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a b s t r a c t 

Road network microsimulation is computationally expensive, and existing state of the art 

commercial tools use task parallelism and coarse-grained data-parallelism for multi-core 

processors to achieve improved levels of performance. An alternative is to use Graphics 

Processing Units (GPUs) and fine-grained data parallelism. This paper describes a GPU ac- 

celerated agent based microsimulation model of a road network transport system. The per- 

formance for a procedurally generated grid network is evaluated against that of an equiv- 

alent multi-core CPU simulation. In order to utilise GPU architectures effectively the pa- 

per describes an approach for graph traversal of neighbouring information which is vital 

to providing high levels of computational performance. The graph traversal approach has 

been integrated within a GPU agent based simulation framework as a generalised message 

traversal technique for graph-based communication. Speed-ups of up to 43 × are demon- 

strated with increased performance scaling behaviour. Simulation of over half a million ve- 

hicles and nearly two million detectors at a rate of 25 × faster than real-time is obtained 

on a single GPU. 
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1. Introduction 

Simulations of road networks are used during the development and management of transport networks around the globe.

Microscopic road network simulations are fine-grained simulations which simulate individual vehicles within the system,

capturing low level behaviours. Agent Based Modelling (ABM) is one microscopic approach, where relatively simple individ-

ual behaviours are defined, which combined with interactions between agents and the environment, allows the emergence

of complex behaviours. However, microscopic simulations are much more computationally expensive than the more tra-

ditional higher-level macroscopic simulations, which use a higher level of abstraction consisting of network flows rather

than individual vehicles. Nonetheless, the level of detail captured by microscopic simulations is much greater than that of

macroscopic and mesoscopic simulations, including the emergent behaviours enabled by the use of ABM. 
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As microscopic simulations are computationally expensive, current commercial and open-source tools such as Aim- 

sun [1] , Vissim [2] , MATsim [3] and SUMO [4] can have considerable execution run-times, especially for large scale

simulations. This limits the overall effectiveness and uptake of microscopic simulation within the transport sector [5] .

To increase simulator performance, existing simulation tools use parallel processing applied to multi-core processors to

reduce the run-time of simulations. Task-parallel and coarse-grained data-parallel approaches are typically applied within

existing tools. Task-parallelism distributes independent processing tasks to separate processing threads. Coarse-grained 

data-parallelism applies the same algorithms to different units of data, where the individual units of data are relatively

large. These approaches are well-suited to multi-core Central Processing Units (CPUs), but can result in poor performance

scalability. 

Many-core architectures such as Graphics Processing Units (GPUs) offer significantly greater levels of parallelism than

multi-core architectures, and significantly greater levels of raw compute performance. To access the high levels of perfor-

mance, algorithms and data structures must expose high levels of parallelism and enable good memory-access patterns.

Typically fine-grained data-parallelism is used, where the same algorithms are applied to relatively small individual units of

data. 

To demonstrate the simulation performance improvements which could be achieved by using many-core GPUs for mi-

croscopic road network simulations, a single-lane transport model with stop-sign-based yellow-box junctions has been im-

plemented using FLAME GPU (Flexible Large Scale Agent Modelling Environment for Graphics Processing Units). FLAME

GPU is the only general-purpose GPU-accelerated ABM framework [6] . The performance of the simulation is bench-

marked using a procedurally generated artificial grid-based road network, and the simulation performance is compared

to a high-performance multi-core CPU microscopic road network simulation tool, Aimsun 8.1, which implements the same

models. 

This paper presents two contributions:(i) a GPU accelerated data-parallel agent-based road network microsimulation 

model is evaluated against an equivalent model in a commercial multi-core CPU software tool, demonstrating considerable

improvements to simulation performance and performance scalability; and (ii) a general-purpose graph-based communica- 

tion strategy is presented for high performance agent communication for fine-grained data-parallel agent based simulations,

implemented for the FLAME GPU ABM framework which enables high performance agent based simulations of transport

networks on GPUs. 

Section 2 provides a summary of related work. Section 3 details the implemented model, the benchmark network used

and the FLAME GPU implementation. Section 4 describes the graph-based communication strategy to enable the high levels

of performance in this model. Section 5 provides the results of a set of application benchmarks used to assess the perfor-

mance impact of GPUs on microscopic road network simulation using ABM. Section 6 concludes the paper. 

