This is a repository copy of Efficacy evaluation of iclaprim in a neutropenic rat lung infection model with methicillin-resistant Staphylococcus aureus entrapped in alginate microspheres.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/125870/

Version: Accepted Version

Article:
Huang, DB, Morrissey, I, Murphy, T et al. (2 more authors) (2018) Efficacy evaluation of iclaprim in a neutropenic rat lung infection model with methicillin-resistant Staphylococcus aureus entrapped in alginate microspheres. European Journal of Clinical Microbiology and Infectious Diseases, 37 (4). pp. 673-678. ISSN 0934-9723

https://doi.org/10.1007/s10096-017-3159-5

© Springer-Verlag GmbH Germany, part of Springer Nature 2017. This is a post-peer-review, pre-copyedit version of an article published in European Journal of Clinical Microbiology and Infectious Diseases. The final authenticated version is available online at: https://doi.org/10.1007/s10096-017-3159-5

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Efficacy Evaluation of Iclaprim in a Neutropenic Rat Lung Infection Model with Methicillin-Resistant \textit{Staphylococcus aureus} Entrapped in Alginate Microspheres

David B Huang, MD, PhD,1* Ian Morrissey, PhD,2 Timothy Murphy,3 Stephen Hawser, PhD,2 and Mark H Wilcox, MD4

1Motif BioSciences, New York, New York, USA, 2IHMA Europe Sàrl, Route de l’Ile-au-Bois 1A, 1870 Monthey (VS) Switzerland, 3NeoSome Life Sciences, LLC, Lexington, MA, USA, 4Leeds Teaching Hospitals & University of Leeds, Leeds, UK

The data was presented in part at IDWeek 2017: Efficacy Evaluation of Iclaprim in a Neutropenic Rat Lung Infection Model with Methicillin-Resistant \textit{Staphylococcus aureus} Entrapped in Alginate Microspheres. San Diego, California. Poster 1525.

Running Title: Iclaprim in a MRSA lung infection model

Abstract word count: 228

Text word count: 2,488

*Address all Correspondences to:

David Huang, MD, PhD

Motif BioSciences, 125th Park Avenue, 25th Floor, New York, NY 10017

Telephone: 936-577-5770, Email: david.huang@motifbio.com
Abstract

Purpose: The objective of this study was to demonstrate the efficacy of iclaprim in a neutropenic rat lung infection model with methicillin-resistant *Staphylococcus aureus* (MRSA) entrapped in alginate beads.

Methods: An inoculum of 5.25×10^4 colony-forming units (CFU)/ml of *S. aureus* strain AH1252 was administered intratracheally to rats with prepared alginate bacteria suspensions. Beginning 2 hours post infection, rats received: (1) iclaprim 80 mg/kg (n=17); (2) iclaprim 60 mg/kg (n=16) or (3) vancomycin 50 mg/kg (n=24), for 3 days via subcutaneous (SC) injection every 12 hours. Twelve hours after the last treatment, rats were euthanized and lungs collected for CFU determination.

Results: Iclaprim administered at 80 mg/kg or 60 mg/kg or vancomycin 50 mg/kg SC twice a day for 3 days resulted in a $6.05 \log_{10}$ CFU reduction (iclaprim 80mg/kg compared with control, $p<0.0001$), $5.11 \log_{10}$ CFU reduction (iclaprim 60 mg/kg compared with control, $p<0.0001$), and $3.42 \log_{10}$ CFU reduction, respectively, from the controls ($p<0.0001$). Iclaprim 80 mg/kg and 60mg/kg resulted in a 2.59 and 1.69 \log_{10} CFU reduction, respectively, from vancomycin treated animals (80mg/kg iclaprim vs. vancomycin, $p=0.0005$; 60 mg/kg iclaprim vs. vancomycin, $p=0.07$). Animals receiving iclaprim, vancomycin and controls demonstrated 100%, 91.7%, 48.3% survival, respectively.

Conclusions: In this neutropenic rat *S. aureus* lung infection model, rats receiving iclaprim demonstrated a greater CFU reduction than the controls or those receiving vancomycin.

Word Count: 228

Keywords: iclaprim, vancomycin, pneumonia, alginate beads, *in vivo*
Introduction

Methicillin-resistant *Staphylococcus aureus* (MRSA) is one of the most common causes of hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) [1,2]. The annual incidence rate of healthcare-related MRSA pneumonia has increased from 11.3 cases per 100,000 patient-days in 2008 to 15.5 cases per 100,000 patient days in 2012 [3]. MRSA causes invasive infections, like HAP and VAP, that are associated with organ dysfunction, poor outcomes with excess morbidity and mortality and high costs to the healthcare system [4,5].

