, σcont
ij = σij − σcap

ij , has been regarded

as the ’effective stress’[47]. Although it has some limitations to determine the volumetric

strain [4, 3], it has already provided a good description in the failure mode[47, 56], which

can be a useful quantification of the material strength.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−16

−14

−12

−10

−8

−6

−4

−2

0

Sr (%)

C
a
p
ill

a
ry

 S
tr

e
s
s
 (

k
P

a
)

 

 

DEM I e=0.629

DEM II e=0.539

DEM III e=0.629

DEM IV e=0.605

DEM V e=0.539

(a) Capillary stress

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
10

12

14

16

18

20

22

24

26

Sr (%)

C
o
n
ta

c
t 
S

tr
e
s
s
 (

k
P

a
)

 

 

DEM I e=0.629

DEM II e=0.539

DEM III e=0.629

DEM IV e=0.605

DEM V e=0.539

(b) Effective stress

Fig. 9: Capillary stress and effective stress

By considering the capillary bridge effect, water content change in a granular material

alters the capillary stress and the effective stress. Fig. 9 illustrates the relationship between

the degree of saturation and the mean capillary stress as well as the mean contact stress

for the simulated isotropic specimens under 10kPa mean stress. It can be seen that with

a minuscule amount of water added into the dry materials, the absolute value of capillary

stress and the effective stress increased significantly. But further increase in moisture content

doesn’t change the capillary and contact stresses. Comparing with Fig. 4, it can also be seen

that for the same degree of saturation, samples with finer particle size have higher matric

suction/capillary stress thus stronger contact stress. For same mean particle size, increase

the particle size polydispersity (see samples I and II) also raises the capillary effect.

4.2 Mohr–Coulomb type failure

By calculating (σ1 + σ3)/2 and (σ1 − σ3)/2 at peak strength for different confining pres-

sures (σ3=10kPa, 20kPa, 50kPa and 100kPa respectively). The relationship between shear

strength and stress level can be approximately illustrated. Typical results for dry and wet

granular materials are represented in Fig. 10 and Fig. 11 in which the results of sample I and

II are depicted in Fig. 10 and the results of materials with a larger particle size (sample III,

IV and V) are shown in Fig. 11. It can be seen that the results of the unsaturated specimens

are almost parallel to that of the dry material, which is linearly increased with the mean

stress. This means that the failure mode of wet granular materials can also be described by

the Mohr-Coulomb theory. In Fig. 11, as the particle size is larger, the capillary effect is

smaller. We will discuss this aspect in the later subsections.
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Fig. 10: Relationship between shear strength and stress level for sample I and II

The slopes of the illustrated lines in Fig. 10 and Fig. 11 (usually noted as Kf lines)

are correlated to friction angles. Fig. 12 demonstrates the relationship between Kf line and

Mohr–Coulomb failure envelop. Geometrically, the slope Kf has a relationship with the

friction angle φ as:

Kf =
σ1 − σ3

σ1 + σ3

= sinφ (6)

By the above equation, the friction angles for the different materials can be obtained and

they are summarised in Table 3. It can be seen that the capillary effect at different degree

of saturations does not obviously change the soil friction angle. But the void ratio or sam-

ple relative density alters the material peak friction angle significantly. For sample I, the

increase in void ratio reduced the friction angle. For sample II, it has a wider particle size

distribution and higher relative density and the friction angle for sample II is larger than that

of sample I. For sample III and sample V, they have similar void ratios and parallel particle

size distribution to those of sample I (e = 0.629) and sample II (e = 0.539) respectively,

the friction angles for these two samples are also close to those of sample I (e = 0.629) and

sample II (e = 0.539).
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Fig. 11: Relationship between shear strength and stress level for sample III, IV and V

Sr = 0% Sr = 0.04 ∼ 0.08% Sr = 1.31 ∼ 2.17% Sr = 10.71 ∼ 16.21% Average

I(e = 0.629) 24.8◦ 25.1◦ 24.9◦ 25.4◦ 25.1◦

I(e = 0.688) 21.6◦ 21.6◦ 21.6◦ 21.8◦ 21.6◦

I(e = 0.732) 20.1◦ 20.2◦ 20.2◦ 19.9◦ 20.1◦

II(e = 0.539) 26.2◦ 26.6◦ 26.6◦ 26.5◦ 26.5◦

III(e = 0.629) 24.8◦ 25.2◦ 25.2◦ 25.3◦ 25.1◦

IV(e = 0.605) 25.2◦ 25.6◦ 25.9◦ 25.8◦ 25.6◦

V(e = 0.539) 26.2◦ 26.7◦ 27.3◦ 27.3◦ 26.9◦

Table 3: Friction angles of dry and wet granular materials

4.3 Capillary cohesion and Bishop’s coefficient χ

The effective stress of unsaturated soils, firstly proposed by Bishop[2], is formulated as the

following form:

