This is a repository copy of Greenhouse gas emissions from the energy crop oilseed rape (Brassica napus); the role of photosynthetically active radiation in diurnal N2O flux variation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/125346/

Version: Accepted Version

Article:
Keane, James Benjamin, Ineson, Philip, Vallack, Harry William orcid.org/0000-0002-1917-564X et al. (7 more authors) (2017) Greenhouse gas emissions from the energy crop oilseed rape (Brassica napus); the role of photosynthetically active radiation in diurnal N2O flux variation. Global Change Biology Bioenergy. pp. 1-38. ISSN 1757-1707

https://doi.org/10.1111/gcbb.12491

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Title: Greenhouse gas emissions from the energy crop oilseed rape (*Brassica napus*); the role of photosynthetically active radiation in diurnal N$_2$O flux variation.

Running title: Diel N$_2$O flux variation driven by PAR in OSR

J. BEN KEANE1, PHIL INESON2, HARRY W. VALLACK3, EMANUEL BLEI4, MARK BENTLEY2, STEVE HOWARTH2, NIALL P. MCNAMARA5, REBECCA L. ROWE5, MAT WILLIAMS4 & SYLVIA TOET1.

1. Environment Department, Wentworth Way, University of York, Heslington, York, YO10 5NG.
2. Department of Biology, Wentworth Way, University of York, Heslington, York, YO10 5DD.
3. Stockholm Environment Institute, Environment Department, Wentworth Way, University of York, Heslington, York, YO10 5NG.
4. University of Edinburgh, Crew Building, Room 207, Alexander Crum Brown Road, King’s Buildings Campus, Edinburgh EH9 3FF.
5. Centre for Ecology & Hydrology, Library Avenue, Lancaster Environment Centre, Lancaster, Bailrigg LA1 4AP.

Corresponding author: Ben Keane, telephone +44(0) 1904 322999, fax +44(0) 1904 322998, email ben.keane@york.ac.uk

Keywords: Oilseed rape, biodiesel, nitrous oxide, nitrogen, carbon dioxide, methane, automatic chamber, greenhouse gas, nitrification, denitrification.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/gcbb.12491

This article is protected by copyright. All rights reserved.
Abstract

Oilseed rape (OSR, *Brassica napus* L.) is an important feedstock for biodiesel, hence carbon dioxide (CO₂), methane (CH₄) and particularly fertiliser-derived nitrous oxide (N₂O) emissions during cultivation must be quantified to assess putative greenhouse gas (GHG) savings, thus creating an urgent and increasing need for such data.

Substrates of nitrification (ammonium (NH₄)) and denitrification (nitrate (NO₃)), the predominant N₂O production pathways, were supplied separately and in combination to OSR in a UK field trial aiming to: i produce an accurate GHG budget of fertiliser application; ii characterise short to medium-term variation in GHG fluxes; iii establish the processes driving N₂O emission. Three treatments were applied twice, one week apart: ammonium nitrate fertiliser (NH₄NO₃, 69 kg-N ha⁻¹) mimicking the farm management, ammonium chloride (NH₄Cl, 34.4 kg-N ha⁻¹) and sodium nitrate (NaNO₃, 34.6 kg-N ha⁻¹). We deployed SkyLine2D for the very first time, a novel automated chamber system to measure CO₂, CH₄ and N₂O fluxes at unprecedented high temporal and spatial resolution from OSR.

During three weeks following the fertiliser application, CH₄ fluxes were negligible, but all treatments were a net sink for CO₂ (*ca.* 100 g CO₂ m⁻²). Cumulative N₂O emissions (*ca.* 120 g CO₂-eq m⁻²) from NH₄NO₃ were significantly greater (*p* < 0.04) than from NaNO₃ (*ca.* 80 g CO₂-eq m⁻²), but did not differ from NH₄Cl (*ca.* 100 g CO₂-eq m⁻²), and reduced the carbon-sink of photosynthesis so that OSR was a net GHG source in the fertiliser treatment. Diurnal variation in N₂O emissions, peaking in the afternoon, was more strongly associated with photosynthetically active radiation (PAR) than temperature. This suggests that the supply of carbon (C) from photosynthate may have been the key driver of the observed diurnal pattern in N₂O emission and thus should be considered in future process-based models of GHG emissions.
Introduction

Carbon dioxide (CO$_2$) has risen from pre-industrial levels of 280 ppm (IPCC 2007) to around 410 ppm and is widely acknowledged to be driving anthropogenic climate change (IPCC, 2014; Carlton et al., 2015). Other biogenic greenhouse gases (GHGs), nitrous oxide (N$_2$O) and methane (CH$_4$), having global warming potentials over 100 years (GWP) of 298 and 34 times that of CO$_2$ (Myrhe et al., 2013) have also increased from pre-industrial levels by more than 50 and 250% respectively (Conrad, 2009; Myrhe et al., 2013). As a consequence, some of the most sensible and emerging strategies for reducing national GHG burdens specifically tackle these more potent GHG gases. However, before mitigation strategies can be implemented, a concerted effort to reduce the huge uncertainty (± 37%) in estimates of N$_2$O emissions (Committee on Climate Change, 2017) is needed.

Generally, during growth, crops in Europe sequester carbon (C) from the atmosphere (Schulze et al., 2010), and European agricultural land is also a net sink for CH$_4$ (Ciais et al., 2010). In contrast, one of the biggest global sources of N$_2$O is agriculture (Reay et al., 2012) and, in 2013, agricultural N$_2$O contributed approximately 8% of the UK’s annual net GHG emissions, more than half of the emissions from transport and all industrial emissions (DECC, 2015). Accounting for more than 30 Mt CO$_2$ equivalents per year, N$_2$O is the single biggest contributor to UK agricultural GHG emissions (DEFRA, 2014a), and arable farming, as a result of the application of fertilisers, is an especially large emitter of N$_2$O.

