UNIVERSITY OF LEEDS

This is a repository copy of A Phase 3, Randomized, Double-Blind, Multicenter Study to Evaluate the Safety and Efficacy of Intravenous Iclaprim Vs Vancomycin for the Treatment of Acute Bacterial Skin and Skin Structure Infections Suspected or Confirmed to be Due to Gram-Positive Pathogens: REVIVE-1.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/125867/

Version: Accepted Version

Article:

Huang, DB, O'Riordan, W, Overcash, JS et al. (10 more authors) (2018) A Phase 3, Randomized, Double-Blind, Multicenter Study to Evaluate the Safety and Efficacy of Intravenous Iclaprim Vs Vancomycin for the Treatment of Acute Bacterial Skin and Skin Structure Infections Suspected or Confirmed to be Due to Gram-Positive Pathogens: REVIVE-1. Clinical Infectious Diseases, 66 (8). pp. 1222-1229. ISSN 1058-4838

https://doi.org/10.1093/cid/cix987

© 2017, The Author(s). Published by Oxford University Press for the Infectious Diseases Society of America. This is a pre-copyedited, author-produced PDF of an article published in Clinical Infectious Diseases following peer review. The version of record: David B Huang, William O'Riordan, J Scott Overcash, Barry Heller, Faisal Amin, Thomas M File, Mark H Wilcox, Antoni Torres, Matthew Dryden, Thomas L Holland, Patrick McLeroth, Rajesh Shukla, G Ralph Corey; A Phase 3, Randomized, Double-Blind, Multicenter Study to Evaluate the Safety and Efficacy of Intravenous Iclaprim Vs Vancomycin for the Treatment of Acute Bacterial Skin and Skin Structure Infections Suspected or Confirmed to be Due to Gram-Positive Pathogens: REVIVE-1, Clinical Infectious Diseases, Volume 66, Kaue 8, 3 April 2018, Pages 1222–1229 is available online at:

https://doisiorg/10/10/1098/sic/Rix087 h Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

- 1 A Phase 3, Randomized, double-blind, multicenter study to EValuate the safety and efficacy of
- 2 intravenous Iclaprim versus Vancomycin for the trEatment of acute bacterial skin and skin 3 structure infections suspected or confirmed to be due to Crem positive pathagenes, DEVINE
- 3 structure infections suspected or confirmed to be due to Gram-positive pathogens: REVIVE-1

5

- 6 David B Huang, MD, PhD,¹ William O'Riordan, MD,² J. Scott Overcash, MD,² Barry Heller,
- 7 MD³, Faisal Amin, MD,⁴ Thomas M File Jr, MD, MS,⁵ Mark H Wilcox, MD,⁶ Antoni Torres,
- 8 MD,⁷ Matthew Dryden, MD, FRCPath,⁸ Thomas L Holland, MD,⁹ Patrick McLeroth, MD,¹⁰
- 9 Rajesh Shukla, PhD,¹ and G. Ralph Corey, MD⁹

10

- ¹¹ ¹Motif BioSciences, New York, New York, USA, ²eStudySites, San Diego, California, USA,
- ¹² ³Long Beach Clinical Trials, Covance, Princeton, New Jersey, USA, ⁴Vohra Wound Physicians,
- 13 Miramar, Glorida, USA, ⁵Summa Health, Akron, Ohio, USA, ⁶Leeds Teaching Hospitals &
- 14 University of Leeds, Leeds, UK, ⁷Department of Pulmonology, Hospital Clinic of Barcelona,
- 15 University of Barcelona, Institut D'investigacions August Pi I Sunyer, and Centro de
- 16 Investigación Biomedica En Red-Enfermedades Respiratorias, Barcelona, Spain, ⁸Department of
- 17 Microbiology and Infection, Hampshire Hospitals NHS Foundation Trust, UK, ⁹Duke University
- 18 Medical Center, Durham, North Carolina, USA ¹⁰Covance, Princeton, USA

19

- 20 Corresponding author:
- 21 David Huang, MD, PhD, FACP, FIDSA, Motif BioSciences, 125th Park Avenue, Suite 2622,
- 22 New York, NY 10017, Telephone: 936-577-5770
- 23 e-mail: <u>david.huang@motifbio.com</u>

24

- 25 Running Head: Iclaprim for acute skin infections
- 26 Summary: Iclaprim achieved non-inferiority compared with vancomycin at its primary endpoint
- of early clinical response (defined as a $\geq 20\%$ reduction in lesion size at 48-72 hours compared to
- 28 baseline) in a Phase 3 study for the treatment of acute bacterial skin and skin structure infections.

29

31 Abstract

32 **Background:** The objective of this study was to demonstrate the safety and efficacy of iclaprim 33 compared with vancomycin for the treatment of patients with acute bacterial skin and skin 34 structure infections (ABSSSI). 35 **Methods:** REVIVE-1 was a Phase 3, 600 patient double-blinded, randomized (1:1), active-36 controlled trial among patients with ABSSSI, which compared the safety and efficacy of iclaprim 37 80 mg fixed dose with vancomycin 15mg/kg, both administered intravenously every 12 hours for 38 5 - 14 days. The primary endpoint of this study was a $\ge 20\%$ reduction in lesion size (early 39 clinical response [ECR]) compared with baseline among patients randomized to iclaprim or 40 vancomycin at the early time point (ETP), 48 to 72 hours after the start of administration of study 41 drug in the intent-to-treat (ITT) population. 42 **Results:** ECR among patients who received iclaprim and vancomycin at the ETP were 80.9% 43 (241 of 298) of patients receiving iclaprim compared with 81.0% (243 of 300) of those receiving 44 vancomycin (treatment difference: -0.13%, 95% CI: -6.42% to 6.17%). Iclaprim was well 45 tolerated in the study, with most adverse events categorized as mild. 46 Conclusions: Iclaprim achieved non-inferiority (10% margin) at ETP compared with 47 vancomycin and was well tolerated in this Phase 3 clinical trial for the treatment of ABSSSI. 48 Based on these results, iclaprim appears to be an efficacious and safe treatment for ABSSSI 49 suspected or confirmed to be due to Gram-positive pathogens. 50 51 Study Registration Number: NCT02600611 52 Keywords: iclaprim, vancomycin, acute bacterial skin and skin structure infections 53

