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Abstract

Background: This study aimed to quantify the variation in oropharyngeal squamous cell carcinoma gross tumour
volume (GTV) delineation between CT, MR and FDG PET-CT imaging.

Methods: A prospective, single centre, pilot study was undertaken where 11 patients with locally advanced
oropharyngeal cancers (2 tonsil, 9 base of tongue primaries) underwent pre-treatment, contrast enhanced, FDG PET-CT
and MR imaging, all performed in a radiotherapy treatment mask. CT, MR and CT-MR GTVs were contoured by 5 clinicians
(2 radiologists and 3 radiation oncologists). A semi-automated segmentation algorithm was used to contour PET GTVs.
Volume and positional analyses were undertaken, accounting for inter-observer variation, using linear mixed effects
models and contour comparison metrics respectively.

Results: Significant differences in mean GTV volume were found between CT (11.9 cm3) and CT-MR (14.1 cm3), p < 0.006,
CT-MR and PET (9.5 cm3), p < 0.0009, and MR (12.7 cm3) and PET, p < 0.016. Substantial differences in GTV position were
found between all modalities with the exception of CT-MR and MR GTVs. A mean of 64 %, 74 % and 77 % of the PET
GTVs were included within the CT, MR and CT-MR GTVs respectively. A mean of 57 % of the MR GTVs were included
within the CT GTV; conversely a mean of 63 % of the CT GTVs were included within the MR GTV. CT inter-observer
variability was found to be significantly higher in terms of position and/or volume than both MR and CT-MR (p< 0.05).
Significant differences in GTV volume were found between GTV volumes delineated by radiologists (9.7 cm3) and
oncologists (14.6 cm3) for all modalities (p = 0.001).

Conclusions: The use of different imaging modalities produced significantly different GTVs, with no single imaging
technique encompassing all potential GTV regions. The use of MR reduced inter-observer variability. These data suggest
delineation based on multimodality imaging has the potential to improve accuracy of GTV definition.

Trial registration: ISRCTN Registry: ISRCTN34165059. Registered 2nd February 2015.
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Background
Target volume delineation in the treatment of head and
neck cancers is a critical issue in the current era of
highly conformal radiotherapy with intensity modulated
radiotherapy (IMRT) techniques. Steep dose gradients
allow sparing of adjacent critical structures but also
introduce the potential for geographical misses leading
to marginal recurrences if target volume delineation is
not accurate [1–3]. Delineation variability can have a
large impact on the dose to the tumour and organs at
risk [4], and tumour delineation inaccuracy is recognised
as a key source of error in radiotherapy delivery [5, 6].
Computed tomography (CT) remains the core of radio-
therapy planning, with the electron density map generated
providing accurate dosimetry. However, for delineation of
the gross tumour volume (GTV) the limitations of CT-
based delineation are widely acknowledged, and were
clearly demonstrated in a study of the delineation of
supra-glottic tumours with a 50 % degree of agreement
between experienced physicians [7].
The integration of multimodality imaging into the

radiotherapy planning process provides the opportunity
to improve upon the reliance on CT-based tumour
delineation. Magnetic resonance imaging (MR) offers
excellent soft tissue discrimination, multiplanar imaging
capabilities, and importantly, image quality is less suscep-
tible to artefact from dental amalgam compared with CT
[8, 9]. Anatomical imaging with CT or MR is inherently
limited in allowing discrimination of tumour tissue from
surrounding soft tissues. As a result, there has been
considerable interest in utilising functional imaging to
complement anatomical imaging [10, 11]. 2-Deoxy-2-
[18F]-Fluoro-D-glucose positron emission tomography-
computed tomography (FDG PET-CT) is a widely used
functional imaging technique in oncology; tumour cells
exhibit differential glucose uptake (the ‘Warburg effect’) as
a basis of the identification of cancer [12]. The potential
relevance of FDG PET-CT to radiotherapy planning is
highlighted by the finding that loco-regional recur-
rences occur in-field in regions which are FDG-avid at
baseline [13].
Some major institutions employ tight volumetric margins

in the treatment of oropharyngeal cancer; for example re-
cently reported series from major institutions [14–16] have
employed GTV to CTV margins of 0-10 mm. However, the
limited soft tissue contrast of CTcommonly combined with
interference from dental artefact make CT-based delinea-
tion of oropharyngeal primary tumours in routine clinical
practice particularly challenging [17]. Therefore, the use of
multimodality imaging to aid accurate GTV delineation for
oropharyngeal primaries is appealing. However, only limited
data is available to inform upon the intermodality compari-
son of CT, MRI and FDG PET-CT for oropharyngeal
carcinoma [18, 19].

The primary aim of this prospective study was to
quantitatively investigate the variation in oropharyngeal
squamous cell carcinoma (OSCC) primary GTV delinea-
tion with CT, MR and FDG PET-CT, using volumetric
and positional analyses.