Oilseed rape (OSR, Brassica napus L.) was grown on 36 million ha in 2014 (FAO 2017), 6.5 million ha of which are found in continental Europe, a greater area than used for potatoes, sugar beet, pulses and even maize (http://ec.europa.eu). In the UK, 11% of available agricultural land (675,000 ha) was dedicated to its cultivation in 2013 (DEFRA, 2014b) and it is typically grown in rotation with wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.). Whereas in the UK rapeseed oil is used mainly for food products, in Europe OSR is the most widely-used feedstock for biodiesel (de Vries et al., 2014), where 6 Mt (ca. 60%) of rape oil is used for this purpose (AHDB 2017a). Since GHG mitigation
is a key aim of using OSR for energy production, it is essential that accurate accounting of all its associated GHG emissions is prepared to assess the putative GHG savings. This requirement will be particularly exigent when the EU’s Renewable Energy Directive, setting a 50% GHG reduction target for biofuels compared to fossil fuels, comes into action in 2018 (EU, 2009), whilst the default GHG saving from OSR is just 38% (Gerasimchuk, 2013). This shortfall might be expected to reduce the demand for OSR diesel, but 2016 saw record volumes produced, and industry analysts predict that whilst the OSR biodiesel-fraction of total biofuel production must drop, the absolute volume required will remain unchanged since the total output of bioenergy production in the EU must increase to meet the 2020 target of 10% (AHDB 2017b).

Measurements from soil under OSR have shown considerable variation in the magnitude of N\textsubscript{2}O fluxes, ranging from < 40 µg m-2 h-1 (Barton et al., 2010) to over 2000 µg m-2 h-1 (Drewer et al., 2012). Studies of GHG fluxes from OSR (Hellebrand et al., 2003; Barton et al., 2010; Drewer et al., 2012; Asgedom et al., 2014) have generally relied on manual chambers, deployed with sampling frequencies of once a month up to a maximum of five times a week, focussed around fertilisation events. Due to the size of OSR, chambers rarely include the vegetation, but where they do (Jeuffroy et al., 2013), the use of opaque chambers dictates that reported CO\textsubscript{2} fluxes are ecosystem respiration and not net ecosystem exchange (NEE); with the exception of a single study in Germany (Kutsch et al., 2010), there is an alarming scarcity of NEE data for this important crop. The scarcity and low temporal resolution of appropriate data hinders our understanding of the magnitude of GHG source-sink dynamics and the driving processes associated with OSR.

Knowledge of the controlling processes of GHG fluxes facilitates design of GHG mitigation strategies, and while the processes controlling ecosystem CO\textsubscript{2} (Reay & Grace, 2007) and CH\textsubscript{4} (Le Mer & Roger, 2001) fluxes are well understood, those controlling N\textsubscript{2}O fluxes are less clear. Of several microbial N\textsubscript{2}O production pathways, nitrification and denitrification are considered the most important in soils (Smith, 2017). The former is the aerobic oxidation of ammonium (NH\textsubscript{4}+) to nitrate (NO\textsubscript{3}-), whilst the
latter is an anaerobic sequence of heterotrophic reactions through which NO$_3^-$ is reduced to dinitrogen gas (N$_2$) via N$_2$O, and requires a carbon (C) source (Wrage et al., 2001). Nitrogen fertiliser is applied in many forms; since soils differ in their capacity for nitrification or denitrification (Bateman & Baggs, 2005), fertiliser type can affect consequential N$_2$O fluxes (Dobbie & Smith, 2003a; Zhang et al., 2014; Zhou et al., 2014). Ultimately both nitrification and denitrification depend on nitrogen (N) substrate availability (Dalal et al., 2003), but multiple pathways and other contributing factors, soil temperature, moisture, pH (nitrification) (Parton et al., 1996), soil organic carbon availability (dentrification), oxygen (O$_2$) concentration, water-filled pore space (WFPS) (Davidson et al., 1993) and soil respiration (Castaldi, 2000) (denitrification) ensure that N$_2$O fluxes are notoriously difficult to predict, especially at fine temporal resolution (Fitton et al., 2014b).

Despite this lack of understanding of variation in N$_2$O emissions, rudimentary management guidelines already exist regarding the timing of fertiliser application (Environment Agency, 2015). These are designed to prevent N losses during rain through leaching and N$_2$O emissions but could benefit markedly from a fuller understanding of the processes governing N$_2$O fluxes to reduce future emissions (Rees et al., 2013). Currently, IPCC tier 1 emissions factors (EF) guidance states that ca. 1% of applied N will be lost as N$_2$O over the course of the following year (De Klein et al., 2006), but the accuracy of this method has been called into question, particularly for Europe (Gerber et al., 2016).

Oilseed rape typically receives between 100 and 200 kg N ha$^{-1}$ in fertiliser over the course of its cultivation (DEFRA, 2010), therefore understanding the response of OSR to N fertilisation, and developing the ability to reduce N$_2$O emissions from this crop would constitute a substantial saving in the UK’s agricultural GHG footprint. In natural ecosystems, given the appropriate combination of conditions, as much as 20% of the total annual N$_2$O flux may be emitted in just 48 hours (Mummey et al., 1997). In agricultural systems N$_2$O emissions have been seen to increase rapidly in the weeks following N fertiliser (Ambus et al., 2010), sometimes by two or three orders of magnitude (e.g. Dobbie & Smith, 2003; Liu et al., 2005), and emissions have also been shown to vary up to 200% on
a diurnal scale (Shurpali et al., 2016). Since both sources and sinks of this trace gas fluxes can exist within a landscape, fluxes can be spatially and temporally heterogeneous (Chadwick et al., 2014; Kravchenko & Robertson, 2015). Without continuous measurements of N\textsubscript{2}O flux at an appropriate spatial resolution, the potential for failure in detecting significant emission events persists.