Iclaprim represents a novel diaminopyrimidine, which inhibits bacterial dihydrofolate reductase (DHFR) and is active against drug-resistant pathogens [6,7]. Iclaprim exhibits potent *in vitro* activity against *S. aureus* including MRSA [6], linezolid-resistant and vancomycin-resistant *S. aureus* [8] that cause pneumonia. Iclaprim demonstrates rapid *in vitro* bactericidal activity in time-kill studies in human plasma [9]. Because of these findings, iclaprim is potentially well suited for treating patients with pneumonia caused by susceptible and multidrug-resistant pathogens and the hypothesis of this study is that iclaprim would be effective and reducing colony forming units and prolonging survival among animals infected with MRSA compared to both vancomycin and controls.

The present study employed an experimental model of methicillin resistant *S. aureus* (MRSA) pulmonary infections as previously [10]. Notably, by encapsulating the bacteria within alginate, the infection model allowed for a lower inoculum to be utilized and a biofilm type environment established within the lung.

Materials and Methods
Collection of bacterial strains

S. aureus AH1252 and AW6 were provided by IHMA and were gifts from Jose Entenza, Lausanne [11]. Strain AH1252 is a thymidine kinase-deficient mutant of the MRSA isolate AW6. *S. aureus* ATCC 29213 was used as CLSI quality control (QC) isolate for MIC determinations.

Antimicrobial Susceptibility Testing

MICs were determined for iclaprim and vancomycin by broth microdilution according to CLSI criteria [12,13].

Preparation of bacteria

Test isolates were grown overnight on trypticase soy agar (TSA) from frozen stock cultures. After overnight incubation, colonies were resuspended in saline and adjusted to an optical density of 0.1 at 625 nm. The adjusted suspensions were further diluted in a 2% alginate buffer, which was added dropwise in a ratio of 1:5 into 50 mM CaCl$_2$ to form alginate beads. The alginate beads were stirred during the dropwise addition and then for an additional 30 minutes to ensure that the beads were fully formed. The bacterial preparation in alginate beads allowed for the establishment of a prolonged infection due to reduced efficiency of bacterial clearance with a low inoculum input. Serial dilutions of the inoculum preparations were performed to determine inoculum size (colony forming units (CFU) per mL).

Preparation of compounds

Cyclophosphamide was prepared in sterile deionized water, and the mixture was vortexed and sonicated in a water bath sonicator until fully dissolved. Iclaprim was prepared by weighing
out the appropriate amount and dissolving in 30% propylene glycol vehicle. The preparation was
sonicated in a water bath sonicator until dissolved. Vancomycin was prepared in sterile deionized
water and vortexed to dissolve.

Animal Acquisition and Acclimatization

All procedures in this protocol were in compliance with the Animal Welfare Act, the
Guide for the Care and Use of Laboratory Animals, and the Office of Laboratory Animal
Welfare. Upon receipt at NeoSome Life Sciences, Sprague Dawley male rats (Charles River
Laboratories, Wilmington MA) were examined by personnel to ensure acceptable health status.
Veterinary care was provided by the veterinarians and staff employed by NeoSome Life Sciences.
Rats were acclimated for at least 5 days prior to testing. Rats were housed 3 per cage.
Cage size met or exceeded the requirements set forth by the ILAR Guide for the Care and Use of
Laboratory Animals. The animals were kept in a room maintained at 68 to 79°F (20-26°C) with
humidity set at 30 to 70%. The room was illuminated with fluorescent lights timed to give a 12-
hour light, 12-hour dark cycle. Rodent diet (Purina 5001) and water were available for all rats.
The feed was analyzed by the supplier detailing nutritional information and levels of specified
contaminants.

Pre-treatment, Inoculation Procedure, and Treatment

Rats were pretreated with cyclophosphamide monohydrate to render them neutropenic.
Based on literature review and previous experience with this model, rats were dosed
intraperitoneally (IP) on day -4 with 100 mg/kg. On day -1 rats received a second IP dose at 75
mg/kg [14, 15]. This regimen of neutropenia has been found to be effective in suppressing the
immune system of the rat for this model.