Methods
Inclusion criteria
Inclusion criteria for this prospective single centre pilot
imaging study were: age ≥18 years, histologically proven
squamous cell carcinoma of the head and neck region,
WHO performance status 0–2, decision to proceed with
(chemo) radiotherapy with curative intent following
discussion in a multi-disciplinary meeting, measurable
primary cancer on routine pre-treatment imaging (CT
and/or MR), and provision of fully informed consent.
Patients were excluded from the study if there was
poorly controlled diabetes, contraindication to MR or an
estimated glomerular filtration rate <30 ml/min/1.73 m2.
This study was approved by the Research Ethics Com-
mittee (National Research Ethics Committee Yorkshire
and the Humber-Bradford, 11/YH/0212) and Adminis-
tration of Radioactive Substances Advisory Committee
(ARSAC); ISRCTN Registry: ISRCTN34165059 and all
patients provided informed written consent prior to
study entry.
The study protocol included contrast enhanced FDG

PET-CT and MR scans performed in a 5-point thermo-
plastic radiotherapy immobilization mask. Target delin-
eation and treatment proceeded according to institutional
clinical protocols.
Fifteen patients entered the study; 1 patient withdrew

consent prior to imaging. 11 of the 14 patients who
underwent pre-treatment imaging according to the study
protocol had a diagnosis of an oropharyngeal cancer and
form the basis of this report.

Image acquisition
FDG PET-CT
FDG PET-CT imaging was performed on a 64-section
GE Discovery 690 PET-CT system (GE Healthcare,
Amersham, UK). Baseline half-body PET acquisition and
additional dedicated head and neck acquisition in the
immobilization mask (3–4 bed positions, 2 minutes per
bed position) from skull vertex to carina was performed
for 60 minutes following a 400 MBq injection of
Fluorine-18 FDG intravenously. The CT component of
the head and neck acquisition was obtained after a
25 second delay following a bolus of 100 ml of iodinated
contrast (Niopam 300, Bracco Ltd, High Wycombe, UK)
injected at 3 ml/s using the following settings; 120 kV,
variable mA (min 10, max 600, noise index 12.2), tube
rotation 0.5 s per rotation, pitch 0.969 with a 2.5 mm
slice reconstruction. The head and neck component of
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the FDG PET-CT scan, acquired with a 5-point thermo-
plastic radiotherapy immobilization mask fitted and room
laser alignment to radiopaque reference markers placed
on the mask, was also used for radiotherapy planning
according to routine clinical protocols.

MR
MR images were acquired on a 1.5 T Siemens Magnetom
Avanto system (Siemens Healthcare, Erlangen, Germany).
Patients were immobilized in the same treatment position
and the same mask as for FDG PET-CT imaging. Axial
post-contrast T1-weighted (TR = 831 ms, TE = 8.6 ms,
105 × 2 mm thick contiguous slices, acquired voxel size =
0.9 × 0.9 × 2.0 mm) and axial fat saturated T2-weighted
(TR = 4430 ms, TE = 76 ms, voxel size = 0.8 × 0.7 ×
3.0 mm) sequences were acquired.

Image co-registration
To allow the spatial comparison of the FDG PET-CT,
CT and MR scans, rigid image registration was under-
taken using Mirada RTx v1.4 software (Mirada Medical,
Oxford, UK) between the CT dataset and the T1-
weighted MR dataset. FDG PET-CT scans were inherently
spatially co-registered.

Gross tumour volume delineation of primary tumour
In order to simulate the clinical scenario, all outlining
was performed with access to clinical history, findings of
clinical examination, diagnostic imaging including CT
and/or MR performed as part of the diagnostic process
prior to entry into the study; FDG PET-CT was not
performed as a routine diagnostic investigation and was
not therefore available to the observers.

CT and MR based GTV contours
For each patient, five observers (two radiologists and
three radiation oncologists) were provided with lists of
contours to be performed on study images of primary
tumours (CT, MR and combined CT and MR (CT-MR));
the order in which contours were performed was
systematically varied for each individual observer. To
minimize any potential for recall, a minimum of a two week
interval was mandated prior to generating contours for
each individual patient using different imaging modalities.
For CT based contours, observers were blinded to the MR
and PET images acquired as part of the study protocol. For
MR based contours, post-contrast T1-weighted and fat
saturated T2-weighted images were available and inherently
co-registered; and observers were blinded to CT and PET
images acquired as part of the study protocol. For
combined CT-MR contours, the post-contrast T1-weighted
and fat saturated T2-weighted MR and CT were available.