Eddy covariance (EC) can measure landscape scale GHG fluxes at high frequency, but cannot resolve measurements to the smaller plot-scale. This lack of fine spatial resolution severely hinders the ability of an investigator to conduct replicated manipulation experiments, which are vital for advancing understanding of the mechanistic controls of net GHG flux and validating mitigation strategies. In contrast, chambers are ideal for measuring at the small spatial scale, but the frequency of data produced using manual chambers is limited by the availability of personnel, with the associated laboratory analysis of gas samples being both time consuming and unsuitable for real-time monitoring. Automation, whilst expensive, increases the frequency of measurements but chambers are frequently opaque to prevent over-heating and are usually too small to accommodate any vegetation taller than a few centimetres. We deployed a novel automated system (SkyLine2D) incorporating a single, transparent, mobile chamber, suspended from an aerial rope transect, enabling reliable repeated near-continuous measurement of GHG fluxes from pre-designated measurement positions. By circulating the chamber headspace through a series of analysers, the system was capable of delivering a full GHG budget for CO\textsubscript{2}, CH\textsubscript{4} and N\textsubscript{2}O from an intact OSR crop at relatively low cost.

The objectives of this study were to provide an accurate GHG budget from OSR following fertiliser application, to characterise the short to medium-term variation in GHG fluxes and to establish the processes driving N\textsubscript{2}O production from OSR following application of N fertiliser. Three mineral N treatments (ammonium nitrate (NH\textsubscript{4}NO\textsubscript{3}), ammonium chloride (NH\textsubscript{4}Cl) and sodium nitrate (NaNO\textsubscript{3})) were applied to test the hypothesis that GHG fluxes would significantly differ depending upon the form of N applied to the crop.
Materials and methods

Study site

The study was conducted on a 7 ha field which was part of a working farm in the east of the United Kingdom. The field had been drilled with OSR in November 2013, and inorganic fertiliser was applied three times between 1st March and 1st April 2013. The field had been planted with barley (*Hordeum vulgare*) and wheat (*Triticum aestivum*) in rotation and the crop immediately preceding the OSR had been spring barley. The soil type was the Beccles 1 association (Drewer et al., 2012) with fine silt over clay and the field was used to produce annual rotation arable crops. Bulk density at the site was measured as $1.33 \pm 0.20 \, \text{g cm}^{-3}$ (0-10 cm depth) and $1.49 \pm 0.14 \, \text{g cm}^{-3}$ (10-20 cm depth).

Experimental design

All measurements presented were made between 24th March and 14th April 2014 since this is the period of fastest crop growth and hence the time the farmer applied fertiliser. During the study the crop height increased from < 10 cm to nearly 1 m; the main flower buds were present but closed by 31st March (GS5.4), began to open by 2nd April (GS6.0) and the crop was in full flower by 13th April (GS6.5). Prior to this study, the first N fertiliser application to the crop (67.5 kg N ha$^{-1}$) occurred on 5th March, with two subsequent mineral N applications of 68.9 kg N ha$^{-1}$ during the experiment on 24th March and 1st April. Background N$_2$O fluxes were measured on 18th March from the experimental transect and shown to be $144 \pm 50 \, \mu \text{g m}^{-2} \, \text{h}^{-1}$. The experimental applications mimicked the NH$_4$NO$_3$ fertiliser (‘FER’) treatment on five replicate plots (within 40 cm diameter collars), with additional ammonium-only (‘NH$_4$’) as NH$_4$Cl and nitrate-only (‘NO$_3$’), as NaNO$_3$ treatments. The treatments were applied in pellet (NH$_4$NO$_3$) or powder form to each collar on a pro rata basis so that FER collars received the same N dose (68.9 kg-N ha$^{-1}$) as the rest of the field whilst the NH$_4$ and NO$_3$ treatments received the equivalent dose as the respective component parts of the fertiliser (i.e. NH$_4$: 34.6 kg-N ha$^{-1}$; NO$_3$: 34.4 kg-N ha$^{-1}$). Care was taken to ensure the treatments were applied evenly.
within the area of the collars, to mimic the action of the spreader. Nitrogen additions were applied within one hour of the farmer’s fertiliser application to the field, during which time the measurement collars were covered with plastic sheeting to avoid any stray inputs within the experimental collars.

Greenhouse gas flux measurements

The SkyLine2D automated chamber system was developed in-house at the University of York. A single, cylindrical chamber was suspended from a motorised trolley, mounted on parallel horizontal ropes, 1 m apart and held above the crop by 2.5 m tall aluminium trellis arches (Fig. 1), placed 24 metres apart, allowing a trolley to repeatedly traverse a pre-selected transect across the crop. An indexing system identified designated ‘stops’ at which the chamber automatically lowered to conduct a measurement. Each landing base (collar) for the chamber consisted of a flat, horizontal circular flange of expanded polyvinyl chloride (PVC) with an inner diameter of 38 cm (Error! Reference source not found.) with a perpendicular PVC collar which was inserted ca. 2 cm below the soil surface in order to achieve a seal. Upon completion of the programmed measurement period at a collar, the chamber automatically lifted and the trolley moved to the next ‘stop’. The sequence in which collars were sampled was programmable, allowing for randomisation or exclusion of specific collars, if required. In addition to automated operation, the system could be controlled manually, allowing an operator to move the trolley between points, and drop and raise the chamber, as necessary.

The SkyLine2D chamber was cylindrical and made of clear Perspex and a size (internal diameter = 40.74 cm, height = 62 cm, volume = 80,820 cm3, Fig. 2) designed to completely accommodate the mature OSR crop over which the GHG flux measurements were made. Attention had to be given to ensuring that the growing crop was cleanly enclosed within the dropping chamber as the crop heightened, and this was achieved using loose stringing of the crop within the footprint of the base ring as it grew. The chamber was designed as a non-steady state dynamic chamber, with headspace.
gas being circulated from the chamber through analytical equipment and returned through an
umbilical via polyethylene tubing (Bev-A-Line IV, Cole-Parmer, London UK; internal diameter 3 mm,
length 7 m). The aperture for the sampling tube was situated 10 cm from the top of the chamber
(approximately 60 cm above the soil surface) and the gas return tube entered 5 cm above the
bottom lip of the chamber (Error! Reference source not found.), avoiding sampling from directly
above the soil surface, yet assisting in the mixing of the headspace gas. The base of the chamber was
fitted with an ethylene propylene diene monomer (EPDM) rubber seal (Top Bubble Gasket, part no.
490750, Essentra Components, Milton Keynes UK) which formed a gas-tight closure when dropped
on the flange of the landing base (Error! Reference source not found.), with a pressure sensor inside
the seal being activated when the chamber was fully closed. Guides around the chamber bases
ensured the chamber landed accurately, and to minimise pressure differences associated with
closing a chamber over the soil, a vent was incorporated into the design of the chamber, after Xu et
al. (2006). The system included a safety feature which would halt operation at high wind speeds; this
threshold could be adjusted and was determined empirically through observation of the system’s
performance.