Introduction

55	Acute bacterial skin and skin structure infections (ABSSSI) are potentially serious
56	infections that may require hospitalization, intravenous antibiotics, and/or surgical intervention
57	[1,2]. New therapeutic options with improved efficacy, safety, and/or pharmacodynamics are
58	needed for ABSSSI [3-5]. Iclaprim is a diaminopyrimidine, which inhibits bacterial
59	dihydrofolate reductase, and is active against drug-resistant pathogens [6-9]. Iclaprim
60	demonstrates rapid in vitro bactericidal activity in time kill studies in human plasma [10]. In a
61	Phase 2 clinical trial among patients treated for complicated skin and skin structure infections
62	(cSSSI), clinical cure rates in the intent to treat (ITT) population were 92.9%, 90.3%, and 92.9%
63	at the test of cure visit in the iclaprim 0.8 mg/kg IV q12h, iclaprim 1.6 mg/kg IV q12h, and
64	vancomycin 1 g IV q12h groups, respectively [11]. Because of these characteristics, we
65	conducted a Phase 3 study comparing the outcomes of patients treated with either iclaprim or
66	vancomycin for ABSSSI suspected or confirmed to be due to Gram-positive pathogens.
67 68	
69	Methods
70	Study Design
71	This Phase 3 study was multi-center, double-blind, randomized 1:1 with two treatment
72	arms: iclaprim 80 mg IV q12h (iclaprim) or vancomycin 15mg/kg IV q12h (vancomycin)
73	(NCT02600611). This study design followed both FDA and EMA guidance. Patients were
74	enrolled between April 2016 and January 2017. The institutional review board at each site
75	approved the protocol, and all patients or their authorized representative provided written

76 informed consent.

77

78 Patients

The study randomized 598 patients who fulfilled criteria for the ITT population from 51 study sites in 7 countries. The ITT population, the prespecified efficacy population for FDA, included all randomized patients. The safety population was defined as all randomized patients who received at least one dose of study medication. Male and female patients ≥18 years of age with suspected or confirmed ABSSSI due to Gram-positive pathogens were eligible for study participation. Key inclusion and exclusion criteria are listed in Table 1.

85

86 *Definitions*

ABSSSI was defined as a bacterial infection of the skin with a lesion size $\geq 75 \text{cm}^2$. ABSSSIs were stratified as major cutaneous abscess, cellulitis/erysipelas, and/or wound infections (caused by external trauma [e.g., needle sticks or insect bites]), and had the following characteristics: the presence of purulent or seropurulent drainage before or after surgical intervention of a wound or at least 3 of the following signs and symptoms: discharge, erythema (extending at least 2 cm beyond a wound edge in one direction), swelling and/or induration, heat and/or localized warmth, and/or pain and/or tenderness to palpation.

Early clinical response (ECR) was defined as a $\geq 20\%$ reduction in lesion size compared with baseline. Early time point (ETP) was defined as 48 - 72 hours after the first infusion of study drug. End of treatment (EOT) was defined as the day the infusion of study drug was complete.

98

Clinical cure at the TOC visit was evaluated using two prespecified definitions. First,

99 clinical cure at the TOC visit was defined as complete resolution of all signs and symptoms of 100 ABSSSI such that no further antibiotic treatment or surgical procedure were needed at the TOC 101 visit. This definition of clinical cure is used for pivotal Phase 3 studies of ABSSSI and cSSSI. 102 Second, clinical cure at TOC was also evaluated as a \geq 90% reduction in lesion size compared 103 with baseline, no increase in lesion size since ETP, and no requirement for additional antibiotics 104 (except aztreonam or metronidazole for polymicrobial infections) or unplanned significant 105 surgical procedures after ETP). This definition of clinical cure was intended to allow for an 106 objective measure (i.e., 90% reduction in lesion size) similar to the early clinical response (ECR, 107 i.e., 20% reduction in lesion size). 108 109 Assessments 110 Patients were evaluated at a baseline assessment, then evaluated daily through the early 111 time point (ETP) conducted at 48 - 72 hours after the first infusion of study drug and then every 112 48 - 72 hours through the end of treatment (EOT). Treatment duration was 5 - 14 days based on

113 investigator assessment. Patients were then evaluated at the test-of-cure (TOC) assessment

114 conducted 7 - 14 days post-EOT, followed by a late follow-up phone call conducted 28 to 32

115 days after the first dose (Figure 1).

Safety was assessed by Common Terminology Criteria for reported treatment emergent
adverse events (TEAEs), serious adverse events (SAEs), hematology, clinical chemistry, liver
function tests, coagulation, urinalysis, vital signs, physical examinations, and electrocardiograms
(ECGs).

Before randomization, adequate clinical specimens were obtained from patients at
baseline, EOT and TOC for microbiologic evaluation. Specimens were evaluated by the local

microbiology laboratory, and isolates were subcultured and sent to a central microbiology
laboratory for confirmation of pathogen identity and minimum inhibitory concentrations (MICs).
In order to enrich for ABSSSI caused by *Streptococci pyogenes* (e.g., cellulitis), leading edge
punch biopsies were encouraged for patients with cellulitis and serological tests (ASO titers) for
all patients were obtained. Two sets of blood samples for aerobic/anaerobic cultures 10 minutes
apart from different sites peripherally were obtained within 24 hours before the first dose of
study drug.