FDG PET-CT GTV contours
Image analysis was undertaken on Mirada RTx v1.4 soft-
ware. The maximum standardized uptake value (SUVmax)
was derived by drawing a region of interest (ROI) encom-
passing the primary tumour. The PET GTV was defined
by using an adaptive thresholding technique, known as
the Schaefer algorithm [20], calculated from the mean
primary tumour SUV (SUVmean) when applying a 70 % of
SUVmax isocontour, the background tissue SUVmean and
two scanner specific coefficients (determined from
phantom studies).

Data analysis
The data analysis was split into the GTV volume analysis
and position analysis. All statistical analysis was performed
using Matlab2013b (MATLAB and Statistics Toolbox Re-
lease 2013b, The MathWorks, Inc., Natick, Massachusetts,
United States).

Volume analysis
Variation in volume of GTV with modality
Linear mixed effects models were used to determine the
significance of differences in GTV volume with modality,
where modality and clinician role (radiologist or radiation
oncologist) were fixed effect variables and patient and
clinician were random effect variables [21]. The lack of
multiple clinician PET GTVs made inter-clinician variability
impractical to model when PET was included, therefore
multiple models were used where clinician and clinician
title inter-observer variability terms were excluded in the
PET GTV model. Data population testing was per-
formed using Q-Q plots and × 1/3 transformations
were used to create normal population distributions.
A significant ρ-value was considered to be ρ < 0.02 to
account for the multiple model comparisons that were
required due to the fixed variable comparison method
in linear mixed effects models [22].

Variation in volume of GTV with clinician group
The mean GTV volumes for the CT, MR and CT-MR
modalities were calculated for each clinician group;
radiologist and oncologist. Significance testing between
clinician groups for each modality was undertaken using
linear mixed effects models.

Variation in inter-observer variability with imaging
modality
The variation in inter-observer delineation was measured
by taking the mean over all patients of the standard
deviation of all observers delineations for each patient
within a modality. This was repeated for CT, MR and CT-
MR volumes. Significance testing was then performed
between modalities using an ANOVA test combined with a
Tukey multiple comparison test [23].
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Positional analysis
Six positional metrics were calculated using ImSimQA
software (v3.1.5, OSL, Shrewsbury, UK): Mean distance
to conformity (MDC); Centre of gravity distance (CGD);
Conformity index (CI); DICE index; sensitivity index (Se.
Idx); and inclusion index (Incl. Idx). The conformity
index and DICE index both produce output values

between 0 and 1 (using different calculation methods),
where 0 represents two contours with no overlap and 1
represents two contours that are perfectly overlapping
[24]. The Se. Idx and Incl. Idx calculate the overlapping
volume between two contours as a percentage of the
volume of one of the two contours. When used together
they calculate the percentage of volume A which is
within volume B and vice versa. CGD is the distance
between the geometric centres of two contours [25].
MDC is the mean of the distances between contours
averaged over all positions not within the overlapping
contour [25].

Variation in inter-observer variability with imaging
modality
The positional inter-observer variability for each modal-
ity was assessed by comparing all GTVs delineated using
the same modality for each patient. The final positional
comparison values were calculated for each metric by
calculating the mean of the metric results for each
patient and subsequently the overall mean result for all
patients. Significance testing was then performed

Table 1 Patient demographics and tumour characteristics

Patient Primary Tumor Site T-stage N-stage

1 Tonsil 2 2b

2 Base of tongue 3 2c

3 Base of tongue 4 2b

4 Base of tongue 4a 1

5 Base of tongue 2 1

6 Tonsil/base of tongue 1 2b

7 Base of tongue 2 2b

8 Base of tongue 2 2b

9 Tonsil/soft palate 4a 1

10 Base of tongue 1 2b

11 Soft palate 4a 2b

Fig. 1 Example of inter-observer variability in contouring GTVs based on CT, MR, CT-MR and of auto-segmented contour based on PET for a patient
with a T2 N2b poorly differentiated squamous cell carcinoma of the right tonsil. Contours shown are: radiation oncologist 1 red, radiation oncologist 2
yellow, radiation oncologist 3 orange, radiologist 1 green, radiologist 2 purple, PET contour blue
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between modalities using an ANOVA test combined
with a Tukey multiple comparison test [23].

Variation in GTV position with imaging modality
The variation in GTV position between modalities was
assessed using ImSimQA between GTVs delineated by
the same clinician and the PET GTV for each patient.

Results
11 patients with histologically proven OSCC entered the
study. Baseline characteristics are summarised in Table 1.
Diagnostic imaging included MR for all patients. The

median time between FDG PET-CT and MR scans
performed within the study was 7 days (range 0–12).
Within the time constraints for completing contouring of
the primary tumour GTV, all CT contours, 51/55 MR,
and 42/55 CT-MR GTV contours were completed; 10/11
combined CT-MR GTVs were incomplete for one radiolo-
gist. A representative example of contours delineated by
each observer on CT, MR, CT-MR and by automatic
segmentation of PET is shown in Fig. 1. Figure 2 provides
an example of contouring by a single observer on CT,
MR, CT-MR and by automatic segmentation of PET
superimposed upon the CT scan.