σ
′

ij = σij − uaδij + χ(ua − uw)δij (7)

where σ
′

ij represents the effective stress, σij is the total stress, δij is the kronecker delta and

χ is the Bishop’s coefficient. χ is a value between 0 and 1 depending on soil type and degree

of saturation. Based on Bishop’s effective stress definition and Mohr–Coulomb theory, by
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Mohr-Coulomb failure envelop

fK

Fig. 12: Conceptual sketch of Mohr-Coulomb failure envelop, Kf line, tensile strength and

cohesion

assuming that the friction angle is not changed in unsaturated condtions, shear strength of

unsaturated granular materials can be expressed as:

τ = (σn − ua)tanφ+ χ(ua − uw)tanφ+ c′ (8)

where σn is the total normal stress on the failure plane, φ is the friction angle and c′ is the

effective cohesion for the dry or fully satuated condition. Therefore, the total cohesion can

be formualted as:

c = χ(ua − uw)tanφ+ c′ (9)

From the simulation results, cohesion for materials at the dry state is observed to be neglige-

ble. Therefore, in this study we approximate that c′ ≈ 0 and the total cohesion c is termed

as the capillary cohesion.
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By extending the Kf line, the intersection value a in Fig. 12 can be obtained. By con-

sidering the relationship between Kf and φ, the total cohesion (capillary cohesion) can be

calculated from a as:

c =
a

cosφ
(10)

The capillary cohesions of the simulated materials are presented in Fig. 13. For all granular

materials, c ≈ 0 when Sr = 0. However, by adding a minuscule amount of water, the

cohesion increases significantly and then the cohesion reaches a plateau that further water

content raise only slightly increases the material cohesion. It can also be observed from

the results that, for a same material (for example the sample I), a lower void ratio results

in a higher cohesion at the same degree of saturation. For materials with the same mean

particle size (sample I and II), increase the particle size polydispersity can reduce the void

ratio which also significantly raises the capillary cohesion. Whereas the rest samples (III,

IV and V) have relatively larger particle sizes, the capillary cohesion becomes weaker. This

indicates the capillary induced cohesion is inversely proportional to the mean particle size.

Particle size distributions of samples III and V are closed to those of a kind of glass

beads [41] and Ottawa sand [24]. In the work of [41] and [24], uniaxial tensile test are

implemented for which the Mohr circle can be represented by the dash circle in Fig. 12 that

the maximum principle stress is zero and the minimum principle stress is the tensile stress.

By assuming the Mohr-Coulomb failure envelope is also valid in stress extension domain,

the capillary cohesion can be calculated from the tensile strength by the following equation:

c = −
σt

2tan(π
4
− φ

2
)

(11)

The capillary cohesions adopted from experiments within the pendular regime are also plot-

ted in Fig. 13 for comparison. It can be seen that the experimental results have the same order

of values around 1kPa with those of samples III, IV and V in simulations. The trend quali-

tatively agrees with the simulation results that glass beads specimen (sample III) has higher

cohesion than that of Ottawa sand (sample V). The overestimation in DEM simulations may

be induced by the following reasons:

– The Mohr-Coulomb failure criterion simplifies the failure strength and mean stress as a

linear relationship. However, as discussed by Lu et al. [32], for small stresses or in the

tensile domain the slope of Mohr-Coulomb envelope may become steeper.

– The impurity of water and the temperature change in laboratory may vary the water

surface tension which subsequently changes the strength.

– It has been observed by environmental scanning electron microscope (ESEM) that, in

sand, the water menisci between particles may be in not only concave shapes but also

convex shapes [30]. The convex shape liquid bridges may offset part of the capillary

strengthening effect.

– The hydraulic history of the material may induce uncertainties on the relationship be-

tween matric suction and water saturation, while the DEM result has just one possible

water retention curve.

Nevertheless, DEM simulation is still a useful tool to discuss the capillary effect in unsatu-

rated granular materials at least on the qualitative level. Another benefit of the DEM method

is its insight into the particle scale and physical mechanisms, which will be discussed in the

next section.