129

130 Primary Endpoint and Secondary Analyses

The primary endpoint of the study was to compare the ECR (defined as a $\geq 20\%$ reduction in lesion size at the ETP compared with baseline) at ETP (48-72 hours after the start of administration of the study drug) in the ITT population treated with iclaprim or vancomycin among patients with ABSSSI suspected or confirmed to be due to Gram-positive pathogens. The secondary analyses of the study were: (1) clinical cure rate at TOC (7 - 14 days after the last dose of study drug compared with baseline); and (2) safety and tolerability of iclaprim compared with vancomycin.

138

139 Study Treatments

Iclaprim was administered at 80mg (no hepatic impairment or Child-Pugh A) or 40 mg
IV q12h (Child-Pugh B). Child-Pugh C patients were excluded from this study. The fixed dose
was chosen based on a pharmacokinetic and pharmacodynamics analysis of 470 plasma samples
obtained from efficacy and safety evaluations in previous Phase 3 clinical studies [15].
Vancomycin was administered at 15 mg/kg IV and adjusted according to a nomogram with

145 dosing every q12h (creatinine clearance [CrCl] $e \ge 50$), q24h (CrCl $\ge 35-49$), q48h (CrCl $\ge 25-34$), 146 or according to daily vancomycin trough levels (CrCl <25) or creatinine clearance. Trough levels 147 were drawn at dose 5 for patients with normal renal function. The unblinded pharmacist prepared 148 infusions for patients who were assigned to the vancomycin arm, notably keeping the same 149 infusion volume as used for iclaprim. For each patient, the unblinded pharmacist used the 150 creatinine clearance or vancomycin trough levels (to which the investigator was blinded) to the 151 site pharmacist who adjusted the vancomycin dosage to maintain a trough of 10 - 15 mg/L for 152 patients with an organism with a MIC was $\leq 1 \text{ mg/L}$, or 15 - 20 mg/L for those with a MIC >1 153 mg/L. Both iclaprim and vancomycin were infused over 120 minutes in 500mL normal saline. 154 Normal saline placebo infusions were used to maintain the blind where vancomycin was dosed at 155 an interval greater than q12h.

The protocol permitted concomitant antibiotic treatment with aztreonam or metronidazole for patients in whom Gram staining of culturable material or cultures indicated Gram-negative and anaerobic bacteria, respectively. Systemic antibiotics (other than aztreonam and metronidazole) or topical antibiotics at the site of the ABSSSI under investigation were prohibited.

161

162 Duration of Treatment

Patients received their first dose of randomly allocated study medication within 24 hours after randomization. Study medications were administered for at least 5 days with continuation of treatment up to 14 days at the discretion of the investigator based on the assessment of resolution of signs and symptoms of the ABSSSI. This duration of treatment was in accordance with the Infectious Disease Society of America (IDSA) guidelines [12].

169 Statistical Methods

170 Six hundred patients (approximately 300 per treatment group) randomized (1:1) were 171 targeted for this study. Using Farrington and Manning's method for non-inferiority (NI) testing 172 with a 1 sided alpha of 0.025, assuming a 75% ECR rate in each group and a 10% non-inferiority 173 bound delta, a sample size of 295 ITT patients per treatment group was required for 80% power. 174 The statistical analyses evaluated the efficacy and safety of iclaprim compared with 175 vancomycin. Statistical tests were two-sided, and at the level of significance alpha = 0.05. The 176 non-inferiority assessment was made with a one-sided test at significance level of 0.025. 177 Confidence intervals (CIs) were calculated at a 95% confidence level. Continuous data were 178 summarized by treatment group using the number of patients in the analysis population (N), 179 mean, standard deviation (SD), median, and range, and categorical data were summarized by 180 treatment group using N and percentage. Demographics and baseline characteristics were 181 summarized using descriptive statistics. The primary efficacy analysis was performed in the ITT 182 population. Secondary analyses were performed in the ITT predefined populations that had 183 diabetes, mild, moderate and severe renal impairment. By-patient and by-pathogen 184 bacteriological outcomes at EOT and TOC were presented as frequency distributions of 185 outcomes by treatment group for patients with a confirmed Gram-positive pathogen at baseline. 186 The incidence of TEAEs was summarized at the overall patient level, Medical Dictionary for 187 Regulatory Activities (MedDRA) version 18.1 system organ class level, and preferred term level. 188 Separate tabulations were provided by severity and relationship to study medication and for 189 SAEs. Laboratory data, vital signs and ECGs were evaluated by presentation of summary 190 statistics of raw data and changes from baseline.

192

Results

193	Demographics
-----	--------------

194 Figure 2 shows the disposition of patients. The baseline and demographic characteristics 195 of patients treated with either iclaprim or vancomycin were comparable (Tables 2 and 3). The baseline mean lesion sizes of iclaprim and vancomycin were 333cm² and 337 cm², respectively. 196 197 Treatment groups were similar for baseline ABSSSI categories, laboratory parameters, vital 198 signs, physical examinations, X-rays, and ECG evaluations. In addition, no notable differences 199 among treatment groups with respect to prior medications and treatments or study drug 200 compliance were observed. Both the iclaprim and vancomycin treatment groups had the same 201 median number of treatment days at 7 days (range: 5 - 14 days). 202 203 Efficacy Results 204 Primary Endpoint 205 In the ITT population, an ECR was reported at ETP for 80.9% (241/298) of patients in 206 the iclaprim and for 81.0% (243/300) of patients in the vancomycin group (% difference: -0.13; 207 95% Confidence Interval (CI): -6.42, 6.17)) (Table 3). 208

209 Secondary Analyses

In the ITT population, the clinical cure rates at EOT were 86.9% (259 of 298) and 86.3%
(259 of 300) for iclaprim and vancomycin, respectively (% difference: 0.58; 95% CI: -4.88, 6.04).
Clinical cure was reported at TOC for 83% (248/298) of patients in the iclaprim and for 87%
(262 of 300) of patients in the vancomycin group (% difference: -4.11; 95% CI: -9.78, 1.56)

(Table 4). Using a modified clinical cure TOC analysis defined by a ≥90% reduction in lesion
size compared with baseline, no increase in lesion size since ETP and no requirement for
additional antibiotics, clinical cure was observed in 68.5% and 73.0% of patients receiving
iclaprim and vancomycin, respectively (treatment difference: -4.54%, 95% CI: -11.83% to
2.74%). The ECR at ETP was comparable for iclaprim and vancomycin among the ITT
predefined populations by lesion type, pathogen, diabetes, mild, moderate and severe renal
impairment (Table 4).