Volume analysis of GTVs
The volume of the primary tumour contours for CT,
MR, CT-MR and PET are shown for each patient in
Fig. 3 and are summarised in Table 2. Table 2 illustrates
the median and mean volumes of GTVs delineated on
CT, MR, CT-MR and generated by automatic segmenta-
tion of the PET. Figure 4 demonstrates the volume of
GTVs delineated by individual observers using CT, MR
and CT-MR. Table 3 illustrates the standard deviation of
the GTV volume delineations for each patient for each
modality. Compared with CT GTVs, CT-MR GTVs
were significantly larger (p = 0.0052). MR had a signifi-
cantly smaller GTV volume standard deviation than
CT (ρ-value < 0.05). Average PET GTVs were smaller
than CT, MR and CT-MR volumes, a difference which
was significant compared with MR and CT-MR GTVs
(p = 0.003 and p < 0.001 respectively).
Significant differences were found between radiologist-

and oncologist-delineated GTV volumes for each individual
modality: CT (radiologist 9.1 cm3 vs. oncologist 13.8 cm3,
ρ = 0.022); MR (radiologist 9.9 cm3 vs. oncologist 14.4 cm3,
ρ = 0.00013); CT-MR (radiologist 10.5 cm3 vs. oncologist
15.8 cm3, ρ = 0.12); and overall for all modalities (radiologist
9.7 cm3 vs. oncologist 14.6 cm3, ρ = 0.001).

Fig. 2 Representative example of GTVs delineated on CT, MR, CT-MR by
a single radiation oncologist, displayed on an axial CT scan, for a patient
with a T1 N2b well differentiated squamous cell carcinoma of the right
tonsil. CT GTV red; MR GTV yellow; CT-MR contour orange; PET
contour blue
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Fig. 3 Median volumes of GTVs delineated on CT, MR, CT-MR and PET for each patient
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Positional analysis of GTVs
The analysis of positional inter-observer variability is
summarized in Table 4. Inter-observer variability was
found to be significantly higher for CT compared to MR
and CT-MR, with no significant differences between MR
and CT-MR contours.
The results of the comparison of GTV position

between CT, MR, CT-MR and PET is shown in Table 5.
CT, MR and CT-MR were found to all have similar, large
differences in position compared to PET. A mean of
64 %, 74 % and 77 % of the PET GTV were included
within the CT, MR and CT-MR GTVs respectively. A
mean of 56 %, 58 %, 54 % of the CT, MR and CT-MR
GTVs were included within the PET GTVs. MR and CT
GTVs were found to have a low level of overlap and a
large variation in CGD and MDC. A mean of 57 % of
the MR GTV was included within the CT GTV;
conversely a mean of 63 % of the CT GTV was included
within the MR GTV. MR and CT-MR were found to
have a high level of overlap and a small variation in
CGD and MDC; a mean of 85 % of the CT-MR GTV
was included within the MR GTV .

Discussion
There is considerable interest in improving the accuracy of
tumour delineation in the era of highly conformal IMRT
[10]. The current standard of CT-based delineation is
particularly limited for oropharyngeal primary tumours,
which are often barely visible even with contrast-enhanced
CT-simulation scans [9, 19]. Multimodality imaging has the
potential to improve the accuracy and reproducibility of
tumour delineation.
Clinical experience suggests that oropharyngeal primary

tumours are more readily identifiable on MR than CT.
There was no significant difference in the volume of GTVs
outlined on MR and CT. Although there was considerable
inter-observer variability for CT, MR and CT-MR GTV
delineation, there was significantly less variability for MR
and CT-MR than for CT GTVs. Analysis of positional
metrics demonstrated a low degree of volume overlap
between CT and MR GTVs. MR and CT-MR GTVs
showed a large degree of overlap; this is likely to reflect

the clinicians’ propensity to base the CT-MR GTV
contours on the MR on which the edge of the primary
tumour is more readily identifiable. These data suggest
that the implementation of either combined CT-MR
or MR-based planning would have a considerable
impact upon GTV delineation compared with CT-
based planning.
These data are broadly in line with a previous study by

Daisne et al. [18] who did not find a significant difference
in the volume of GTVs contoured by a single observer on
CT or MR in a series of 10 patients with oropharyngeal
carcinoma. Consistent with our results, this series also
showed significant areas of non-overlap between CT and
MR defined GTVs. Another prior study by Ahmed et al.
compared CT and MR-based GTVs in a series of six
patients with base of tongue cancers [17]. This study also
found that there was only limited overlap between CT and
MR GTVs although, by contrast with our results, reported
that there was no difference in inter-observer variability
between CT and MR and that the primary tumour GTV
was larger on MR than CT.
Interestingly our data showed that GTVs delineated on