2. Related work 

Microscopic simulation of transport simulation involves the simulation of individual vehicles and pieces of road network

infrastructure to predict the effects of changes in vehicle behaviour or changes in the road network infrastructure. This is

used as a tool in the planning and management of transport networks to improve the effectiveness of infrastructure and

minimise the impact of changes in conditions on the transportation network. Microscopic simulations are computationally

expensive, which has limited the adoption of microsimulation compared to higher level mesoscopic and macroscopic sim-

ulations [5] . A micro-scale simulation must include behavioural models for vehicles to follow as well as models for any

dynamic infrastructure such as traffic signals and vehicle detectors, which attempt to accurately capture the behaviour of

the real world. ABM is a powerful approach to defining microscopic models, which provides a natural method of describing

individual behavioural models and then simulating the interaction between individuals in the simulation [7] . Some of the

most important vehicle behavioural models are: (i) Car Following Models [8,9] ; (ii) Lane Changing Behaviour [10,11] ; and

(iii) Gap Acceptance Modelling [1,12] . 

These behavioural models make use of several sets of input data, including: the attributes and structure of the transport

network; transport demand which is used to populate the simulation and allow alternate scenarios to be simulated for pre-

dictive use; and simulation parameters which are used to modify the models within the simulator. Parameters can include

distributions from which vehicle properties can be sampled, such as vehicle length, rate of acceleration or even properties

such as pollution emission rates. These parameters can be manipulated to replicate observed behaviour [13,14] . 

Leading commercial software packages such as Aimsun and Vissim use multi-core CPU architectures to increase sim-

ulation performance through task-parallelism and coarse-grained data-parallelism [15,16] , reducing the time required for

simulations to execute. The work-load of the simulation is distributed as individual tasks or coarse-grained units of data

across the available processing hardware, but, as with many task-parallel and coarse-grained data-parallel multi-core soft-

ware applications, the performance improvement from each additional processing core reduces as the number of cores and

threads is increased. Fig. 1 shows the application run-time of Aimsun 8.1 for a simulation containing approximately 25 , 0 0 0

concurrent vehicles as the simulation thread count is increased for two multi-core CPU systems. The diminishing returns of

additional processor threads are shown, with no significant increases in performance observed beyond six threads. This lim-

its the performance scalability of the application, with large simulations requiring considerable amounts of time to execute

even using CPUs with high numbers of processing threads. 
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Fig. 1. The average run-time from 3 repetitions for a 60 minute Aimsun 8.1 simulation containing approximately 25 , 0 0 0 vehicles, for different processor 

thread counts. As processor thread count increases, total simulation time decreases, but with diminishing returns. Note that the Intel Xeon E5-2643 is a 

dual-socket system. Additionally, no performance improvements were observed when using more processing threads than physical cores (Hyper-threading). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast to multi-core processor architectures, highly parallel many-core processing architectures such as GPUs enable

the use of fine-grained data-parallelism to offer high levels of performance. Originally developed for 2D and 3D computer

graphics applications, GPUs are now commonly used to accelerate general purpose computing through data-parallelism, as

they offer significant computational power. For instance, a single state of the art NVIDIA P100 GPU has a peak theoreti-

cal performance of 5.3 TFLOPS (trillion floating point operations per second) in double precision [17] , compared to Intel

Broadwell (22 core) Xeon CPUs which are capable of less than 1.0 TFLOPS [18] , with even greater levels of raw compute

performance for single and half precision floating point operations. From a device perspective, GPUs use a form of Single

Instruction, Many Data (SIMD) parallel architecture, where the same instructions are applied to many items of data concur-

rently. Additionally, a large portion of the GPU die space is used for the many processing cores, leaving a relatively small

portion of die space available for on-chip cache so to achieve high levels of performance the use of memory must be care-

fully considered. Along with data access patterns, the SIMD model used by GPUs often requires alternate algorithms and

data structures to software designed for multi-core CPUs, in order to leverage the high levels of performance required. Ad-

ditionally, GPUs are typically more energy-efficient when compared to CPUs, offering greater levels of performance for the

same power usage, i.e. GPUs typically offer a higher number of FLOPS per watt. This is demonstrated by the high propor-

tion of GPU enabled super-computers in the upper ranks of the Green 500, the ranking of the world’s most power-efficient

super-computers [19] . 