Greenhouse gas flux analysis

A Licor infrared gas analyser (IRGA: LI-8100, Licor, Lincoln NE USA) was housed in the motorised
trolley to measure CO₂ concentrations and also to control the SkyLine2D chamber, acting in place of
a Licor long-term automated chamber (LI-8100-101, Licor, Lincoln NE USA). The Licor software was
used to calculate linear CO₂ fluxes, adjusted for temperature, chamber volume and enclosed soil
area, following Healy et al. (1996). In order to also measure the fluxes of N₂O and CH₄, the exhaust
from the IRGA was intercepted through T-pieces and fed via an additional 49.8 m of Bev-A-Line
tubing to separate cavity ring-down (CRD) laser analysers for N₂O and CH₄ flux measurements (LGR
isotopic N₂O analyser and LGR fast greenhouse gas analyser, Los Gatos Research, CA USA) housed in
an enclosed shed at one end of the SkyLine2D apparatus (Error! Reference source not found.). The
gas for analysis was circulated in series, the stronger flow rate of the internal pump of the CH₄ analyser dictated that it was placed first in the sequence and a shunt for any over-pressure was used to compensate for different flow rates, before returning to the chamber. Both CRD analysers measured at 1 Hz, and fluxes were calculated as the change in concentration over time using linear regression, with a correction for volume, temperature and soil area. Chamber closures of 10 minutes were programmed for the flux measurements, with a gap of 5 minutes between chamber closures to allow refreshing of the chamber with ambient air. For each closure a 60 second ‘dead band’ was allowed for headspace mixing, then a two minute period was used for the regression to calculate CO₂ flux and a four minute period used for N₂O and CH₄ fluxes. Following this protocol, each cycle (the term used to designate a full series of measurements across the transect) was 270 minutes long, allowing for approximately six measurements at each of the 18 sampling points per day. The attenuation of light by the chamber was calculated by linear regression from concurrent measurements of photosynthetically active radiation (PAR) inside and outside of the chamber using two matched PAR sensors (SKP 215, Skye Instruments, Powys, Wales, UK) attached to a data logger (GP1, Delta-T Instruments, Cambridge UK), measuring at 1 Hz over the 21 days of the study period; this revealed a reduction of 29% in PAR inside the chamber. After determining the extent of light-interception, CO₂ flux measurements were further adjusted during hours of daylight (defined as periods where external PAR > 0 µmol m⁻² s⁻¹) by using the equation from a light response curve, as described by Heinemeyer et al. (2013).

Ancillary measurements

High frequency (1 minute, averaged over 15 minutes) measurements of soil moisture and temperature at 5 cm depth were made in the centre of each landing base using temperature (UA-001-64 Hoboware, Onset Corporation, MA USA) and moisture probes (S-SMDM005 Decagon Devices Inc, WA USA).
Statistical analyses

All statistical analyses were conducted using SAS (SAS, 9.4, SAS Institute, NC USA). Quality control of flux calculations was initially performed by discarding faulty chamber closures and then using the output statistics from the linear regression of each chamber closure: if the R^2 value of the CO$_2$ flux was below 0.9, fluxes were discarded; for N$_2$O and CH$_4$ fluxes, non-significant ($p > 0.05$) regressions were then counted as zero fluxes. Cumulative fluxes were calculated by trapezoidal integration, but due to a series of power failures, after April 6th flux measurements tended to be intermittent so the cumulative fluxes of all three GHGs are calculated here only up to that date.

Where GHG flux data were not normally distributed, N$_2$O flux rates were log transformed and the reciprocal of the CO$_2$ fluxes were used. For repeated measures analysis, a mixed effects model was used to study the effects of time and N treatment on GHG fluxes (collar and block as random factors), pairwise comparisons were made using least squares, accounting for multiple comparisons using Tukey’s range test. Two way analysis of variance was carried out on cumulative N$_2$O fluxes to test for effect of N treatment and sampling hour, and treatment effect was also tested on cumulative GHG balance using analysis of variance; post hoc testing was undertaken using Duncan’s multiple range test. Due to the large variation in absolute fluxes over the study, in order to investigate diurnal patterns, fluxes of both CO$_2$ and N$_2$O were normalised, achieved by using the highest daily value of flux to constrain the data (forcing all normalised flux values to fall between 0 and 1). The total N$_2$O-N emitted over the study was calculated as a percentage of the total mineral N applied in the two experimental applications (24th March and 1st April) to give an estimate of the emission factor.
Results

The SkyLine2D system performed well producing ca. 4,000 flux measurements of the three major biogenic GHGs; CO$_2$, N$_2$O and CH$_4$ over the study. The equipment worked equally well both day and night, and air temperatures within the chamber never differed from ambient by more than 5°C over a full ten minute chamber closure; 95% of measurements were within 3°C of ambient and by using only the first three minutes of the closure for net ecosystem exchange (NEE) measurements the effect of any temperature increases were minimised.