CT, MR or CT-MR were significantly smaller when con-
toured by radiologists compared with oncologists. Similarly,
Ahmed et al. [17] reported that average GTVs delineated
by a single radiologist were smaller than those contoured
by oncologists. Clinical information and the findings of
clinical examination remain critical to avoid geometric
misses due to disease such as mucosal extension which
may not be identified on imaging. Variations in this study
between oncologists and radiologists emphasize the
potential benefit of a multidisciplinary collaborative
approach to GTV delineation, including radiation
oncologists, radiologists and surgeons (who may have
valuable additional input, for example based on the
findings of an examination under anaesthetic).
With regard to the use of FDG PET-CT for radiotherapy

planning, a key issue is the methodology used to define
the edge of the functional volume of interest. Current
generation PET-CT scanners have limitations including
image noise, voxel sizes of 4-5 mm, partial volume effects
and reconstruction uncertainties which lead to blurring of

Table 2 Summary of volume of GTVs contoured using CT, MR, CT-MR and PET

Modality Modality Volumes (cm3)

Mean Median Mean
St.
Dev.

Range Mean GTV Volume (Statistically
Significant p-values)Max Min

CT 11.9 11.6 4.5 34.5 1.6 CT < CT-MR, p = 0.005

CT-MR 14.1 14.0 3.7 40.2 2.2 CT <MR, p = 0.049

MR 12.7 12.8 2.5 34.4 2.2 MR < CT-MR, p = 0.33

PET 9.5 8.8 - 24.6 1.5 PET < CT, p = 0.059

PET < CT-MR, ρ <0.001PET <MR, ρ = 0.003
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the edge of PET-avid tumours [9]. A host of methods have
been proposed for ‘contouring’ a PET-avid tumour, varying
from manual visual delineation to fully automated
algorithms [26, 27]. Altering the SUV scale when viewing
PET images can alter the apparent tumour volume by a
factor of around two [28]; manual delineation is therefore
an inevitably subjective process leading to inter-observer
variability [29]. Although a host of automated methods
have been developed for segmenting PET-avid tumours
[30], few have histopathological correlation. In the absence

of a widely accepted method, we made a pragmatic
decision to use a previously described contrast-orientated
method with coefficients derived from individual phantom
data on the PET-CT scanner which had performed
favourably in comparative phantom and simulated patient
studies [20, 31, 32], and pathological correlation in other
tumour sites [33]. The results from the PET delineation
component of this study need to be interpreted with the
unresolved difficulty regarding the optimal method of
PET delineation in mind.
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Fig. 4 Volumes of GTVs delineated by individual observers on CT, MR and CT-MR
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PET-based GTVs were significantly smaller than MR
and CT-MR GTVs (Table 2), and non-significantly smaller
than CT GTVs. Despite this difference in volume, there
were substantial areas of the PET GTV which were not
included in the CT or MR GTVs; conversely large areas of
the CT and MR GTVs were not included within the PET
GTV. Consistent with these findings, was the reported
series of Daisne et al. [18] of 10 patients with oropharyn-
geal cancer in which the PET GTV was significantly
smaller than CT or MR-based GTVs, with areas of
mismatch between PET GTVs and CT or MR GTVs.
Interestingly, for patient 6 the PET GTV volume was
greater than any other modality GTV volume. This was in
contrast to all other patients and the overall results of this
study. This could be due to the inherent difficulties in
delineating a PET GTV that occur, even using the semi-
automatic contouring algorithm, when the GTV 18−FDG
uptake resides in an area of natural 18−FDG uptake caused
by, for example, inflammation or brown fat. In such cases
the PET GTV delineation can incorrectly identify physio-
logical 18−FDG uptake as tumour uptake, leading to false

positive GTV tissue and a larger GTV delineation than
appropriate. In this case, when visually reviewed it was
found that the PET GTV extended further inferiorly com-
pared to the other modality GTVs and also was in a region
of relatively high background uptake around the tonsils.
The main limitation of this series is the absence of