Although current commercial and open source microscopic road network simulators such as Vissim or Aimsun use multi-

core CPU parallelism to increase simulator performance, GPUs have yet to be adopted within transport modelling software

as a whole. GPUs have been used previously in microscopic transport network simulation, as both cellular automata [20] and

also using multi-agent systems [21] . Additionally other tasks associated with microscopic simulation have been accelerated

using GPUs, such as the generation of demand data using activity plan generation [22] , traffic signal optimisation [23] and

dynamic route assignment [24] . Recently, outside of microscopic simulation, GPUs have been utilised within both mesoscopic

and microscopic road network simulation tools and performance improvements have been demonstrated [25–27] , further

highlighting the demand for reduced software run-times within the transport modelling sector. 

Several ABM frameworks exist which use distributed and parallel computing to provide increased levels of simulation

performance, whilst abstracting the complexities of the parallel computing paradigm away from the end user. D-Mason [28] ,

Repast HPC [29] and FLAME [30] use distributed or CPU-based task-parallelism or coarse-grained data-parallelism to offer

improved performance compared to single threaded applications. This is achieved through the distribution of simulation

work-load across the available processors or cores, as in current commercial microscopic road network simulators such

as Aimsun. In contrast, FLAME GPU is a GPU accelerated ABM framework. FLAME GPU uses the CUDA (Compute Unified

Device Architecture) API for NVIDIA GPUs and a state-based representation of agent dynamics to leverage the high levels

of performance from the GPU. The complexities of the CUDA programming model are abstracted away from the end-user,
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Fig. 2. FLAME GPU State-based representation for vehicle agents within the simulation, illustrating the logical control-flow of the agents within a single 

iteration. Interaction with detector agents has been omitted for clarity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

enabling high performance simulations without explicit knowledge of the parallel processing model [6,31,32] . FLAME GPU

has successfully been used in several modelling domains such as pedestrian crowd simulation [33] and cellular simulations

[31,34] , however the use of FLAME GPU for road network simulation has been limited, due to the unsuitability of fixed

radius communication for use within transport networks [35] . 

3. Mulit-agent GPU microsimulation 

To evaluate the potential performance impact of GPU accelerated ABM on microscopic road network simulation a single-

lane road network model was implemented. The implemented models include: car following model [1,15,36] (based on

Gipps’ car following model [8] ); constant vehicle arrival [15,36] ; virtual queues [15,36] ; detectors [15,36] ; a yellow-box model

[15,36] and a gap acceptance give-way model [1,15,36] combined with stop-signs for junctions. These features and models

were selected to produce comparable behaviour for the procedurally generated grid road network described in Section 5.3 ,

without the complexities of modelling the broad range of road network infrastructure present in real world road networks. 

FLAME GPU simulations make use of a state-based representation of agent dynamics to simplify development and enable

key performance optimisations on behalf of the modeller. Fig. 2 shows the state machine for the vehicular agents used to

implement this model; it represents the logical process followed by each agent at each iteration of the simulation, showing

the relationship between agent states, functions and message-lists. Agents enter the state machine for the current iteration

in one of the possible initial states. Agent functions allow agents to transition from one state to another, with the order of

these functions controlled by execution layers . Communication between agents is in the form of message lists , which are used

to highlight dependencies in the state-based representation. The use of indirect communication prevents race conditions in

the parallel processing environment. Agent functions can output messages to the relevant message list data structure, which

is then used as input by a different agent function. The message lists are accessed using specialised message access patterns

to reduce the performance impact of message list parsing, a new graph-based communication pattern is used for agent to

agent communication, as described in Section 4 . 

For instance, in the first execution layer, the agents in each of the three possible states for vehicles output a message to a

message list. Those message lists are then iterated by the different agent states in layers two and three, dependant upon the

agent state. Vehicle agents which are deemed to have left the simulation are identified as dead and subsequently excluded

from further iterations of the simulation. 