For the microbiological outcome at EOT and TOC, 452 (75.6%) patients presented with a culture-confirmed Gram-positive pathogen at baseline (MITT population). *S. aureus* was the most commonly isolated pathogen (N=335) of which 134 (40%) were MRSA (Table 2). The MIC₅₀/MIC₉₀ values for iclaprim and vancomycin for *S. aureus* isolates were 0.12 / 0.25 mcg/mL and 1 / 1 mcg/mL, respectively.

226

227 Safety Results

228 Study drug-related TEAEs, treatment emergent SAEs, and deaths among patients in the 229 iclaprim and vancomycin treatment groups are shown in Table 5. The treatment emergent 230 adverse events leading to discontinuation were 2.7% and 4.4% in patients in the iclaprim and 231 vancomycin group, respectively. An increased incidence of headache (10.2% and 2.4%), nausea 232 (9.9% and 5.7%), secondary ABSSSI infections (6.8% and 3.3%), and fatigue (6.1% and 3.0%), 233 were reported in patients in the iclaprim compared to vancomycin group, respectively. There 234 were no study-drug related TEAE related to nephrotoxicity reported for iclaprim compared to 3 235 (1.0%; acute kidney injury) for vancomycin. The creatinine change from baseline to TOC was 236 2.9 and 7.2 μ mol/L in patients in the iclaprim compared to vancomycin group, respectively.

237	There were no significant differences between treatment groups in mean values or mean changes
238	in other routine serum laboratory parameters, urinalysis results, vital signs or physical
239	examinations during treatment, or at EOT, TOC and follow-up between treatment groups.
240	Fifteen (5.5%) patients in the iclaprim group, and 10 (3.8%) patients in the vancomycin group
241	had increases in ALT or AST values to >3X upper limit of normal (ULN) during treatment. No
242	patient had bilirubin increases >2X ULN. These increases resolved to baseline values upon
243	discontinuation of drug in all patients. No subject met Hy's law criteria in this study.
244	One (0.4%) patient in the iclaprim group and 0 patients in the vancomycin group had
245	QTcF intervals >500 msec (i.e., 527 msec) or increased by >60 msec compared with baseline.
246	The one patient with a QTc prolongation was not reported as an AE and resolved to baseline
247	values upon discontinuation of drug.
248	
249	Discussion
250	This Phase 3 study clinical trial mets its primary endpoint, demonstrating that iclaprim is
251	non-inferior to vancomycin in the treatment of ABSSSI caused by Gram-positive organisms with
252	respect to ECR at the early time point of 48-72 hours after the first dose of study drug. No
253	notable differences in the incidence of TEAEs between the treatment groups were observed.
254	The iclaprim dosage used in this study was fixed (i.e., 80 mg) over a 120 minute infusion,
255	rather than the weight-based dosing of 0.8mg/kg used in previous studies. The weight based-
256	dosing resulted in one Phase 3 study of cSSSI within and one outside the non-inferiority margin
257	of greater than 10%. As a result, iclaprim was not approved by the FDA for the indication of
258	cSSSI. Data supporting the fixed doise was based on modeling of population pharmacokinetics

and pharmacodynamics from 470 patients receiving a weight based 0.8 mg/kg dose of iclaprim

260 in previous Phase 3 cSSSI studies [13]. A population pharmacokinetic analyses of the data from 261 the 470 patients demonstrated no relationship between the clearance of iclaprim and body weight, 262 suggesting that a fixed rather than weight based dose should be used. The estimates of the 263 individual patient PK parameters were used to simulate the plasma iclaprim concentration-time 264 profiles for each patient and from those profiles, the corresponding values for Cmax/ss, AUC(0-265 24)_{SS}, AUC/MIC, and T > MIC. In these analyses, the MIC value used was based on the MIC90 266 of S. aureus of 0.12 mg/mL identified in worldwide surveillance studies [8]. Various fixed dose 267 regimens were examined with respect to maximizing AUC/MIC and T > MIC while minimizing 268 the probability of a steady-state $C_{max}(C_{max/ss}) \ge 800 \text{ ng/mL}$. This fixed dose was projected to 269 result in a 30% increase in AUC/MIC and Time > MIC, parameters associated with efficacy in 270 animal infection models, while allowing for an approximately 10% decrease in Cmax, a 271 parameter associated with QTc prolongation in Phase 1 studies, compared with the weight based 272 dose of iclaprim [14].

273 The IDSA guidelines for the management of adults with ABSSSI include use of either 274 vancomycin, linezolid or daptomycin, all generic, against susceptible MRSA, for the empiric 275 treatment of suspected ABSSSI in patients with risk factors for MRSA [12]. Safety issues or 276 resistance to vancomycin, linezolid, and daptomycin are reported among patients treated for 277 MRSA infections [15-20]. The results of this study suggest that iclaprim may be a useful 278 treatment option for ABSSSI due to Gram-positive pathogens especially since it has an 279 appropriate spectrum of activity, is effective, is not nephrotoxic and does not require therapeutic 280 drug monitoring nor renal dosing adjustments.