By knowing capillary cohesion and the corresponding suction, Bishop’s coefficient of χ
for the simulated materials can be calculated from Equation. 9 in which c′ is taken as 0. Fig.
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Fig. 14: Biship’s coefficient χ and capillary cohesion

14(a) presents the χ values of the different materials at various degree of saturations. It can

be seen that although the simulated materials have different void ratios, polydispersity and

mean particle sizes, the basic trend of χ is mainly determined by the degree of saturation

and excluding the two scattered points the main trend can be fitted by a 3rd order polynomial

equation as:

χ = 100S3
r − 22S2

r + 5.6Sr (12)

By substituting Equation. 12 into Equation. 9, capillary cohesion is therefore expressed in

the following form:

c =
(

100S3
r − 22S2

r + 5.6Sr

)

(ua − uw) tanφ (13)

Capillary cohesions predicted by the above equation are illustrated as lines in Fig. 14(b)

with the test results plotted as scatters. They have a fair match with each other for spherical

granular materials with different particle size distributions.

5 Micro-mechanism of the Capillary Strengthening

5.1 The Stress-Force-Fabric relationship for unsaturated granular materials

The Stress-Force-Fabric (SFF) relationship [45] is a theory which formulates the stress ten-

sor by parameters associated with micro structures, force transmission and fabric anisotropies.

It is recently reintroduced in form of tensor multiplications by considering more complicated

loading conditions [26, 27] . For wet granular materials, Scholtès et al. [48] interpreted the

stress tensor as the sum of the contact stress tensor and capillary stress tensor. It has been

confirmed that the capillary strengthening effect has a coupling effect with the material fab-

ric anisotropy by experiment [14]. By applying the directional statistics theory to examine

the information on particle-scale interactions and fabrics obtained from DEM simulations,

the Stress-Force-Fabric (SFF) relationship for unsaturated granular materials in pendular
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states has also been interpreted by characterising the directional distributions associated

with the fabrics of solid skeleton and water bridges respectively [57, 62]. In this SFF rela-

tionship, the total stress tensor for a representative elementary volume V with N particles

is formulated from the micro-structures as:

σij =
NR̄

3V

[

ωsfcont0

(

δji +Gsf
ij +

2

5
Ds

ij +
2

5
Ds

im1
Gsf

jm1

)

+ ωwfcap0

(

δji +
2

5
Dw

ij

)]

(14)

where R̄ is the mean particle radius, ωs and ωw are the coordination numbers for solid

contacts and water bridges respectively, fcont0 and fcap0 are directional average values

for inter-particle contact force and capillary force, and Ds
ij , Dw

ij , Gsf
ij are direction tensors

representing the anisotropic effects in solid contacts, water bridge directions and contact

forces. For a particular material, the mean stress level is mainly determined by coordination

numbers of solid contact and water bridge and the mean contact and capillary force. The

stress deviator is mainly represented by the fabric and force anisotropies in the solid and

water phases.

For a granular assembly with Ns solid particle contacts, a second rank moment tensor

for solid skeleton fabric can be defined by taking an average of the self tensor product of the

unit vector of the inter-particle contact normals as:

Ns
ij =

1

Ns

∑

c∈V

ns ⊗ ns (15)

where ns is the unit contact normal vector on c− th contact. Similarly, for the water bridge

network, a second rank fabric tensor quantifying the unit vectors of the water bridge di-

rections can be defined as an average of the self tensor product of the unit vector from the

water bridge centre to the particle centroid over all water bridges (a total number of Nw and

normally Nw > Ns):

Nw
ij =

1

Nw

∑

w∈V

nw ⊗ nw (16)

where w is the w− th water bridge and nw is the unit vector on the water bridge direction.

Then the deviatoric tensors of the solid contacts and water bridges (Ds
ij and Dw

ij) can be

expressed as:

D
s/w
ij =

15

2
(N

s/w
ij −

1

3
δij) (17)

by substituting the corresponding superscripts.

The moment tensor for the directional distribution of contact forces in an assembly

(noted as Ksf
ij ) can be defined by a integration of the tensor product of the average contact

force along a particular direction noted as 〈fcont〉|ns
and the unit vector of that direction

ns, and then averaged by the unit sphere surface of Ω:

Ksf
ij =

1

2π

1

Ns

∮

Ω

〈fcont〉|ns
⊗ nsdΩ (18)

Gsf
ij is the deviatoric part of normalised Ksf

ij as:

Gsf
ij =

3Ksf
ij

Ksf
ii

− δij (19)



A micro-macro investigation of the capillary strengthening effect in wet granular materials 21

where Ksf
ii is the sum of the diagonal line of Ksf

ij and the directional average of contact

force, fcont0, can be approximated as fcont0 = Ksf
ii . The directional average of capillary

force, fcap0, is also calculated in a similar way.