The Queued state of Car agents is used to store the virtual queue of vehicles entering the simulation. New agents gener-

ated at each iteration of the simulation are initially places in the Queued state. The series of agent functions which use this
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state implement the constant or exponential vehicle arrival algorithm from Aimsun [15] , ensuring that the same conditions

required for an agent to be inserted into the simulation such as order of arrival and sufficient headway are met. 

The Road and Junction states are used to represent vehicles which use the two graphs used to implement the road net-

work data structure, with vehicles in the Road state exhibiting primarily the car following behavioural model, and interaction

with stop signs. Agents in the Junction state execute the gap acceptance give-way model and yellow-box model used for this

study, and subsequently if movement is allowed the vehicle will use the car following model to traverse the junction. 

Additional to the state machine for cars, a linear state machine exists for detector agents. Detector Agents represent real-

world vehicle detection systems such as induction loops placed within road network infrastructure. These detection loops

are used to measure traffic conditions, the output of which can be used for calibration, validation or interactive behaviour.

The detector state machine is linear, consisting of four agent functions in separate layers. These functions each iterate one

of the message lists produced by the vehicle agents, and capture any statistics relevant to the individual detector for the

current interaction. 

The transport network is represented using a pair of graphs, represented using the Compressed Sparse Row (CSR) data

structure. The first graph represents the roads of the transport network as edges, and the junctions as vertices. The second

graph models the connections between roads within each junction. Separate graphs are used to simplify the specification of

the road network. 

4. Network communication 

Within FLAME GPU, communication between agents uses message-list traversal algorithms providing specialised access

patterns to enable efficient, indirect, data-parallel agent communication. The algorithms and data-structures used can have

considerable impact on the performance of a model, and the development of specialised high-performance access to mes-

sages is vital to achieve high levels of performance for large-scale ABMs. This section describes a new specialisation for

graph-based messages within FLAME GPU, which enables high performance for network-based communication patterns. The

performance of the communication strategy is evaluated compared to existing FLAME GPU communication patterns. 

4.1. FLAME GPU message-based communication 

The communication method used in a FLAME GPU model can be specialised to offer increased levels of performance for

different communication patterns. Existing techniques for message-based communication available within FLAME GPU allow

global communication (all-to-all) or partitioned communication based on spatial locality [6] . All-to-all message specialisation

enables indirect global communication between agents, while spatially partitioned messaging restricts the communication to

the immediate region surrounding the agent in 2D or 3D space. These communication patterns are non-optimal for several

core vehicle models for road network microsimulation, where the communication between agents is restricted to the road

network infrastructure. Typically models such as car following and lane changing models only require communication with

other agents on the same road section or directly connected road sections within the transport network. Other models

such as give way modelling for junctions may require communication within the junction and with other vehicles on the

connected road sections. In these cases both all-to-all or spatially partitioned communication strategies can result in the

iteration of large message lists to find the relevant message or messages. Spatially partitioned communication would offer

an improvement over all-to-all communication, however in areas with a large number of agents, or in dense sections of

road network such as urban city centres, the number of messages each agent must iterate can still be significant for even

relatively small communication radii, resulting in a negative impact on performance [35] . 

4.2. Graph-based messaging 

Ideally communication should only need to occur within the constraints of the network, which is typically represented

using a graph or series of graphs. For the purposes of this benchmark model, which consists of single lane sections of roads

and stop-sign-based, yellow-box junctions, communication is limited to the current road network edge, the next road net-

work edge, or the current junction (graph vertex). Existing techniques for graph-based communication exist within parallel

and distributed agent based frameworks such as D-Mason and Repast HPC, however these strategies use individual agents

as the vertices of the graph and the relationships between agents are the edges of the graph [29,37] . 