There are limitations to this Phase 3 study. First, 70% (419 out 598) of enrollment in this study was from the United States, 28% (170 of 598) from Europe, and 1.5% (9 of 298) from

283 Latin America. No countries from Asia Pacific were included in this study. Second, it is often 284 challenging to collect appropriate microbiological samples in cellulitis and only 8.3% (50 of 598) 285 of cultures or ASO titers were positive for beta-hemolytic streptococci. Despite attempts to 286 enrich for *Streptococci pyogenes* by leading edge punch biopsies and serological tests, the 287 percentage of patients with an infection documented to be due to these bacteria were low. Third, 288 data on vancomycin trough concentrations were not collected at the central laboratory in this 289 study. Vancomyin dosing based on vancomycin trough concentrations at the local laboratories 290 were not available. However, based on the vancomycin nomogram, >95% of patients had the 291 correct dosing interval for this antibiotic. Fourth, there was an imbalance in the number of 292 patients lost to follow-up between the iclaprim (5.7% (N=17)) and vancomycin (2.0% (N=6)) 293 treatment groups. Among the patients lost to follow-up, 94% (16 of 17) and 100% (6 of 6) 294 patients in the iclaprim and vancomycin treatment groups, respectively, lost to follow-up were 295 intravenous drug users of heroin or amphetamine. As indicated in a prespecified statistical 296 analyses plan, all patients lost to follow-up were considered non-cures. Fifth, an underpowered 297 modified clinical cure analysis defined by a \geq 90% reduction in lesion size compared with 298 baseline, no increase in lesion size since ETP and no requirement for additional antibiotics at 299 TOC was used. This secondary analyses used an arbitrary reduction (\geq 90%) in lesion size 300 compared with baseline at TOC. Post-inflammatory changes (e.g., erythema, swelling and/or 301 induration) may linger on for weeks despite resolution of the infection and explain why a lower, 302 modified clinical cure was observed at TOC. Sixth, greater than 50% of ABSSSI randomized 303 were wound infections. For both wound infections and abscesses, surgical therapy is vital to 304 treatment.

In conclusion, in this Phase 3 study, iclaprim was non-inferior to vancomycin with

306	respect to the early clinical response at an early time point in the treatment of ABSSSI caused or
307	suspected by Gram-positive organisms. These results suggest iclaprim may serve as an
308	alternative option for treatment of ABSSSI caused by Gram-positive pathogens, including drug-
309	resistant bacteria.
310	
311	
312	
313	
314	
315	
316	
317	
318	
319	
320	
321	
322	

323	Acknowledgements
324	Funding
325	
326	This study was supported by Motif Biosciences plc.
327	
328	Conflict of Interest
329	
330	DBH is an employee of Motif BioSciences. TMF has served as a consultant for Motif
331	BioSciences, Allergan, Medicines Company, Merck, Nabriva, Paratek, and Cempra. AT has
332	served as a consultant for Motif BioSciences. AFS has served as a consultant to, received
333	research support from, or been a speaker for: Abbott, Actavis, Alios, Astellas, AstraZeneca,
334	Bayer, BMS, Cardeas, Medicines Company, Merck, Pfizer, Roche, Tetraphase, Theravance, and
335	Wockhardt Pharma. MHW has received consulting fees from Abbott Laboratories, Actelion,
336	Astellas, Astra-Zeneca, Bayer, Biomèrieux, Cerexa, Cubist, Durata, The European Tissue
337	Symposium, The Medicines Company, MedImmune, Merck, Motif Biosciences, Nabriva,
338	Optimer, Paratek, Pfizer, Qiagen, Roche, Sanofi-Pasteur, Seres, Summit, and Synthetic Biologics;
339	lecture fees from Abbott, Alere, Astellas, Astra-Zeneca, Merck, Pfizer & Roche; grant support
340	from Abbott, Actelion, Astellas, Biomèrieux, Cubist, Da Volterra, MicroPharm, Morphochem
341	AG, Sanofi-Pasteur, Seres, Summit and The European Tissue Symposium, Merck.
342	PH is a former employee of Arpida. MD has received speaker's and/or consultancy fees from
343	AstraZeneca, Bayer, Janssen-Cilag, Motif BioSciences, Novartis, Pfizer, and Merck, Sharp &
344	Dohme Corp., a subsidiary of Merck & Co., Inc. T.H. has received consultancy fees from Basliea
345	Pharmaceutica, Genentech, Medicines Company, and Motif Biosciences. R.C. has received

346	consultancy fees from Cempra Pharmaceuticals, PRA International, Furiex Pharmaceuticals,
347	Inimex Pharmaceuticals, Dr. Reddy's Laboratories, Cubist Pharmaceuticals, Cerexa/Forest
348	Laboratories, AstraZeneca, GlaxoSmithKline, Pfizer, Merck, Trius Therapeutics, ContraFect,
349	Theravance, and Astellas Pharma and served on an advisory board for Pfizer, Polymedix, Trius
350	Therapeutics, Rib-x Pharmaceuticals, Seachaid Pharmaceuticals, BioCryst Pharmaceuticals,
351	Durata Therapeutics, Achaogen, Gilead Sciences, ContraFect, Cempra, and Nabriva
352	Therapeutics. P.M. is an employee of Covance. R.C. received research grants from Theravance,
353	Innocoll, and The Medicines Company
354	
355	
500	
356	
357	
358	
359	
360	
361	
362	
363	

364	
365	
366	References
367	
368	1. Magill SS, Edwards JR, Bamberg W, et al, Emerging Infections Program Healthcare-
369	Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-
370	prevalence survey of health care-associated infections. N Engl J Med, 2014; 370:1198-208.
371	
372	2. Moran GJ, Krishnadasan A, Gorwitz RJ, et al; EMERGEncy ID Net Study Group.
373	Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J
374	Med, 2006 ; 355:666-74.
375	
376	3. Bassetti M, Righi E, Carnelutti A. New therapeutic options for_skin_and soft tissue infections.
377	Curr Opin Infect Dis, 2016 ; 29:99-108.
378	
379	4. Edelsberg J, Berger A, Weber DJ, et al. Clinical and economic consequences of failure of
380	initial antibiotic therapy for hospitalized patients with complicated skin and skin-structure
381	infections. Infect Control Hosp Epidemiol, 2008; 29:160-9
382	
383	5. Eagye KJ, Kim A, Laohavaleeson S, et al. Surgical site infections: does inadequate antibiotic
384	therapy affect patient outcomes? Surg Infect; 2009 ; 10:323-31.
385	