Rats were infected with prepared alginate bacteria suspensions while under isoflurane anesthesia (4.5% isoflurane; 2.5 L/min O_2). Utilizing a sterile 20G, 3-inch stainless steel feeding needle, a 0.5 mL volume was delivered via intratracheal inoculation (IT). Holding the anesthetized rat in a vertical plane, the feeding needle was advanced into the trachea and the volume was instilled. The rat was returned to its cage and allowed to recover from the anesthesia.

Beginning at 2 hours post infection, rats were randomized to treatment with iclaprim, vancomycin or 30% propylene glycol vehicle (controls). Test articles were prepared fresh for each day of dosing and formulated material was stored at 4°C, protected from light between the two daily doses. Animals were dosed by body weight in a volume of 5 mL/kg subcutaneously. These series of studies were designed to evaluate efficacy in a step-wise fashion. An initial dose of iclaprim 80 mg/kg per dose was selected based on a previous studies in animal models of infection, including a model of bacteremia and abscess (unpublished data). Two different dosages of iclaprim (80 mg/kg and 60 mg/kg) were used to show comparability with other iclaprim animal infection models and to establish which dose works best in this alginate bead model. Vancomycin was selected as a comparator based on activity observed in other rats models with difficult to treat infections [16, 17] and given its clinical use for staphylococcal infection. Non-treatment infection control animals received vehicle (30% propylene glycol).

Sample processing

No samples were collected before euthanasia. At 74 hours post infection, rats were euthanized by CO_2 inhalation. One group of rats was euthanized at 2 hours post-infection to determine bioload at initiation of therapy. Rat lungs were aseptically removed, weighed, and homogenized.
to a uniform consistency using a Polytron PT2100 with a 12 mm dispersing homogenizer (Bohemia, NY). The homogenized samples were serially diluted (10 fold dilutions) in sterile 0.9% saline and plated on TSA plates. The plates were incubated overnight at 37°C and CFUs were enumerated by counting the plated colonies, adjusting for dilution factor and lung weight to obtain CFUs/ gram of lung. The recovered bacteria were MRSA. While not conducted routinely, spot checking of bacteria recovered from the lung homogenates were also plated on oxacillin containing media with the same results (same CFU count). This suggests the recovered organisms were MRSA. Some minor contamination is expected with this model, though it is at low levels and most often a fungus or mold, both of these are easily identified and can be discounted when quantifying the CFUs. This model has been previously validated and confirmed that the bacterial input and recovery are consistent. Additionally, the rats are maintained in a clean environment and are received from the vendor in good health (with health reports provided) which significantly limits the potential for contamination.

Statistical analyses

Group sizes of nine animals each were determined to be adequate through power analysis assuming 80% probability and a standard deviation 0.5 log\(_{10}\) CFU. These numbers allowed for the detection of 0.7 log\(_{10}\) CFUs between groups. The average, standard deviation, and standard error of the mean (SEM) CFUs were calculated for each group of animals. One-way analysis of variance (1way ANOVA) with multiple comparison post test (Bonferroni) was used to compare the means of CFUs/ gram of lung between experimental groups at two time points, 2 and 74 hours post-infection. Specifically, comparisons were made of the 74 hour post-infection CFU / gram of lung and survival > 60 hours between both iclaprim dosing regimens (80 mg/kg and 60
mg/kg) compared to infection controls (vehicle alone), vancomycin compared to infection
controls, and both iclaprim dosing regimens compared to vancomycin. A p-value ≤ 0.05 was
considered to be significant.

Results

Against isolates AW6 and AH1252, MIC values for iclaprim were 0.015 μg/ml for both
and 0.5 μg/ml and 0.25 μg/ml for vancomycin, respectively.

Table 1 and Figure 1 show the CFU reduction and mortality by treatment. Rats infected
with *S. aureus* AH1252 demonstrated an average bioload of 3.53 log_{10} CFU per gram of lung at
the 2 hour initiation of therapy. Besides MRSA, no other microorganisms were identified in the
lungs of any animals. Untreated infected rat lungs demonstrated an average bioload of 8.70 log_{10}
CFU/gram of lung at 74 hours post infection, a 5.17 log_{10} CFU increase in bioburden over 72
hours. Iclaprim administered at 80 mg/kg subcutaneously twice a day for 3 days resulted in a
6.05 log_{10} CFU reduction from the 74 hour infection controls (*p* <0.0001). Additionally, a 0.88
log_{10} CFU reduction was observed for iclaprim dosed at 80 mg/kg when compared with the
bioload at initiation of therapy. This reduction suggests bacterial killing is occurring which was
not observed with vancomycin under these study conditions. Iclaprim administered 60 mg/kg
subcutaneously twice per day demonstrated activity in the rat lung infection model with a 5.11
log_{10} CFU reduction from the 74 hour infection controls (*p* < 0.0001). In comparison,
vancomycin administered at 50 mg/kg subcutaneously twice a day for 3 days demonstrated a
5.28 log_{10} CFU/gram of lung bioburden, a 3.42 log_{10} CFU reduction from the 74 hour infection
controls (*p* < 0.0001). Iclaprim 80 mg/kg and 60mg/kg resulted in a 2.59 and 1.69 log_{10} CFU
reduction, respectively, from vancomycin treated animals (80mg/kg iclaprim vs. vancomycin,
Control animals infected with *S. aureus* had 48.3% (14 of 29) survival. In contrast, animals receiving iclaprim had 100% survival (33 out of 33), while vancomycin-treated animals had 91.7% (22 out of 24) survival (both iclaprim and vancomycin treated animals showed increased survival compared to control animals, chi-square test, $p < 0.01$).