Individual agents are coupled with the graph, maintaining their location within the graph at all times. For a network-

based communication strategy, the messages are also coupled to the underlying graph. When an agent outputs a message,

it must include the edge or vertex for which the message is coupled. The message list of all messages can then be sorted by

the edge or vertex to align memory and a sparse data structure is constructed to enable access to relevant messages of the

data structure. The data-structure construction is similar to that used for fixed radius communication [32] commonly applied

to many particle-based GPU simulations [38] , which identifies the position within the message list of the first message for

each edge or vertex in the network, and the number of messages for each edge or vertex. The sorting of the message list and

construction of the message delimiting data structure can be performed efficiently using a counting sort . High performance

implementation of counting sort is reliant upon GPU fundamentals like cache-aware atomic operations. As the number of

edges or vertices within the network are known, the counting sort constructs a histogram of the messages for each edge or
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Fig. 3. The effects of alternate FLAME GPU communication strategies on car following models is shown for a section of a grid-based road network, for a 

single agent represented in white. All-to-all communication results in 42 messages being parsed by the single agent. Spatially partitioned messaging results 

in the 18 messages from the agents in the blue shaded region, while the graph-based communication strategy results in only 5 messages from the orange 

bordered agents being processed. The spatially partitioned radius used for this illustration would be insufficient for accurate modelling, and is only used 

for illustrative purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vertex within the network. A scan can then be performed on the histogram to provide the output position for the messages,

allowing messages to be sorted in parallel. The histogram which is constructed during the sorting algorithm can also be

used as a part of the data structure for message access. The network-based communication strategy is general enough to be

applied to any GPU multi-agent simulation, where communication along a graph-based data structure is required, such as

social network modelling. 

4.3. Application to road network microsimulation 

Fig. 3 illustrates the impact of the FLAME GPU message specialisation techniques on vehicle behavioural models such

as the car following model. The figure shows a portion of a grid-based transport network, with grey rectangles used to

represent road sections and coloured triangles to represent individual vehicle agents. The colour of the triangle shows the

messages processed by a single agent, shown in white in cell 5, for each message partitioning technique. Using all-to-all

messaging, the agent will process a total of 42 messages, from each of the agents in the simulated region. Using spatially

partitioned messaging the target agent will process messages from the 18 agents in the shaded region of 9 cells, with

agents highlighted in blue. For the proposed graph-based communication strategy, the target agent will only process a

list of 5 messages, for the vehicles on the same section of road as the target agent. These agents are highlighted with

orange borders. This reduction in the number of messages parsed by individual vehicles leads to considerable performance

improvements for this type of model, with even greater reductions in the number of messages to be processed for denser

areas of transport networks when using the graph-based communication strategy. 
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Fig. 4. The average time taken for vehicle agents to output road messages are shown for three communication strategies and different scales of model. 

This shows the overhead cost of each communication specialisation. The application was benchmarked on a Nvidia Titan X (Pascal). 

Fig. 5. The average time taken for vehicle agents to execute the GPU kernel which includes the car following model is shown for three communication 

strategies and different scales of model. This kernel iterates all messages in the appropriate list to find the lead vehicle. Graph-based communication shows 

the highest level of performance. The application was benchmarked on a Nvidia Titan X (Pascal). 

 

 

 

 

 

 

 

 

 

 

4.4. Performance impact of the communication strategy on the car following model 

To evaluate the performance improvement provided by graph-based communication for agent-based road network mod-

els, a set of road networks were benchmarked using three communication strategies. The message list output by vehicles

travelling along the road sections within the road network were specialised using all-to-all, spatially partitioned and graph-

based messaging. The performance of the relevant GPU kernels is extracted and compared. 

Fig. 4 shows the average performance of the process for outputting the messages and constructing the relevant data

structures. This shows that all-to-all communication has the smallest message-output overhead cost, whilst graph-based

communication has the highest overhead-cost. Fig. 5 shows the average performance of the GPU kernel which implements

Gipps’ car following model for several sizes of procedurally generated road network. The figure shows that graph-based com-

munication provides greater levels of performance than both spatially partitioned messaging and all-to-all communication.

The combined effect on performance from graph-based communication provides a significant improvement on performance,

as the additional performance provided by the reduction in message-list iteration far outweighs the overhead cost of mes-

sage output and data structure construction. 
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Table 1 

Computational hardware used for benchmarking Aimsun and FLAME GPU simulations. 