6. Sader HS, Fritsche TR, Jones RN. Potency and bactericidal activity of iclaprim against recent
clinical gram-positive isolates. Antimicrob Agents Chemother; 2009, 53:2171-5.
7. Schneider P, Hawser S, Islam K. 2003. Iclaprim, a novel diaminopyrimidine with potent
activity on trimethoprim sensitive and resistant bacteria. Bioorg Med Chem Lett, 13:4217-21.
8. Huang DB, File TM, Dryden M, et al. Surveillance of Iclaprim Activity: In Vitro
Susceptibility of Gram-positive Pathogens Collected from 2012-2014 From the United States,
Asia Pacific, Latin American and Europe. Submitted to Diagnostic Microbiolgy and Infectious
Diseases.
9. Huang DB, Hawser S, Gemmell CG, et al. In vitro activity of iclaprim against methicillin-
resistant Staphylococcus aureus nonsusceptible to daptomycin, linezolid or vancomycin. Journal
of Drug Resistant of Pathogen Research, in press.
10. Laue H, Valensise T, Seguin A, et al. In vitro bactericidal activity of iclaprim in human
plasma. Antimicrob Agents Chemother, 2009; 53:4542-4.
11. Krievins D, Brandt R, Hawser S, et al. Multicenter, randomized study of the efficacy and
safety of intravenous iclaprim in complicated skin and skin structure infections. Antimicrob
Agents Chemother, 2009; 53:2834-40.

408	12. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and
409	management of skin and soft tissue infections: 2014 update by the infectious diseases society of
410	America. Clin Infect Dis, 2014 ; 59:147-59.
411	
412	13. Hadvary P, Stevens DL, Solonets M, et al. Clinical efficacy of iclaprim in complicated skin
413	and skin structure infection (cSSSI): results of combined ASSIST Phase III studies. Infectious
414	Diseases Society of America, Washington DC, October 25-28, 2008.
415	
416	14. Huang DB, Lodise T. Use of pharmacokinetic and pharmacodynamic analyses to determine
417	the optimal fixed dosing regimen for iclaprim for Phase 3 ABSSSI clinical trials. ID Week, New
418	Orleans, Louisiana, October 26-30, 2016.
419	
420	15. Filippone EJ, Kraft WK, Farber JL. The Nephrotoxicity of Vancomycin. Clin Pharmacol
421	Ther, 2017 . [Epub ahead of print].
422	
423	16. Hanai Y, Matsuo K, Ogawa M, et al. A retrospective study of the risk factors for linezolid-
424	induced thrombocytopenia and anemia. J Infect Chemother, 2016; 22:536-42.
425	
426	17. Velazquez A, DeRyke CA, Goering R, et al. Daptomycin non-susceptible Staphylococcus
427	aureus at a US medical centre. Clin Microbiol Infect, 2013; 19:1169-72.
428	
429	18. Sánchez García M, De la Torre MA, Morales G, et al. Clinical outbreak of linezolid-
430	resistant <i>Staphylococcus aureus</i> in an intensive care unit. JAMA, 2010 ; 303:2260-4.

432	19. Nannini E, Murray BE, Arias CA. Resistance or decreased susceptibility to glycopeptides,
433	daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol,
434	2010 ; 10:516-21
435	
436	20. Tran TT, Munita JM, Arias CA. Mechanisms of drug resistance: daptomycin resistance. Ann
437	NY Acad Sci, 2015 ; 1354:32-53.
438	
439	
440	
441	
442	
443	
444	
445	
446	
447	
448	

451 Table 1: Key inclusion and exclusion criteria

Inclusion Criteria	Exclusion Criteria
Provision of informed consent	ABSSSI of the following categories: severely impaired arterial blood supply such that amputation of the infected anatomical site was likely, infected diabetic foot ulcers, infected decubitus ulcers, infected human or animal bites, necrotizing fasciitis or gangrene, uncomplicated skin or skin structure infection, self-limiting infections
Evidence of systemic involvement as defined by having at least 1 of the following conditions within 24 hours of randomization considered to be pathogen-related:	Skin and/or skin structure infection that could be treated by surgery alone
Fever (>38°C/100.4°F orally, rectally, or tympanically)	Infections associated with a prosthetic device, and suspected or confirmed osteomyelitis or septic arthritis
Enlarged and/or tender proximal lymphadenopathy and/or lymphangitis	Known or suspected concurrent infection or conditions requiring systemic anti-microbial treatment, prophylaxis, or suppression therapy
Elevated total peripheral white blood cells (WBCs) >10,000/mm ³	Known or suspected human immunodeficiency virus (HIV)-infected patients with a cluster of differentiation (CD4) count <200 cells/mm ³ recorded in the last 30 - 60 days; absolute neutrophil count (ANC) <500 cells/mm ³ ; organ transplant within the preceding 6 months; requirement for corticosteroids >20 mg/day prednisolone or equivalent, or received corticosteroids >20 mg per day prednisolone or equivalent in the past 3 days
>10% immature neutrophils (bands) regardless of total peripheral WBC count	Cardiovascular conditions and treatments: patients known to have congenital or sporadic syndromes of QTcF prolongation; type I A or III anti-arrhythmic drugs; nonsustained ventricular tachycardia (NSVT) defined as >10 consecutive ventricular beats at a rate of >120 beats per minute (bpm) with a duration of <30 seconds, bradycardia (<40 bpm), and QT/QTcF interval outside the normal range defined as: QTcF >500 msec

Elevated C-reactive	Received more than one dose of a short-acting (i.e., q12h dosing or
	less) systemic antibiotic active against Gram-positive pathogens
	within the last 7 days, unless there was documented evidence of
	treatment failure or demonstrated resistance of Gram-positive
	pathogens to the prior antibiotic therapy.