histological validation. Two series including nine [18]
and ten [34] patients who underwent a laryngectomy/
laryngopharyngectomy for laryngeal or hypopharyngeal
cancer following CT, MR and FDG PET-CT imaging
have provided histological validation. Both series
reported that the pathological tumour was smaller than any
individual imaging modality, but that no single imaging
modality encompassed the whole pathological tumour. The
inability of imaging to depict the whole tumour volume
was thought likely to be due to superficial mucosal exten-
sion in that tumour site. No similar series with pathological
correlation have been performed for oropharynx cancers to
the best of our knowledge. By contrast with the larynx, a
resected specimen from the oropharynx would lack the
cartilage structure to provide registration with imaging; in
addition, oropharyngeal cancer is commonly managed non-
surgically. In the absence of pathological validation, our
series is descriptive without a ground truth; it is important
to recognise that increasing the consistency of contours
does not necessarily imply superior target volume
delineation. Other limitations include the necessity for
co-registration between MR and FDG PET-CT scans;
since both scans were performed within the same
immobilisation mask it would be expected that co-
registration errors would be small.
In the absence of histological validation, it is not possible

to select which imaging modality is superior for target
volume delineation. It is perhaps not surprising that ana-
tomical and functional imaging techniques provide poten-
tially complimentary information. The smaller FDG-PET
volume may be demonstrating the inability of the other
techniques to discriminate between inactive necrotic/cystic
tissue and the active cancerous tissue; however, FDG
uptake is non-specific, so areas of FDG uptake beyond CT
or MRI-delineated tumour volume may relate to adjacent

Table 3 The standard deviation of the GTV volume delineations
undertaken by clinicians for each patient for each modality

Patient Standard Deviations (cm3)

CT CT-MR MR

1 3.59 4.17 3.33

2 3.95 5.19 3.32

3 4.61 3.75 1.36

4 4.36 4.82 1.15

5 4.29 3.16 3.37

6 2.01 2.81 0.48

7 1.84 2.84 2.15

8 8.65 4.87 2.99

9 5.63 3.91 2.40

10 1.62 0.83 0.93

11 8.59 4.42 5.93

Mean 4.47 3.71 2.49

Table 4 Mean positional metric results for the inter-observer variability

Mean Inter-observer Variability (SD) Significant Differences with a confidence level of 95 %

CT CT-MR MR (p-value <0.05)

CI 0.37 (0.12) 0.44 (0.09) 0.47 (0.09) CT < CT-MR

CT <MR

MDC (mm) 8.8 (4.1) 7.5 (2.6) 6.9 (2.5) MR < CT

CGD (mm) 7.7 (4.5) 4.8 (2.6) 4.4 (2.5) CT-MR < CT

MR < CT

DICE 0.57 (0.15) 0.66 (0.09) 0.69 (0.10) CT < CT-MR

CT <MR
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inflammatory changes or alternatively areas of sub-clinical
tumour infiltration. It seems likely that incorporating multi-
modality imaging with accurate clinical examination will
minimise the risk of a geographical miss. For example, PET
may add to the accuracy of target delineation based on
anatomical imaging by the detection of areas which are
FDG-avid but sub-clinical on CT and MR. This is
supported by the findings of Thiagarajan et al. [19] who
reported on the impact of PET and MR and physical exam-
ination in target delineation in a series of 41 patients with
oropharyngeal cancer. This study compared a reference
GTV based on CT, PET, MR and physical examination; the
concordance indices for both GTVs based on CT and MR
or based on CT and PET were low compared with the ref-
erence GTV, implying a potential benefit for incorporating
all imaging modalities. Importantly, the study highlighted
the importance of clinical examination in addition to multi-
modality imaging for the detection of mucosal extension.
These data show the potential complimentary role for

multimodality imaging in target volume delineation. Clearly
additional multicentre prospective clinical studies are
needed to analyse the impact of this approach on clinical
outcomes. Incorporation of multimodality imaging may be
more beneficial in the advanced disease setting (patients in
this study all had stage III/IV disease) compared with the
treatment of early disease. The impact of multimodality
imaging on the balance of achieving local control whilst
minimising toxicity will depend upon the approach and
margins adopted to delineating the clinical target volume,
as a multimodality imaging-defined GTV may be larger
than that defined on CTV alone. A cost-effectiveness
analysis will be useful prior to widespread incorporation
into routine practice.

Conclusion
In summary, this study showed that using CT, MR and
PET produced significantly different GTVs which varied
in volume and/or position, with no single imaging modal-
ity encompassing all potential GTV regions. These data
support the increased incorporation of multimodality

imaging for target volume delineation, to minimise the
risk of geographical misses.
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Table 5 Inter-modality positional GTV analysis

Metric Inter-Modality Variability (SD)

CT-PET MR-PET CTMR-PET CT-MR CT-CTMR MR-CTMR

CI 0.33 (0.09) 0.36 (0.05) 0.36 (0.07) 0.35 (0.09) 0.40 (0.08) 0.74 (0.17)

MDC (mm) 7.8 (3.1) 6.9 (2.4) 7.3 (2.87) 7.1 (1.7) 6.7 (1.6) 4.1 (0.9)

CGD (mm) 6.1 (3.2) 4.7 (2.2) 4.9 (3.64) 5.9 (3.1) 5.4 (2.7) 1.8 (1.4)