The SFF relationship for unsaturated granular materials introduced above is adopted to

study unsaturated granular materials. The micro parameters in this SFF relationship are dis-

cussed in the following parts which could explain the micro origin of the capillary strength-

ening effect. The materials at the peak strength in the triaxial tests under 10kPa confining

pressure are selected for the investigation.

5.2 Fabric and force anisotropies at peak strength

Firstly, the fabric anisotropies in solid skeleton and water bridges as well as the anisotropic

effect in contact forces are investigated. The magnitudes of anisotropies are quantified by

the square root of the second tensor invariants for the direction tensors as
√

3J2(A) =
√

[(A11 − A22)2 + (A22 − A33)2 + (A33 − A11)2]/2 where A represents the tensors of

Ds
ij , Dw

ij and Gsf
ij .

0 2 4 6 8 10 12 14 16 18
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Sr (%)

S
o

lid
 C

o
n

ta
c
t 

F
a

b
ri
c
 A

n
is

o
tr

o
p

y

 

 

DEM I e=0.629

DEM I e=0.688

DEM I e=0.733

DEM II e=0.539

DEM III e=0.629

DEM IV e=0.605

DEM V e=0.539

(a) Solid fabric anisotropy

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sr (%)

W
a

te
r 

B
ri
d

g
e

 F
a

b
ri
c
 A

n
is

o
tr

o
p

y

 

 

DEM I e=0.629

DEM I e=0.688

DEM I e=0.733

DEM II e=0.539

DEM III e=0.629

DEM IV e=0.605

DEM V e=0.539

(b) Water fabric anisotropy

Fig. 15: Fabric anisotropies at peak strength

Fig. 15 plots the magnitude of fabric anisotropies in the solid contact normals and the

water bridge directions at the peak strength in the triaxial tests under 10kPa confining pres-

sure. In Fig. 15(a), the solid phase fabric anisotropies of wet materials at peak strength are

even lower than those of dry materials. Beyond 2% degree of saturation, a greater amount of

water in the soil only slightly increases the solid phase fabric anisotropy. Moreover, the water

bridge network also becomes anisotropic under triaxial loading but the fabric anisotropies in

the water bridge directions are reduced by more water content in the soil specimen. The solid

and water phase fabric anisotropies have coupling effect. This means although the capillary

effect is also anisotropic, its smaller magnitude offsets the magnitude of the anisotropy in

the solid phase.

The contact force anisotropies at the peak strength are depicted in Fig. 16. It can be

seen that the anisotropy of solid contact forces is generally increased by more water in
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Fig. 16: Solid contact force anisotropy

the sample. The anisotropy increase in a denser specimen is more significant than those in

a looser material (comparing specimens of sample I). For a material with higher particle

size polydispersity, the anisotropic effect of contact forces is stronger at the peak strength

(comparing I with II). By looking at the results of samples III, IV and V, it can be seen that

with the mean particle size increase generally the contact force anisotropy becomes more

significant to the material strength.

5.3 Coordination number at peak strength

Fig. 17 illustrates the water content effect on the peak state solid contact coordination num-

ber and the water bridge coordination number. It can be seen that with a minuscule amount

of water the capillary effect significantly increased the solid phase coordination number

from around 3 to 4 to around 5, while the solid phase coordination number is not obviously

changed by further water content increase. The coordination number of the water phase in-

creased accordingly with moisture content and the void ratio has a significant effect on the

water phase coordination number, as dense specimens have more water bridges at the same

degree of saturation.

Due to the significant influence of the solid coordination number on effective stress, the

capillary effect on solid coordination number should be investigated clearly at the particle

scale. We analysed the coordination number on each particle statistically. Fig. 18 plots the

probability density distribution of the possible solid coordination numbers on each particle

for the dry and wet samples at the peak state. It can be seen in the dry specimens, without

the gravity effect, some particles are not in contact with others. If the granular material is

monosized material, with a certain confinement, all the particles should be in touch with

its neighbouring grains as the particles are regularly arranged. With the increase of grain

size polydispersity, the possibility of no contact (0 coordination number) is increased. This

is because for a sample with a wider particle size distribution there will be more particles

filled in the voids surrounded by larger grains. The finer particles filled in the voids do

not support the main structure as forces are mainly transmitted by large grains. In the wet

samples, due to the cohesive capillary force, the finer particles in the voids are in touch with

their neighbouring particles. The minimum solid coordination number in the assembly is
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Fig. 17: Coordination numbers at peak strength