Characteristics	Iclaprim (n=298)	Vancomycin (n=300)
Age (years), mean (SD)	46.4 (13.3)	48.2 (14.8)
median	47	49
Gender, n (%)		
Female	109 (36.6)	129 (43.0)
Male	189 (63.4)	171 (57.0)
Race, n (%)		
White	266 (89.3)	269 (89.7)
Black	4 (1.3)	7 (2.3)
American Indian or Alaska Native	6 (2.0)	3 (1.0)
Native Hawaiian or other Pacific Islander	2 (0.7)	2 (0.7)
Multi-racial	3 (1.0)	0
Other	17 (5.7)	19 (6.3)
Weight (kg), mean (SD)	81 (20.0)	80 (18.2)
Median, min, max	76 (48.0,	77 (44.6,
	161.6)	144.0)
Geographic region, n (%)		
US	219 (73.5)	200 (66.7)
Europe	75 (25.2)	95 (31.7)
Latin America	4 (1.3)	5 (1.7)
Severe Infections*	211 (70.8)	198 (66.0)
Lesion Type		
Major Cutaneous Abscess, n (%)	40 (13.4)	55 (18.3)

452 Table 2: Baseline and demographic characteristics among the ITT population by treatment

Cellulitis / Erysipelas, n (%)	76 (25.5)	87 (29.0)
Wound Infection, n (%)	182 (61.1)	158 (52.7)
Mean Lesion Size, cm ² (SD)	333 (317.1)	337 (317.5)
Comorbidities, n (%)		
Diabetes	20 (6.7)	35 (11.7)
Renal failure	36 (12.1)	56 (18.7)
Intravenous drug use	190 (66.4)	149 (49.7)
Fever (oral temperature >38°C/100.4°F), n (%)	90 (30.2)	84 (28.0)
Leukocytes (per mm ³), mean (SD) median (min, max)	9.7 (3.8) 9.2 (3.2, 24.9)	9.3 (3.4) 8.7 (2.9, 25.4)
Baseline Microbiology, n (%)		
Exclusively Gram-positive pathogens	212 (90.6)	199 (90.0)
Mixed Gram-positive and Gram-negative	22 (9.4)	22 (10.0)
Concomitant aztreonam use, n (%)	7 (2.3)	9 (3.0)
Concomitant metronidazole use, n (%)	3 (1.0)	3 (1.0)

*Severe infections defined as an infection at baseline with one or more of the following criteria:

fulfilled the published definition for systemic inflammatory response syndrome (SIRS) by 454

455 having ≥ 2 of the following findings: body temperature $\geq 38^{\circ}$ C or $\leq 36^{\circ}$ C, heart rate ≥ 90 bpm,

respiration rate >20 breaths/minute, and WBC >12000/mm³ or <4000/mm³ or >10% bands; 456

457 evaluated as having severe tenderness or severe erythema at the infection site; and/or Positive

458 blood cultures at baseline.

459	Table 3: Microbiological character	ristics at study entry for the	ITT population by treatment
-----	------------------------------------	--------------------------------	-----------------------------

Pathogen	Iclaprim (n=298)	Vancomyc4fa0 (n=300)
Positive ABSSSI Culture	232 (77.8)	461 220 (73.3)
Staphylococcus aureus		462
MRSA	73 (24.5)	61 (20.3) ₄₆₃
MSSA	97 (32.6)	104 (34.7) 464
Streptococcus beta-hemolytic	25	25
Positive Blood Culture at Baseline, n (%)	15 (5.4)	465 14 (5.0) 466
Infection Site Pathogen, (%)		
Multiple	68 (28.1)	57 (25.1)467
Single	174 (71.9)	170 (74.9)

475 Table 4: Clinical responses for primary endpoint and secondary analyses in the ITT population

476 by treatment

Clinical Responses	Iclaprim (n=298)	Vancomycin (n=300)	Treatment Difference (%; 95% Confidence Interval)
Primary Endpoint			
Early Clinical Response (ECR) at ETP in ITT	241 (80.9%)	243 (81.0%)	-0.13 (-6.42, 6.17)
Secondary Analyses			
ECR at ETP among major cutaneous abscess	35/40 (87.5)	49/55 (89.1)	-1.59 (-14.74, 11.56)
ECR at ETP among cellulitis / erysipelas	54/76 (71.1)	68/87 (78.2)	-7.11 (-20.50, 6.28)
ECR at ETP among wound infections	152/182 (83.5)	126/158 (79.7)	3.77 (-4.50, 12.04)
ECR at ETP among MRSA infected	59/73 (80.8%)	50/61 (82.0%)	-1.15 (-17.94, 15.80)
ECR at ETP among MSSA infected	81/97 (84.4%)	88/104 (85.4%)	-1.06 (-14.94, 12.85)
ECR at ETP among <i>S. pyogenes</i> infected	20/25 (80.0%)	18/25 (72.0%)	8.00 (-32.98, 33.86)
ECR at ETP among Diabetics	16/20 (80.0%)	26/35 (74%)	5.71 (-21.94, 32.74)
ECR at ETP among Mild Renal Impairment (creatinine clearance of 60-89 ml/min)	24/30 (80%)	35/44 (80%)	0.45 (-22.43, 23.52)
ECR at ETP among Moderate and Severe Renal Impairment	5/6 (83%)	9/12 (75%)	8.00 (-46.02, 52.44)