DICE 0.55 (0.11) 0.61 (0.06) 0.60 (0.08) 0.57 (0.09) 0.62 (0.09) 0.87 (0.10)

Se. Idxa 0.56 (0.15) 0.58 (0.11) 0.54 (0.13) 0.63 (0.14) 0.67 (0.14) 0.91 (0.09)

Incl. Idxb 0.64 (0.18) 0.74 (0.11) 0.77 (0.13) 0.57 (0.14) 0.63 (0.14) 0.85 (0.13)
aSe. Idx is expressed as a proportion of the first named GTV contained within the second ie. for CT-PET Se. Idx is the proportion of the CT-GTV within the PET-GTV
bIncl. Idx is expressed as a proportion of the second named GTV contained within the first ie. for CT-PET Incl. Idx is the proportion of the PET-GTV within
the CT-GTV

Bird et al. BMC Cancer  (2015) 15:844 Page 9 of 10



References
1. David MB, Eisbruch A. Delineating neck targets for intensity- modulated

radiation therapy of head and neck cancer. What we learned from marginal
recurrences? Front Radiat Ther Oncol. 2007;40:193–207.

2. Eisbruch A, Marsh LH, Dawson LA, Bradford CR, Teknos TN, Chepeha DB, et
al. Recurrences near base of skull after IMRT for head-and-neck cancer:
implications for target delineation in high neck and for parotid gland
sparing. Int J Radiat Oncol Biol Phys. 2004;59(1):28–42.

3. Schoenfeld GO, Amdur RJ, Morris CG, Li JG, Hinerman RW, Mendenhall WM.
Patterns of failure and toxicity after intensity-modulated radiotherapy for
head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;71(2):377–85.

4. Rasch C, Steenbakkers R, Van Herk M. Target definition in prostate, head,
and neck. Semin Radiat Oncol. 2005;15(3):136–45.

5. Njeh CF. Tumor delineation: The weakest link in the search for accuracy in
radiotherapy. J Med Phys. 2008;33(4):136–40.

6. Rasch CR, Steenbakkers RJ, Fitton I, Duppen JC, Nowak PJ, Pameijer FA, et al.
Decreased 3D observer variation with matched CT-MRI, for target
delineation in Nasopharynx cancer. Radiat Oncol. 2010;5:21.

7. Cooper JS, Mukherji SK, Toledano AY, Beldon C, Schmalfuss IM, Amdur R, et
al. An evaluation of the variability of tumor-shape definition derived by
experienced observers from CT images of supraglottic carcinomas (ACRIN
protocol 6658). Int J Radiat Oncol Biol Phys. 2007;67(4):972–5.

8. Maroldi R, Battaglia G, Farina D, Maculotti P, Chiesa A. Tumours of the
oropharynx and oral cavity: perineural spread and bone invasion. JBR-BTR.
1999;82(6):294–300.

9. Bhatnagar P, Subesinghe M, Patel C, Prestwich R, Scarsbrook AF. Functional
imaging for radiation treatment planning, response assessment, and adaptive
therapy in head and neck cancer. Radiographics. 2013;33(7):1909–29.

10. Prestwich RJ, Sykes J, Carey B, Sen M, Dyker KE, Scarsbrook AF. Improving
target definition for head and neck radiotherapy: a place for magnetic
resonance imaging and 18-fluoride fluorodeoxyglucose positron emission
tomography? Clin Oncol (R Coll Radiol). 2012;24(8):577–89.

11. Gregoire V, Haustermans K. Functional image-guided intensity modulated
radiation therapy: integration of the tumour microenvironment in treatment
planning. Eur J Cancer. 2009;45 Suppl 1:459–60.

12. Warburg O. The metabolism of tumours. London: Constable; 1930.
13. Due AK, Vogelius IR, Aznar MC, Bentzen SM, Berthelsen AK, Korreman SS, et

al. Recurrences after intensity modulated radiotherapy for head and neck
squamous cell carcinoma more likely to originate from regions with high
baseline [18 F]-FDG uptake. Radiother Oncol. 2014;111(3):360–5.

14. Garden AS, Dong L, Morrison WH, Stugis EM, Glisson BS, Frank SJ, et al.
Patterns of disease recurrence following treatment of oropharyngeal cancer
with intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys.
2013;85(4):941–7.

15. Setton J, Caria N, Romanyshyn J, Koutcher L, Wolden SL, Zelefsky MJ, et al.
Intensity-modulated radiotherapy in the treatment of oropharyngeal cancer:
an update of the Memorial Sloan-Kettering Cancer Center experience. Int J
Radiat Oncol Biol Phys. 2012;82(1):291–8.