Identifier CPU CPU cores CPU frequency Memory GPU 

System #1 Intel core i7 4770k 4 3.5 GHz 16GB DDR3 NVIDIA Titan X (Pascal) (TCC) & 

NVIDIA GeForce GTX 1080 

(WDDM) 

System #2 2 × Intel Xeon E5 2698 v4 40 (20) 2.20 GHz 512GB DDR4 8 × NVIDIA Tesla P100 (linux) 

Table 2 

Parameters used for validation and all benchmark simulations. 

Parameter name Grid size experiment Input flow experiment Units 

Time step 0.8 0.8 seconds 

Reaction time 0.8 0.8 seconds 

Stop reaction time 1.2 1.2 seconds 

Detector period 600 600 seconds 

Input flow scale factor 1.0 1.0 % 

Seed Random value Random value Long integer 

Section length 10 0 0 10 0 0 m 

Junction length 10 10 m 

Grid size 2–576 64, 128 & 256 

Input flow 600 100–1000 

Detectors per section 3 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Experimental results 

This section summarises the cross-validation of the FLAME GPU based simulation against the existing multi-core CPU

road network microsimulation tool Aimsun. It provides details of the procedurally generated Manhattan style grid road

network used for performance benchmarking and two sets of benchmark experiments are discussed. 

5.1. Validation 

For the performance evaluation of the two simulators to be comparable it is important that software produces compara-

ble results. As the complex system is stochastic the results will need to be statistically equivalent. The FLAME GPU imple-

mentation was cross-validated against Aimsun 8.1 for a series of models to validate model behaviours, such as the vehicle

arrival algorithm [15] , car following [15] and stop sign interaction [15] . Additionally the overall behaviours and population

sizes for the procedurally generated road network are evaluated. The same set of parameters are used for both simulators.

The set of validation models showed that vehicle parameter sampling, the vehicle arrival algorithm, the car following model

and the junction models were all correctly implemented, with no deviance observed. The procedurally generated networks

showed statistically similar population sizes and turning behaviours over an average of multiple replications. 

5.2. Benchmarking methodology 

Multiple configurations of processing hardware were used to observe the performance impact of the hardware on per-

formance. Table 1 describes the two hardware systems used for these experiments. The Aimsun benchmark models were

executed using System #1, a desktop computer. FLAME GPU simulations were carried out using a range of GPUs in System

#1, and also on an NVIDIA DGX-1 (System #2), a state-of-the-art multi-GPU server containing NVIDIA Tesla P100 acceler-

ators. All simulations were executed using a single CPU and single GPU and the same parameters ( Table 2 ) were used for

both simulations of one hour of vehicle demand. 

5.3. Procedurally generated benchmark road network 

To benchmark the scalability of performance of both simulators for different sizes of road network, a procedurally gener-

ated artificial road network was designed, in the style of a Manhattan grid road network. The artificial network is a 2D grid

of single-lane one-way roads, where adjacent rows and columns of the road network are in alternate directions. For each

yellow-box junction in the network there are four possible turning sections, each preceded by a stop sign. Fig. 6 shows the

arrangement of road sections and junctions, and also the arrangement of turns from one section of road to another within a

junction. Three detectors were placed on each section of road. The numbers of sections, junctions and turns in the grid can

be calculated based on the network grid size parameter. A network with grid size ( G ) contains G 

2 junctions, 2 G (G + 1) road

sections, 4 G 

2 turning sections, 2 G entrances and 6 G (G + 1) detectors. Table 3 details the parameters involved in network

generation. 
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Fig. 6. A 5 × 5 example of the procedurally-generated artificial grid network, showing the overall structure of the network and the arrangement of turning 

sections within a junction. The network can be scaled to any size, with networks of up to 576 × 576 used during benchmarking. 

Table 3 

Parameters for generation of the procedurally generated Manhattan-style grid road network. 