1 and the maximum coordination number is also increased. In wet samples, the maximum

coordination number is also enlargered by a wider particle size range.
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Fig. 18: Probability distribution of solid coordination numbers on each particle

In Fig. 19, the relationship between the relative particle size and its coordination number

is investigated in the dry and wet granular materials at peak state. We use R−Rmin

Rmax+Rmin

to represent the relative size of a particle where Rmax and Rmin are the maximum and

minimum particle radius in the specimen. The relative size value is divided into 50 segments,

and the average coordination numbers for different relative particle sizes are calculated. In

the dry specimens, the coordination number is increased with the relative particle size as

a linear relationship. The slope of the relationship between the coordination number and

relative particle size is increased by the particle size span. In the wet granular materials,

the coordination number is increased on all particles by the cohesive capillary force. The

coordination number increase is more significant on larger particles in samples with a wider
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particle size span. The decrease in mean particle size also consolidated the coordination

number increase slightly (comparing sample II with sample V).
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Fig. 19: Average solid coordination number vs. normalised particle size

We use a parameter of particle size polydispersity κ to characterise the relationship

between coordination number and particle size, where κ = Rmax−Rmin

Rmax+Rmin
. In dry granular

materials, it can be formulated as as a linear relationship:

ωdry
s (R) = 12κ

R−Rmin

Rmax +Rmin
− 6κ+ 4 (20)

where the constant 4 indicates that for a particle with the size around the mean size in the

material, its most possible coordination number will be 4, which is the minimum stable

coordination number in three dimensional space. In wet materials, the coordination num-

ber function has an additional term added to that of the dry materials. We use a quadratic

function to fit the capillary effect on the coordination numbers. It can be expressed as:

ωwet
s (R) = ωdry

s (R) +mκ3

(

R−Rmin

Rmax +Rmin
− 0.2

)2

+ 4κ2 + n (21)

where m is related to water bridge curvatures and n is inverse proportional to the mean

particle size.

5.4 Inter-particle force at peak strength

The mean inter-particle force in different materials under the influence of water are inves-

tigated on the parameters of fcont0 and fcap0 which represent the level of mean contact

force and mean capillary force respectively. Fig. 20 demonstrates the water content effect

on fcont0 and fcap0 for the simulated materials at peak state under 10kPa confining stress.

Fig. 20(a) shows the change of the fcont0 from that of the dry sample in percentage with

the increase of degree of saturation. For finer materials, like I, II and III, adding water will
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increase the mean contact force which is correlated to the capillary strengthening effect.

However, for a coarser material, such as sample IV and V, the capillary effect will not ob-

viously increase the mean contact force level. This is because the capillary effect increased

the solid coordination number but the contact force on the new contacts is relatively small.
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Fig. 20: Inter-particle contact and capillary force

Fig. 20(b) depicts the absolute values of the ratio between fcap0 and fcont0 at various

degree of saturation. It can be seen that with the increase of water content, the mean capillary

force level is a decreasing trend. This is because most of the particle pairs with a water bridge

have relatively small inter-particle distance and the increase in water content (decrease in

matric suction) extended the rupture distance but weakened the capillary force when it has

small inter-particle distance (see Fig. 3). It can also be observed that for samples with larger

mean particle size, the value of
∣

∣

∣

fcap0

fcont0

∣

∣

∣ is smaller. This means for materials composed of

larger grains, the capillary effect on inter-particle force is smaller comparing to the effect on

finer soils.

6 Summary and Conclusions

By introducing capillary bridge effect between particles, wet granular materials are simu-

lated by DEM method in a triaxial loading path to investigate the capillary strengthening

effect and its micro-mechanisms. The water bridges are approximated as toroidal shape

and the assumption is proven to be acceptable by comparing with experiments in literature.

Granular materials with different void ratios and particle size distributions are systematically

investigated in this study.