GHG response to nitrogen fertiliser treatment

All flux measurements of N$_2$O showed a net emission from the soil to the atmosphere (by convention referred to here as a positive flux). Initial fluxes (24th - 30th March), three weeks after the initial pre-experimental fertiliser application, were very low and did not exceed 250 µg m$^{-2}$ h$^{-1}$ during this period (Fig. 3a). Four days after the first NH$_4$NO$_3$ ('FER'), NH$_4$ only ('NH$_4$') and NO$_3$ only ('NO$_3$') fertiliser additions on 27th March, fluxes began to increase and, during the afternoon of March 29th N$_2$O emissions from all treatments were close to 500 µg m$^{-2}$ h$^{-1}$, a rate which was maintained until the second N addition on April 1st. By the second N addition, fluxes were approaching 1000 µg m$^{-2}$ h$^{-1}$ (Fig. 3a) with distinct peaks in N$_2$O emission during the afternoons of March 31st to April 6th. These peaks increased steadily from ca. 500 µg m$^{-2}$ h$^{-1}$ on the 31st March to a maximum of 3131 µg m$^{-2}$ h$^{-1}$ on the 6th April and the highest mean flux (4266 µg m$^{-2}$ h$^{-1}$) was recorded from the NH$_4$ collars on April 6th, with a further peak in N$_2$O emissions from all treatments seen on April 12th.

There was a significant effect of the N treatments on N$_2$O emissions, $F_{[2,356]}= 9.76$, $p<0.0001$, and there was a significant interaction between treatment and time over the study, $F_{[122,356]}= 1.35$, $p<0.02$; during the 16 hours following the first application of the three N treatments, emissions from the NO$_3$ collars were significantly higher than from either the NH$_4$ or FER plots ($p<0.05$). During the period 4-11 days after the N applications (between 28th March and 5th April), fluxes were greatest
from the FER treatment; over several cycles N$_2$O fluxes were significantly higher (p< 0.04) than at least one of either the NO$_3$ or the NH$_4$ treatments and for three cycles were higher than both the other treatments. No further statistically significant pairwise treatment effects were observed after this point, although the NH$_4$ plots tended to be highest during the peak following the second N addition.

Net ecosystem exchange of CO$_2$ (NEE) was characterised by positive fluxes (net emission) during hours of darkness, when respiration was the dominant process, and negative fluxes (net uptake) during the daytime when the OSR was photosynthesising. The amplitude of the oscillation between positive and negative fluxes increased through the study period as the crop grew and flowered which coincided with a rise in soil and air temperatures. Highest CO$_2$ emissions (ecosystem respiration) were seen overnight on March 30-31st (700 mg m$^{-2}$ h$^{-1}$) and April 5-6th (898 mg m$^{-2}$ h$^{-1}$) (Fig. 3b) and these peaks followed the two dates that showed the greatest net uptake in CO$_2$ (maxima of -1953 mg m$^{-2}$ h$^{-1}$ and -1765 mg m$^{-2}$ h$^{-1}$ respectively). N treatments did not have a significant effect on NEE throughout the study, $F_{[2,574]}= 1.38$, p> 0.29.

There was also no significant effect of the N treatments on CH$_4$ fluxes ($F_{[2,398]}= 0.15$, p> 0.86) (Fig. 3c) and while fluxes were often negative, indicating the soil was a net sink for CH$_4$, all net fluxes were close to zero, with a mean, maximum and minimum of 3, 150 and -140 µg m$^{-2}$ h$^{-1}$.

Diurnal GHG flux patterns

In addition to the a diurnal pattern of NEE, throughout the study a clear and repeating diurnal trend in N$_2$O emissions was also observed, with peaks in the afternoon and lows throughout the night (Fig. 4). Analysis of this diurnal variation in N$_2$O fluxes (and to a lesser extent NEE) was confounded during periods where dramatic changes in flux rates occurred (two orders of magnitude in as little as three days for N$_2$O). Normalising the flux data showed that the maximum N$_2$O emission consistently occurred during the afternoon, peaking around 13:00 for the FER treatment, 14:00 for NH$_4$ and
around 12:00 for the NO\textsubscript{3} treatment (Fig. 5a) which coincided with maximum net ecosystem production (NEP) (greatest net uptake of CO\textsubscript{2}) for all three nitrogen treatments (Fig. 5b). This characteristic is further reinforced by the strong positive relationship between the normalised fluxes of N\textsubscript{2}O and CO\textsubscript{2} for each N treatment (p<0.0001; Fig. 6).

Environmental controls on GHG fluxes

When the absolute fluxes (non-normalised) were analysed across all dates, the strongest correlation between N\textsubscript{2}O fluxes for the FER and NH\textsubscript{4} treatments was with soil temperature (Fig. 7a) whilst PAR also correlated with N\textsubscript{2}O fluxes in the NO\textsubscript{3} treatment (Fig. 7b), though none explained more than 35% of the variance of these fluxes. These analyses did not explain the key driver of the diurnal variation in N\textsubscript{2}O flux and when the normalised fluxes were correlated with the measured environmental variables, it was clear that PAR had the strongest relationship with both NEE, in a typical light-response relationship similar across all three N treatments (Fig. 7c) and strikingly with N\textsubscript{2}O emissions as well, again across all three N treatments (R2 > 0.62; Fig. 7d).

Cumulative fluxes and GHG balance

The strong diurnal pattern in N\textsubscript{2}O flux raises concerns about the choice of sampling time used to estimate cumulative fluxes for N\textsubscript{2}O. Since not every collar was measured hourly on each day, fluxes were binned into six 4-hour sub periods revealing a strong significant effect of sampling time on the cumulative N\textsubscript{2}O flux (F\textsubscript{[5,72]}= 8.05, p< 0.0001); measurements taken between 12:00-16:00 yielding a greater total emission estimate than at any other time of day (Fig. 8). The cumulative flux was significantly lower from NO\textsubscript{3} collars than from the FER treatment (F\textsubscript{[2,72]}= 3.62, p< 0.04, Fig. 8) and whilst there was no significant interaction of sampling time and treatment (F\textsubscript{[2,72]}= 0.64, p> 0.77) the difference between estimates based on 09:00-12:00 and 12:00-16:00 were less pronounced for the NO\textsubscript{3} treatment than for the other two treatments. These fluxes represented a total loss over 14 days
of FER 1.06 (± 0.23), NH₄ 0.86 (± 0.23) and NO₃ 0.64 (± 0.21) kg N₂O-N ha⁻¹ which equated to 0.77, 1.25 and 0.92% respectively of the total N applied during the study period.