Discussion

This report demonstrates that iclaprim produces significant and sustained efficacy in the current pulmonary model of lung infection due to MRSA, compared with vancomycin. The data support the potential use of iclaprim in the treatment of staphylococcal pulmonary infections. The combination of the alginate encapsulated bacteria and ensuing biofilm formation established a bacterial growth environment that was difficult to treat and eradicate, providing a useful model to test the ability of antibiotics to treat challenging pulmonary bacterial infections. Patients with CF can have *S. aureus* pulmonary infections. Therefore, it is important that antibiotics aimed to treat such infections be able to distribute and concentrate in the lung compartments.

A Phase 1 study investigated the tissue distribution of a single IV dose of iclaprim in relevant lung compartments [18]. Iclaprim concentrations found in epithelial lining fluid (ELF) and alveolar macrophages (AM) were up to 20- and 40-fold higher, respectively, than in plasma. In addition, iclaprim concentrations in plasma, ELF and AM after a single IV dose of 1.6 mg/kg exceeded iclaprim MICs for penicillin-susceptible *S. pneumoniae* ($\text{MIC}_{90} 0.06$ mg/L) and methicillin-resistant *S. aureus* ($\text{MIC}_{90} 0.12$ mg/L) for up to 7 hours; mean iclaprim concentrations in ELF exceeded the iclaprim MICs observed for *S. pneumoniae* with intermediate penicillin resistance ($\text{MIC}_{90} 2$ mg/L) and full resistance ($\text{MIC}_{90} 4$ mg/L) for up to 7
and 4 hours, respectively, after a single dose.

S. aureus AH1252 strain, which is deficient in thymidine kinase, was used in this study because it has been reported that the uptake of exogenous thymidine and its conversion into thymidylate by thymidine kinase in certain bacteria, including *S. aureus*, antagonize with the antimicrobial activity of the DHFR inhibitor trimethoprim *in vitro* [19]. It also is known that the serum of rodents contains large concentrations of thymidine compared to human serum, i.e., ≥1 and ≤0.01 μg/ml, respectively [19]. This is the most plausible reason to explain why testing trimethoprim or trimethoprim-sulfamethoxazole (TMP-SMX) can sometimes be ineffective in staphylococcal infection models in rodents [12,17]. A previous study by Entenza *et al* [11] described the use of *S. aureus* thymidine kinase-deficient mutants (unable to utilize exogenous thymidine) in an *in vitro* fibrin clot model employing iclaprim in the presence of rat and human clots. The utility of the thymidine kinase mutants was evident, as thymidine no longer antagonized the action of iclaprim in the rat. Thus, iclaprim demonstrated high efficacy in rat (high thymidine) containing clots generated in the presence of these thymidine kinase deficient *S. aureus* strains, but not, as expected, with the thymidine kinase producing wild type strains [11].

There are limitations to this study. First, only two doses and two timepoints with a single inoculum challenge were used in this study. No pharmacokinetics (i.e., no blood or lung levels of iclaprim or vancomycin) were performed because the two doses were based on previous studies of iclaprim in animal infection models and mimicking exposures in patients (unpublished data). Second, the starting inoculum in rodents was low compared to other models because by encapsulating bacteria within alginate, the infection model allowed for a lower inoculum to be utilized and a biofilm type environment established within the lung. Although this may lower the therapeutic hurdle, all groups, control, iclaprim and vancomycin treated rats, received the
same starting inoculum. Furthermore, this starting inoculum is consistent with other published alginate bead pneumonia models [10]. Third, no microbiological samples or counts were collected or measured before euthanasia of the animals therefore the initial challenge might not be the same in the lungs.