The limit of the pendular state is discussed based on the occurrence of water bridge

coalescence. Larger void ratio and particle size polydispersity lead the limit of pendular

state to a lower degree of saturation. The contact angle hysteresis also affects the range of the

pendular state that higher contact angle means larger pendular state range. By comparing the

simulated water retention property with experiment, it supports that the widely used water

bridge model is more suitable to simulate a material in the wetting path.
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The capillary effect on mechanical behaviours is discussed based on triaxial tests. Water

content does not obviously alter the material friction angle which is mainly affected by void

ratio and particle size polydispersity. The capillary induced cohesion is increased sharply

by a minuscule amount of water, but further increase of moisture content only strengthens

the material slightly. A relationship between the Bishop’s coefficient χ is obtained from the

simulations on different granular materials. The capillary cohesion is therefore in function

of degree of saturation, matric suction and friction angle. At the same degree of saturation,

cohesion is inversely proportional to mean particle size and strengthened by higher particle

size polydispersity.

The micro-mechanism of capillary strengthening effect is discussed after the SFF rela-

tionship. At the peak strength, solid contact fabric, water bridge fabric and contact force dis-

tribution are anisotropic due to the loading. Water content increase makes the contact force

more anisotropic at peak state. However, more water in a material means less anisotropic ef-

fect in water phase fabric. Solid contact number and mean solid contact force are associated

with the effective stress. Distributions of solid contact numbers are analysed statistically,

and it revealed that the particle size polydispersity effect on the capillary cohesion is mainly

through the coordination number distribution. The ratio between the mean capillary force

and mean contact force is increased by reducing mean particle size, since water surface ten-

sion is a physical constant at different scales, and this is the main reason why the capillary

cohesion is more significant in finer materials.
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52. Soulié F, El Youssoufi MS, Cherblanc F, Saix C (2006) Capillary cohesion and mechanical strength of

polydisperse granular materials. The European Physical Journal E, Soft Matter 21(4):349–357, DOI

10.1140/epje/i2006-10076-2

53. Turner G, Balasubramanian M, Otten L (1976) The tensile strength of moist limestone powder. Measure-

ments by different apparatuses. Powder Technology 15(1):97–105, DOI 10.1016/0032-5910(76)80034-4

54. Voivret C, Radjaı̈ F, Delenne J, El Youssoufi MS (2007) Space-filling properties of polydisperse granular

media. Physical Review E 76(2):021,301, DOI 10.1103/PhysRevE.76.021301

55. Voivret C, Radjaı̈ F, Delenne J, El Youssoufi M (2009) Multiscale Force Networks in Highly Polydisperse

Granular Media. Physical Review Letters 102(17):178,001, DOI 10.1103/PhysRevLett.102.178001

56. Wan R, Duriez J, Darve F (2015) A tensorial description of stresses in triphasic granular materials with

interfaces. Geomechanics for Energy and the Environment 4:73–87, DOI 10.1016/j.gete.2015.11.004

57. Wang JP (2015) Discrete Element Modelling and Micromechanics of Pendular State Unsaturated Gran-

ular Materials. PhD thesis, University of Nottingham, UK

58. Wang JP, Li X, Yu HS (2015) A micromechanical interpretation of the capillary effect of unsaturated

granular material in a pendular state. In: Computer Methods and Recent Advances in Geomechanics -

Proceedings of the 14th Int. Conference of International Association for Computer Methods and Recent

Advances in Geomechanics, IACMAG 2014, Taylor and Francis - Balkema, pp 1563–1568

59. Wang JP, François B, Lambert P (2017) Equations for hydraulic conductivity estimation from particle

size distribution: A dimensional analysis. Water Resources Research 53(9):8127–8134, DOI 10.1002/

2017WR020888



30 Ji-Peng Wang et al.

60. Wang JP, Gallo E, François B, Gabrieli F, Lambert P (2017) Capillary force and rupture of funicular

liquid bridges between three spherical bodies. Powder Technology 305:89–98, DOI 10.1016/j.powtec.

2016.09.060

61. Wang JP, Hu N, François B, Lambert P (2017) Estimating water retention curves and strength properties

of unsaturated sandy soils from basic soil gradation parameters. Water Resources Research 53(7):6069–

6088, DOI 10.1002/2017WR020411

62. Wang JP, Li X, Yu HS (2017) Stress-Force-Fabric Relationship for Unsaturated Granular Materials

in Pendular States. Journal of Engineering Mechanics 143(9):04017,068, DOI 10.1061/(ASCE)EM.

1943-7889.0001283

63. Yang H, Rahardjo H, Leong EC, Fredlund DG (2004) Factors affecting drying and wetting soil-

water characteristic curves of sandy soils. Canadian Geotechnical Journal 41(5):908–920, DOI 10.1139/

t04-042


	Introduction
	Numerical Simulations
	Study of Hydraulic Properties
	Material strength of wet granular materials
	Micro-mechanism of the Capillary Strengthening
	Summary and Conclusions