The OSR field was a net sink for CO₂ from 24th March to 6th April, accumulating FER 107.5 (± 23.5), NH₄ 170.4 (± 16.94) and NO₃ 115.1 (± 16.0) g CO₂ m⁻², with no significant effect of N treatment ($F_{[2,12]} = 2.24, p < 0.15$, Fig. 9). The contribution of CH₄ to the overall balance was negligible at < 0.3 % of the total GHG balance across all treatments but due to the magnitude of N₂O emissions the GHG sink was greatly reduced in the NO₃ and NH₄ treatments and the FER treatment was identified as a net weak source of GHGs (Fig. 9). The overall GHG balance did not significantly differ between N treatments ($F_{[2,12]} = 2.85, p < 0.1$).

Discussion

In contrast to the clear response of N₂O flux to fertiliser, no effect was apparent in NEE, and CH₄ fluxes were so small their contribution to the GHG balance was negligible. The increase in NEE between 28th and 30th March coincided with an increase in both PAR and air temperature and the similarity of NEE and biomass between nitrogen (N) treatments (unpublished data), despite FER receiving twice the N of the other treatments, indicated growth was not N limited. Maximum NEE reported here was similar to a controlled environment study of OSR (Paul et al., 1990), but below that of a field trial conducted under higher light and temperature conditions (Muller et al., 2005). N₂O fluxes were similar to the short-term response to N fertiliser Drewer et al. (2012) reported, but were between three (Hellebrand et al., 2003; Kavdir et al., 2008; Asgedom et al., 2014) and ten times greater than reported elsewhere (Beaudette et al., 2010) for similar rates of mineral N application to OSR. With the exception of Drewer et al. (2012), who measured N₂O flux in the hours immediately following fertilisation, these studies employed a weekly to monthly measurement regime, suggesting that low temporal resolution is a major factor in the lower fluxes reported therein.
Cumulative N_2O flux (equivalent to 0.77-1.25% of applied N across the three treatments) counteracted most, and in the FER treatment all, of the sink effect of photosynthesis over the study. These values are not strictly emission factors, since an untreated control was not required to test our hypotheses, and this should be considered when interpreting these cumulative emissions. Despite this, the amount of N emitted as N_2O over just 14 days of our study fell within the IPCC inventory annual estimates of fertiliser emissions (De Klein et al., 2006), thus the final total may be above those guidelines. Since OSR is the principal feedstock for biodiesel in Europe (de Vries et al., 2014) it is essential that accurate measurements of N_2O fluxes are included in any lifecycle analysis (LCA), especially as a net GHG source was seen in the FER treatment (NH_4NO_3) reflecting the regimen employed by the farmer. The magnitude of GHG emissions due to high N input further supports existing scepticism (Smeets et al., 2009; Del Grosso et al., 2014, Walter et al., 2015) regarding the effectiveness of OSR as an energy crop.

Not all field studies measuring agricultural N_2O fluxes at an appropriate temporal frequency report diurnal patterns (e.g. Barton et al., 2008; Lognoul et al., 2017), but several have shown N_2O emissions peaking during the afternoon (e.g. Ryden et al., 1978; Blackmer et al., 1982; Christensen, 1983; Livesley et al., 2008; Simek et al., 2010; Alves et al., 2012; Das et al., 2012, Marsden et al., 2017), attributing this to soil temperature patterns (Blackmer et al., 1982; Livesley et al., 2008; Alves et al., 2012). The daytime peak may be as much as 200% of night time emissions (Shurpali et al., 2016) which isotopologue data indicated to be due to increased denitrification (Ostrom et al., 2010). Dissolved CO$_2$ in tree xylem can contribute to measured NEE (Levy et al., 1999) and N_2O has also been measured from tree leaves (Pihlatie et al., 2005). Calculations based upon maximum measured transpiration in OSR, ca. 8 g m$^{-2}$ h$^{-1}$ (Pivec et al., 2011), and the solubility of N_2O at 15°C (5.95×10^{-4} mol mol$^{-1}$), suggest that whilst a transpiration-mediated flux of ca. 10,000 µg N_2O m$^{-2}$ h$^{-1}$ is theoretically possible, an ancillary experiment conducted during this study (data not shown) using short-term shading of the OSR vegetation to induce stomatal closure, revealed no difference
between fluxes of N$_2$O from shaded and unshaded vegetation, suggesting this was not a significant contributing factor.

We found strong evidence to suggest that PAR, rather than soil temperature drove diurnal N$_2$O flux variation. Christensen (1983) suggested that PAR influenced N$_2$O flux and Das et al. (2012) specifically investigated its role on N$_2$O flux, but concluded its influence was limited to warming the soil. In our study the relationship strengthened with increasing applied proportion of NO$_3$-N, the substrate for denitrification. Since C availability drives denitrification both directly (Firestone & Davidson, 1989) and indirectly as increased microbial respiration depletes O$_2$ (Farquharson & Baldock, 2008), it is logical that by mediating exuded photosynthate PAR strongly influences N$_2$O emission when vegetation is present. In a mesocosm experiment measuring GHG fluxes from bare agricultural soil, Ineson et al. (unpublished data) unequivocally demonstrated that without labile C, N$_2$O fluxes were negligible even under high rates of mineral N addition. However, we have not found any explanatory models of measured N$_2$O fluxes which use PAR, while soil organic carbon (SOC) or dissolved organic carbon (DOC) has only occasionally been used to explain N$_2$O fluxes from soils (e.g. Ambus & Christensen, 1993; Kaiser et al., 1996; Lemke et al., 1998; Harrison & Matson, 2003; Petersen et al., 2008).