Parameter Name Description 

Grid size ( G ) The number of junctions for each row and column of the grid 

Section length The length of each road section between junctions in metres 

Junction length The length or diameter of junctions within the network 

Exit turn proportion For junctions with 1 exit destination edge, the proportion of vehicles turning onto the exit is reduced to 

maintain higher vehicle populations within the simulated road network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Network scale experiment 

To evaluate the performance impact of total problem scale, the Grid Size of the procedurally generated network was var-

ied from 2 to 576. Aimsun simulations were only carried out up to a grid size of 512 due to the time taken for a single

simulation to complete. As the grid size is increased, the size of the transport network increases, the number of detectors

agents in the simulation increases and the vehicle population size increases. Fig. 7 show the average simulation time for 3

repetitions of the simulation. This shows that for larger scale problems the GPU accelerated FLAME GPU simulation outper-

forms Aimsun 8.1, by up to 37.2 × using System #1 and 43.8 × using System #2 . The Real time ratio (RTR) of a simulation is

the ratio of execution run-time to simulated time. The largest simulation executed in FLAME GPU of 576,0 0 0 vehicles and

1,994,112 detectors shows a RTR of 10.5 × using a NVIDIA GeForce GTX 1080 in system #1 , 16.6 × using system #1 NVIDIA

Titan X (Pascal) and 25.5 × using the NVIDIA Tesla P100 in system #2 . For very small simulations, with grid size 8 and below

containing less than 7396 concurrent vehicles, Aimsun 8.1 shows greater levels of performance than FLAME GPU. 

5.5. Input flow experiment 

Demand on transportation networks is increasing globally [39] . To evaluate the impact of this on microscopic transport

network simulation, the demand on the transport network was varied for several fixed sizes of network. Due to the charac-

teristics of our procedurally generated transport network, the vehicle population size increases non-linearly, as vehicles can

only enter from the edges of the network. The model parameters used are defined in Table 2 . 

Figs. 8–10 show the average simulation time for 3 repetitions of each simulation. The simulations for a grid size of 64,

FLAME GPU shows average speed-ups of between 3.8 × and 18.9 × compared to Aimsun 8.1. Speed-ups of between 9.3 ×
and 36.6 × are shown for a grid size of 128, and between 8.1 × and 75.3 × for a grid size of 256. 

5.5.1. Discussion of application benchmark results 

The simulation results show that the FLAME GPU implementation shows significantly higher levels of performance and

scalability for all but very small simulations. Small models with low population sizes do not expose high levels of par-

allelism, limiting the performance of FLAME GPU, as the highly-parallel GPU is underutilised. That means there are not

enough threads to occupy the GPUs many processing cores. As the population of vehicles and detectors increases the level
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Fig. 7. Total simulation performance as the total scale of the simulation is increased, for each simulator. Values shown are the average from 3 repetitions. 

A logarithmic scale is used to improve visibility of similar total simulation times. 

Fig. 8. Total simulation time against input flow for a procedurally generated road network of grid size 64. Run times shown are the average from 3 

repetitions. A logarithmic scale is used. 

 

 

 

 

 

 

 

 

 

 

 

of parallelism and therefore GPU utilisation increases. Additionally, GPU acceleration has associated overhead costs. Data

and commands must be transferred from the host computer to the GPU on which code is executed. This is a relatively slow

process which must be minimised where possible to achieve high levels of performance. Larger models quickly amortize

this cost through performance gains. 

The performance of individual simulation iterations, shown in Fig. 11 shows that per-iteration simulation time increases

as the simulation progresses. This is due to the increasing number of vehicles within the simulation. The rate of increase of

per-iteration simulation time grows at a higher rate within Aimsun than FLAME GPU, demonstrating the increased scalability

of the GPU accelerated simulation with respect to population size. For both Aimsun and FLAME GPU the time to simulate

a single iteration peaks every 750 iterations. This can be accounted for by the detector and statistical summary data being

processed and written out to disk every 600 simulated seconds (with a simulation step of 0.8 s). 

Each GPU used within the FLAME GPU benchmarks showed varying levels of performance. This can be attributed to the

varying hardware configurations, shown in Table 4 , and also the relevant driver model in use (see Table 1 ). For smaller

grid size simulations and smaller input flow values, all GPUs showed similar performance. For larger scale simulations with
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Fig. 9. Total simulation time against input flow for a procedurally generated road network of grid size 128. Run times shown are the average from 3 

repetitions. A logarithmic scale is used. 