16. Raktoe SA, Dehnad H, Raaijmakers CP, Braunius W, Terhaard CH. Origin of
tumor recurrence after intensity modulated radiation therapy for
oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys.
2013;85(1):136–41.

17. Ahmed M, Schmidt M, Sohaib A, Kong C, Burke K, Richardson C, et al. The
value of magnetic resonance imaging in target volume delineation of base
of tongue tumours–a study using flexible surface coils. Radiother Oncol.
2010;94(2):161–7.

18. Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al.
Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison
at CT, MR imaging, and FDG PET and validation with surgical specimen.
Radiology. 2004;233(1):93–100.

19. Thiagarajan A, Caria N, Schoder H, Iyer NG, Wolden S, Wong RJ, et al. Target
volume delineation in oropharyngeal cancer: impact of PET, MRI, and
physical examination. Int J Radiat Oncol Biol Phys. 2012;83(1):220–7.

20. Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U. A contrast-
oriented algorithm for FDG-PET-based delineation of tumour volumes for
the radiotherapy of lung cancer: derivation from phantom measurements
and validation in patient data. Eur J Nucl Med Mol Imaging.
2008;35(11):1989–99.

21. West BT. Linear mixed models: A practice guide using statistical software,
2nd. London: CRC Press; 2015.

22. NIST/SEMATECH e-Handbook of Statistical Methods http://www.itl.nist.gov/
div898/handbook/ accessed 1st November 2015

23. Moore DS: The basic practice of statistics. 2008; 5th edn: W. H. Freeman and
Company.

24. Dice LR. Measures of the amount of ecologic association between species.
Ecology. 1945;26(3):297–302.

25. Jena R, Kirkby NF, Burton KE, Hoole AC, Tan LT, Burnet NG. A novel
algorithm for the morphometric assessment of radiotherapy treatment
planning volumes. Br J Radiol. 2010;83(985):44–51.

26. Shepherd T, Teras M, Beichel RR, Boellaard R, Bruynooghe M, Dicken V, et al.
Comparative study with new accuracy metrics for target volume contouring
in PET image guided radiation therapy. IEEE Trans Med Imaging.
2012;31(11):2006–24.

27. Lee JA. Segmentation of positron emission tomography images: some
recommendations for target delineation in radiation oncology. Radiother
Oncol. 2010;96(3):302–7.

28. Troost EG, Schinagl DA, Bussink J, Boerman OC, van der Kogel AJ, Oyen WJ,
et al. Innovations in radiotherapy planning of head and neck cancers: role
of PET. J Nucl Med. 2010;51(1):66–76.

29. Riegel AC, Berson AM, Destian S, Ng T, Tena LB, Mitnick RJ, et al. Variability
of gross tumor volume delineation in head-and-neck cancer using CT and
PET/CT fusion. Int J Radiat Oncol Biol Phys. 2006;65(3):726–32.

30. Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment
volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol
Imaging. 2010;37(11):2165–87.

31. Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, et al. Comparative
assessment of methods for estimating tumor volume and standardized
uptake value in (18) F-FDG PET. J Nucl Med. 2010;51(2):268–76.

32. Cheebsumon P, Yaqub M, Van Velden FH, Hoekstra OS, Lammertsma AA,
Boellaard R. Impact of [(1) (8) F] FDG PET imaging parameters on automatic
tumour delineation: need for improved tumour delineation methodology.
Eur J Nucl Med Mol Imaging. 2011;38(12):2136–44.

33. Cheebsumon P, Boellaard R, De Ruysscher D, Van Elmpt W, Van Baardwijk A,
Yaqub M, et al. Assessment of tumour size in PET/CT lung cancer studies:
PET- and CT-based methods compared to pathology. EJNMMI Res.
2012;2(1):56.

34. Caldas-Magalhaes J, Kasperts N, Kooij N, van den Berg CA, Terhaard CH,
Raaijmakers CP, et al. Validation of imaging with pathology in laryngeal
cancer: accuracy of the registration methodology. Int J Radiat Oncol Biol
Phys. 2012;82(2):e289–98.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Bird et al. BMC Cancer  (2015) 15:844 Page 10 of 10

http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/

	Abstract
	Background
	Methods
	Results
	Conclusions
	Trial registration

	Background
	Methods
	Inclusion criteria
	Image acquisition
	FDG PET-CT
	MR

	Image co-registration
	Gross tumour volume delineation of primary tumour
	CT and MR based GTV contours
	FDG PET-CT GTV contours
	Data analysis
	Volume analysis
	Variation in volume of GTV with modality
	Variation in volume of GTV with clinician group
	Variation in inter-observer variability with imaging modality

	Positional analysis
	Variation in inter-observer variability with imaging modality
	Variation in GTV position with imaging modality

	Results
	Volume analysis of GTVs
	Positional analysis of GTVs

	Discussion
	Conclusion
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