N$_2$O fluxes are notoriously difficult to model, especially at fine temporal resolution (Fitton et al., 2014b) and although the models, DNDC (Abdalla et al., 2009), DailyDayCent (Fitton et al., 2014a) and ECOSSE (Dondini et al., 2016), include various estimates of SOC, they also do not use PAR as a driving input. Furthermore, model validation often uses intermittent, daily flux measurements (e.g. von Arnold et al., 2005; Perdomo et al., 2009; Johnson et al., 2010; Gauder et al., 2012; Jeuffroy et al., 2013), which rarely acknowledge the importance of selecting the appropriate time of day for sampling, despite this being essential to accurate GHG budgeting (Keane & Ineson 2017). The interdiel and diel flux variation reported here underlines how systematic errors may occur when sub-daily measurements are used to extrapolate long-term cumulative fluxes.
The diurnal variation in N₂O fluxes here was clearly linked to PAR, but PAR (NO₃ treatment) and soil temperature (FER and NH₄) were important drivers over the entire study. We suggest that most N₂O was produced by denitrification, thus driven by organic C in NO₃ collars, but denitrification in the FER and NH₄ treatments was partly coupled to nitrification hence the association with soil temperature (Fig. 7(a)). It is noteworthy that there was no significant relationship between N₂O fluxes and soil moisture, which is often cited as one of the key drivers of N₂O production (Skiba et al., 1998; Skiba & Smith, 2000; Dobbie & Smith, 2003b). A possible explanation is that soil moisture, ranging between 50-75% water filled pore space (WFPS) throughout the study was variously favourable to both nitrification and denitrification, processes which have different WFPS optima (Bateman & Baggs, 2005).

The pronounced variation in N₂O fluxes presented here was captured due to the high temporal resolution of SkyLine2D. The automated system measured CO₂, CH₄ and N₂O from OSR for 21 days, providing nearly 4,000 flux measurements and the clear chamber ensured that fluxes included sinks and sources from soil and vegetation. Such data from tall vegetation is rare without using eddy covariance (EC) equipment, which currently cannot measure at the spatial resolution required to test hypotheses in replicated, manipulation experiments. Furthermore, SkyLine2D overcomes the shortcomings of previously described automated systems, such as low (n < 10) replication (e.g. Breuer et al., 2000, Nishimura et al., 2005, Barton et al., 2008; Morris et al., 2013), long chamber closures (e.g. Breuer et al., 2000: 45-60 minutes) or storage of samples for subsequent laboratory analysis (Ambus et al., 2010; Juszczak & Augustin, 2013).

The high N₂O emissions across all treatments, even at 50% of the management applied N rate, demonstrate how important this gas is for crop GHG balance. Nitrogen uptake efficiency is a problem in OSR, where it is as low as 50% (Bouchet et al., 2016) and our findings underline this inefficiency. We suggest that since the management fertiliser rate, which received double the N of the NH₄ treatment, neither increased crop biomass, N content (unpublished data) or N₂O emissions,
that fertiliser is lost through immobilisation or leaching, as outlined in Bouchet et al. (2016). We have shown that PAR, probably by supplying labile C to facilitate denitrification, is a strong driver of N\textsubscript{2}O emissions and its inclusion in GHG flux models should improve model accuracy, a vital tool to mitigate climate change. We would like to see work carried to manipulate diurnal fluctuation in DOC to directly investigate its effect on N\textsubscript{2}O fluxes. Additionally, the pronounced diurnal pattern in N\textsubscript{2}O flux demonstrated here underlines the critical importance of high frequency, high spatial resolution measurements. If automation is not possible, based on our data the appropriate sampling for OSR at this site would be around 08:00 or 16:00, to coincide with the daily mean flux. However, since diurnal patterns of N\textsubscript{2}O flux differ between locations and crops (Alves et al., 2012), we stress the importance of characterising any diurnal pattern before selecting the appropriate sampling time, if single daily measurements are to be used in flux studies. Finally, the large GHG emission from the OSR suggest there are more suitable feedstocks which should be used for biofuel production.

Acknowledgements

This work was funded by the UK’s Natural Environment Research Council (NERC) as part of the GREENHOUSE project (NE/K002589/1, http://www.greenhouse-gases.org.uk/), the Carbo-BioCrop project (NE/H010726/1) and the Energy Technologies Institute (ETI) under the ELUM project (www.elum.ac.uk). The field site has long-term core support from the Centre for Ecology & Hydrology (NEC06401-UK GHG Flux Network). We thank the landowner Jonathan Wright and the farm manager Henry Wilson for access to the farm and also to Licor for allowing us to copy the patented design of their chamber air vent.
References

Alves BJR, Smith KA, Flores RA et al. (2012) Selection of the most suitable sampling time for static chambers for the estimation of daily mean N₂O flux from soils. Soil Biology & Biochemistry, 46, 129-135.

This article is protected by copyright. All rights reserved.

Committee on Climate Change (2017) Quantifying greenhouse gas emissions. Committee on Climate Change, London UK.

This article is protected by copyright. All rights reserved.

Defra (2014a) Agricultural emissions reporting, Her Majesty’s Stationery Office, UK.

Defra (2014b) Farming statistics, final crop areas, yields, livestock populations and agricultural workforce at June 2014, Her Majesty’s Stationery Office, UK.

This article is protected by copyright. All rights reserved.

gas fluxes from different energy crops - results from a field experiment in Southwest Germany.
Global Change Biology Bioenergy, 4, 289-301.
Gerber JS, Carlson KM, Makowski D et al. (2016) Spatially explicit estimates of N₂O emissions from
croplands suggest climate mitigation opportunities from improved fertiliser management. Global
Change Biology, 22, 3383-3394.
Harrison J, Matson P (2003) Patterns and controls of nitrous oxide emissions from waters draining a
static-chamber measurements of soil-atmosphere gas exchange: Identification of physical processes.
estimate from an automated ground-level flux chamber system in artificial grass mesocosms.
Ecology and Evolution, 3, 4998-5010.
of energy crops on sandy soils. Atmospheric Environment, 37, 1635-1644.
Fourth Assessment Report of the IPCC (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M,
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pachauri RK,
Jeuffroy MH, Baranger E, Carrouee B et al. (2013) Nitrous oxide emissions from crop rotations
including wheat, oilseed rape and dry peas. Biogeosciences, 10, 1787-1797.