This current pulmonary model of lung infection due to MRSA is consistent with results from a Phase 2 study showing activity of iclaprim in patients with nosocomial pneumonia. In the Phase 2 study, the clinical cure rates of two iclaprim dosages were compared with that of vancomycin in the treatment of patients with nosocomial pneumonia suspected or confirmed to be caused by Gram-positive pathogens; this study showed iclaprim and vancomycin to have comparable clinical cure rates and safety profiles in these patients [20]. The cure rates in the intent-to-treat population were 73.9% (17 of 23), 62.5% (15 of 24), and 52.2% (12 of 23) at the post-treatment test of cure visit in the iclaprim 0.8 mg/kg intravenous (IV) q12h, iclaprim 1.2 mg/kg IV q8h, and vancomycin 1 g IV q12h groups, respectively (iclaprim q12h versus vancomycin p = 0.13; and iclaprim q8h versus vancomycin p = 0.47). The death rates within 28 days of the start of treatment were 8.7% (2 of 23), 12.5% (3 of 24), and 21.7% (5 of 23) for the iclaprim q12h, iclaprim q8h, and vancomycin groups, respectively (no statistically significant differences).

Collectively, the current \textit{in vivo} study, and previous Phase 1 and 2 clinical studies support the use of iclaprim development as a potential treatment for \textit{S. aureus} pneumonia, including possibly among patients with biofilm mediated infection, as seen for example in CF.
Table 1: Colony forming unit change at 74 hours and survival at >60 hours by treatment groups

<table>
<thead>
<tr>
<th>Group (number of rats)</th>
<th>Dose (mg/kg/dose)</th>
<th>Route / regimen</th>
<th>Survival > 60h</th>
<th>Log(^{10}) Change in CFU at 74 hr.</th>
<th>P-value compared to control / vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=22)</td>
<td>vehicle</td>
<td>SC/BID</td>
<td>48.3%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Iclaprim (n=16)</td>
<td>80</td>
<td>SC/BID</td>
<td>100%</td>
<td>-6.05</td>
<td><0.0001 / 0.0005</td>
</tr>
<tr>
<td>Iclaprim (n=16)</td>
<td>60</td>
<td>SC/BID</td>
<td>100%</td>
<td>-5.11</td>
<td><0.0001 / 0.0732</td>
</tr>
<tr>
<td>Vancomycin (n=24)</td>
<td>50</td>
<td>SC/BID</td>
<td>91.7%</td>
<td>-3.42</td>
<td><0.0001 / NA</td>
</tr>
</tbody>
</table>

Abbreviations: NA, not applicable; SC, subcutaneous; BID, twice a day; CFU, colony forming unit; hr, hour
Figure Legend

Figure 1 The x and o indicate the geometric mean and individual rat log10 CFU/gram of lung, respectively. The box plot and whiskers indicate 25/50/75th percentile and <25/>75th percentile, respectively.

Figure 1 Average log10 colony forming unit / gram of lung tissue at 74 hours among treatment groups

Iclaprim vs. S. aureus AH1252 in the Rat Lung Infection Model Combined Data

Abbreviations: CFU, colony forming unit; SC, subcutaneous; BID, twice a day
Compliance with Ethical Standards

Funding

This study was funded by Motif BioSciences Inc., New York, USA.

Conflicts of Interest

DBH is an employee of Motif BioSciences. IM and SH are employees of IHMA. TM is an employee of NeoSome Life Sciences. MW has received consulting fees from Abbott Laboratories, Actelion, Astellas, AstraZeneca, Bayer, Biomérieux, Cerexa, Cubist, Durata, The European Tissue Symposium, The Medicines Company, MedImmune, Merck, Motif Biosciences, Nabriva, Optimer, Paratek, Pfizer, Qiagen, Roche, Sanofi-Pasteur, Seres, Summit, and Synthetic Biologics; lecture fees from Abbott, Alere, Astellas, AstraZeneca, Merck, Pfizer, and Roche; and grant support from Abbott, Actelion, Astellas, Biomérieux, Cubist, Da Volterra, Micro-Pharm, Morphochem AG, Sanofi-Pasteur, Seres, Summit and The European Tissue Symposium, and Merck.

Ethical Approval

This research involved animals. All procedures in this research were in compliance with the Animal Welfare Act, the Guide for the Care and Use of Laboratory Animals, and the Office of Laboratory Animal Welfare.
References