	(creatinine clearance of <60 ml/min)				
	ECR at ETP in per- protocol	228 (84.8%)	232 (86.2%)	-1.49 (-7.44, 4.46)	
	Clinical Cure at TOC	248 (83.2%)	262 (87.3%)	-4.11 (-9.78, 1.56)	
	Modified Clinical Cure* at TOC	204 (68.5%)	219 (73.0%)	-4.54% (-11.8 to 2.7)	
477	* Modified Clinical Cure	e defined as a $\geq 90\%$ red	duction in lesion size c	ompared to baseline, no	
478	increase in lesion size since ETP, and no requirement for additional antibiotics (except				
479	aztreonam or metronidaz	cole) or unplanned sign	ificant surgical proced	ures after ETP.	
480					
481					
482					
483					
484					
485					
486					
487					
488					
489					

490 Table 5: Safety Parameters by Treatment

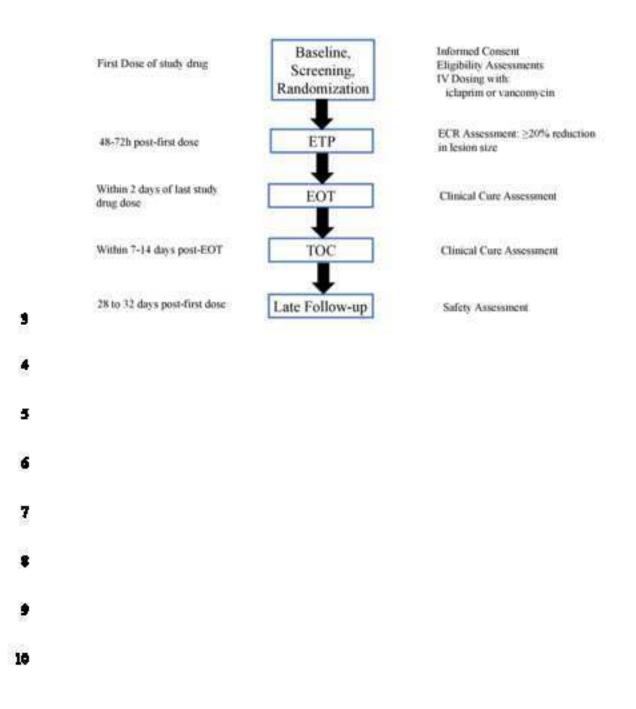
Category	Iclaprim (N=293)	Vancomycin (N=297)
Any drug-related TEAE*	151 (51.5%)	128 (43.1%)
Study drug related TEAE	57 (19.5%)	53 (17.8%)
TEAE leading to discontinuation of study drug	8 (2.7%)	12 (4.4%)
TEAE related SAEs*	8 (2.7%)	12 (4.0%)
QTc prolongation	1 (0.4)	0 (0)
Mean serum creatinine (umol/L) change from baseline to TOC	2.9 (13.1)	7.2 (25.3)
Deaths	0	1 (0.3%)
TEAE by system organ class		
Headache	30 (10.2%)	7 (2.4%)
Nausea	29 (9.9%)	17 (5.7%)
Secondary ABSSSI (skin bacterial infection or wound infection)	20 (6.8%)	10 (3.3%)
Fatigue	18 (6.1%)	9 (3.0%)
Vomiting	14 (4.8%)	15 (5.1%)
Pyrexia	12 (4.1%)	12 (4.0%)
Peripheral edema	8 (2.7%)	9 (3.0%)
Increased ALT*	6 (2.0%)	5 (1.7%)
Increased AST*	6 (2.0%)	1 (4.3%)
Chills	6 (2.0%)	6 (2.0%)

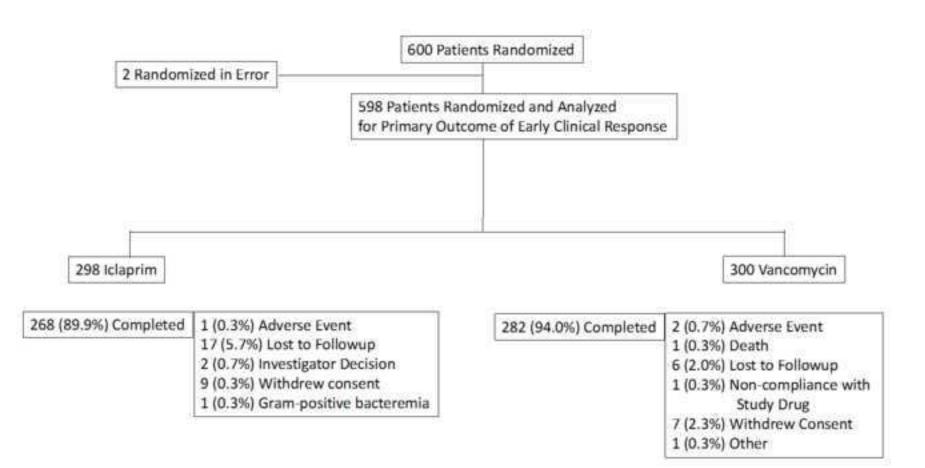
	Pain in extremity	6 (2.0%)	5 (1.7%)]
		0 (2.070)	5 (1.770)	
	Peripheral swelling	4 (1.4%)	8 (2.7%)	
491]
492	Note: The order of the TEAE by s	ystem organ class was li	sted in the order of most	frequent (top)
493	to least frequent (bottom) for iclap	orim.		
494	*Abbreviations: ABSSSI, acute b	acterial skin and skin stru	acture infections; TEAE,	treatment
495	emergent adverse events; SAE, se	vere adverse event; ALT	, Alanine aminotransfera	ase; AST,
496	aspartate aminotransferase			
497				
498				
499				
500				
501				
502				
503				
504				
505				

Figure Legend

508 Figure 1: Schedule of visits.

509 Abbreviations: IV, intravenous; ECR, early clinical response; ETP, early time point; EOT, end of


510 therapy; TOC, test of cure


511

512 Figure 2: Disposition of patients

- 513 Note: Two patients were randomized in error by a site because the patients reported they were
- 514 unable or unwilling to adhere to study-designated procedures and restrictions. No baseline
- 515 screening or study drug were administered to these two patients.

2 Figure 1: Schedule of visits