Fig. 10. Total simulation time against input flow for a procedurally generated road network of grid size 256. Run times shown are the average from 3 

repetitions. A logarithmic scale is used. 

Table 4 

GPU specifications [40–42] . 

GPU Core count Core frequency (MHz) Memory Memory bandwidth (GB/s) 

NVIDIA Geforce GTX 1080 2560 1607 (1733) 8GB GDDR5X 320 

NVIDIA Titan X (Pascal) 3584 1417 (1531) 12GB GDDR5X 480 

NVIDIA Tesla P100 (SXM2) 3584 1328 (1480) 16GB CoWoS HBM2 732 

 

 

 

 

 

high populations of agents, the NVIDIA Tesla P100 in System #2 showed the greatest levels of performance. This can be

attributed to the larger number of processing cores, and the greater levels of memory bandwidth provided by the HBM2

memory, compared to GDDR5X and GDDR5. The CPUs in System #1 & #2 also differ, however the majority of processing

time within the application is executed on the GPU. 

6. Conclusion and future work 

The GPU accelerated agent based implementation of a single-lane road network microscopic simulation demonstrates

considerable performance advantages and improved performance scaling behaviour when compared to an equivalent multi-
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Fig. 11. Per-Iteration simulation time for a model with grid size 128 and input flow 500 vehicles per hour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

core CPU based simulation software tool commonly used within the transport planning industry. To ensure that simulator

behaviour is comparable and enable simulator performance to be compared the FLAME GPU based simulation was cross

validated against Aimsun using a series of models. As this is a stochastic model and additional features are present in

Aimsun which could not be fully mitigated the results were non-exact but were statistically similar. The largest simulation

executed using both simulators, a one hour simulation containing up to 512,0 0 0 vehicles and 1,575,936 detectors, showed

a speed-up of 43.8 × for the GPU accelerated simulation, with a real-time-ratio of 28.9. The GPU accelerated simulation

also demonstrated greatly improved performance scaling behaviour, with the largest simulation of up to 576,0 0 0 vehicles

and 1,994,112 detectors completing in 49.5% of the time of a much smaller (up to 64,0 0 0 vehicles and 24,960 detectors)

simulation in Aimsun 8.1. 

Critical to the performance of the GPU accelerated agent based microsimulation was the use of data parallel algorithms

and data structures employed by FLAME GPU for agent management, abstracting the complexities of the GPU programming

model away from the modeller. The proposed graph-based communication strategy for data-parallel agents is also vitally

important, as existing methods for agent communication within FLAME GPU were non-optimal, limiting simulation perfor-

mance. The proposed graph based methods also have more general implications, as other models such as social interaction

models rely on graph-based communication. The increased memory-bandwidth of the NVIDIA Tesla P100 GPU, compared to

the NVIDIA Titan X (Pascal) and NVIDIA GeForce GTX 1080 proved to have a dramatic increase on the performance of the

application, as the application is memory bound. 

6.1. Future work 

Our FLAME GPU based simulator currently supports a single type of junction to support the benchmark model used. To

enable this software to be used for real-world studies of transport systems, additional features must be implemented, such

as the inclusion of multiple lanes, traffic signals and alternative types of junction. The impact of these additional behaviours

would require further performance evaluation using procedurally generated and real-world transport networks. 

The proposed graph-based communication strategy is currently limited to communication along the current edge, or

around a single vertex within the graph. Although this can be used to achieve significant performance improvements the

strategy is to offer high performance communication for multiple-edges for graph exploration. This would aid in in the wider

applicability of the general communication strategy and offer performance improvements to other simulation domains. Fur-

thermore, the existing agent based simulation uses multiple graphs to represent the transport network, combining these

graphs into a single graph would simplify the development of additional models, and allow a more-generalised communi-

cation strategy to yield further performance increases. 

Lastly the benchmark model used in this study imposed limits upon the density of vehicles within the network, as a

result of the non linear relationship between vehicle input edges and the total edge count as the network grid size is in-

creased. Future studies into the performance of simulators for higher-density networks (such as urban city centres) will

provide further insight into the benefits of many-core processing architectures for agent based road network microsimula-

tion, but would also require the proposed implementation of a broader range of features. 
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