Marsden KA, Jones DL Chadwick DR (2017) DMPP is ineffective at mitigating N₂O emissions from sheep urine patches in a UK grassland under summer conditions. Agriculture Ecosystems & Environment, 246, 1-11.

Ostrom NE, Sutka R, Ostrom PH et al. (2010) Isotopologue data reveal bacterial denitrification as the primary source of N₂O during a high flux event following cultivation of a native temperate grassland. Soil Biology & Biochemistry, 42, 499-506.

This article is protected by copyright. All rights reserved.

Fig. 1 Aerial and side-profile schematics of the SkyLine2D system showing (a), the trellis arch supports at either end, supporting the Kevlar ropes between. The motorised trolley is depicted at the midpoint of the two supports (b). Cross section of the in situ system at the OSR field site and (c) the N$_2$O and CH$_4$ Los Gatos CRD analysers were housed in the green garden box by the right hand trellis support.

Fig. 2 The SkyLine2D chamber in situ during a measurement over the OSR crop (left hand panel). Note the PAR sensor mounted within the chamber (white circle). The schematic of the chamber (right hand panel) highlights the components and dimensions: A- manifold with attached gas lines. Arrows denote direction of flow; the sampling line draws from near the top (circa 10 cm) of the chamber and the return pipe opens near the base of the chamber. B- vent for pressure equalisation, after Xu et al. (2006). C- chamber constructed from clear Perspex. D- gasket to ensure gas-tight seal between chamber and E- landing base. The base (ring) had an inner diameter (38 cm) smaller than that of the chamber (41 cm), affording a greater margin of error when the chamber landed.

Fig. 3 Fluxes of N$_2$O (a), CO$_2$ (b) and CH$_4$ (c) from the oilseed rape crop, following application of three types of mineral nitrogen (NH$_4$NO$_3$ (FER), closed circles, NH$_4$Cl (NH$_4$), open circles, NaNO$_3$ (NO$_3$), closed triangles) measured using the SkyLine2D. Values shown are mean (n= 5, ± 1SE). Vertical arrows indicate timing of nitrogen additions.
Fig. 4 Diurnal variation of N_2O flux in relation to PAR (a) and soil temperature at 5 cm depth (b). Data shown are for the collars treated with NaNO$_3$ (NO$_3$). Fluxes of N_2O can be seen to increase prior to soil temperature and in close relations to PAR.

Fig. 5 Diurnal variation of the mean (n=5) daily-normalised N_2O (a) and NEP (b) averaged over the entire study period. Data are shown for each of the three nitrogen treatments applied, and a third order Gaussian function has been fitted: FER- closed circles, solid line: $\text{N}_2\text{O} R^2 = 0.74$, $p<0.0001$; NEE $R^2 = 0.94$, $p<0.0001$; NH$_4$- open circles, long dashes: $\text{N}_2\text{O} R^2 = 0.70$, $p<0.0001$; NEE $R^2 = 0.97$, $p<0.0001$; NO$_3$- closed triangles, short dashes: $\text{N}_2\text{O} R^2 = 0.75$, $p<0.0001$; NEE $R^2 = 0.97$, $p<0.0001$.

Fig. 6 Relationship of the mean hourly normalised flux of N_2O to the mean hourly normalised flux CO$_2$ (expressed as net ecosystem production (NEP)) across the study period. Data shown are for three nitrogen treatments: FER- closed circles, solid line: $R^2 = 0.77$, $p<0.0001$; NH$_4$- open circles, long dashes: $R^2 = 0.64$, $p<0.0001$; NO$_3$- closed triangles, short dashes: $R^2 = 0.75$, $p<0.0001$.

Fig. 7 Response of N_2O flux from OSR to soil temperature at 5 cm depth (a) under two nitrogen treatments: FER- (closed circles, solid line) $R^2 = 0.35$, $p<0.0001$; NH$_4$- (open circles, long dashed line) $R^2 = 0.34$, $p<0.0001$ and (b) relationship of N_2O flux to PAR from OSR under NO$_3$ addition (closed triangles, short dashed line), $R^2 = 0.35$, $p<0.0001$. Relationship of the hourly mean (n=5) normalised NEP (c) and N_2O (d) to PAR, averaged over the study period for three nitrogen treatments with a second order polynomial function fitted: NEP- FER- closed circles, solid line, $R^2 = 0.98$, $p<0.0001$; NH$_4$- open circles, long dashes, $R^2 = 0.98$, $p<0.0001$; NO$_3$- closed triangles, short dashes, $R^2 = 0.98$, $p<0.0001$. N_2O- FER- closed circles, solid line, $R^2 = 0.79$, $p<0.0001$; NH$_4$- open circles, long dashes, $R^2 = 0.62$, $p<0.0001$; NO$_3$- closed triangles, short dashes, $R^2 = 0.71$, $p<0.0001$.

Fig. 8 The effect of sampling time on the estimate of mean (± 1 SE) cumulative flux of N_2O from OSR under three different nitrogen treatments. Significant ($p<0.001$) differences in sampling time are shown (two-way ANOVA testing for effect of treatment and sampling time), times with similar letters...
do not differ (Duncan multiple range post hoc test). Time bins are: 0-00-03:59 4-04-07:59 8-08-11:59 12-12-15:59 16-16-19:59 20-20-23:59. Cumulative flux of N₂O was significantly lower (p<0.04) from NO₃ than from FER treatment (*).

Fig. 9 Mean ± 1SE total fluxes of CO₂, N₂O and CH₄ from oilseed rape under three different nitrogen regimes, n=5 shown in terms of global warming potential (GWP) as calculated over a 100 year period (IPCC 2013) and is expressed in terms of CO₂-equivalents. Negative values indicate net uptake from the atmosphere and positive fluxes net emission.