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Efficient Determination of Reverberation Chamber

Time Constant
Xiaotian Zhang, Martin P. Robinson, Ian D. Flintoft, Senior Member, IEEE, John F. Dawson, Member, IEEE

Abstract—Determination of the rate of energy loss in a
reverberation chamber is fundamental to many different mea-
surements such as absorption cross-section, antenna efficiency,
radiated power, and shielding effectiveness. Determination of
the energy decay time-constant in the time-domain by linear
fitting the power delay profile, rather than using the frequency-
domain quality-factor, has the advantage of being independent
of the radiation efficiency of antennas used in the measurement.
However, determination of chamber time constant by linear
regression suffers from several practical problems, including
a requirement for long measurement times. Here we present
a new nonlinear curve fitting technique that can extract the
time-constant with typically 60% fewer samples of the cham-
ber transfer function for the same measurement uncertainty,
which enables faster measurement of chamber time constant
by sampling fewer chamber transfer function, and allows for
more robust automated data post-processing. Nonlinear curve
fitting could have economic benefits for test-houses, and also
enables accurate broadband measurements on humans in about
ten minutes for microwave exposure and medical applications.
The accuracy of the nonlinear method is demonstrated by
measuring the absorption cross-section of several test objects of
known properties. The measurement uncertainty of the method
is verified using Monte Carlo methods.

Index Terms—absorption cross section, chamber time constant,
inverse Fourier transform, Monte Carlo method, power delay
profile, power balance method, reverberation chamber

I. INTRODUCTION

THE properties of the reverberation chamber (RC) are

described in detail by Hill [1]. As well as EMC and

shielding effectiveness measurements [2], [3], RCs are widely

used for the measurement of absorption cross-section (ACS),

for characterisation of radio absorptive materials [4], and for

biological studies [5]. They are also used for communication

channel simulation [6]. In all of these applications knowledge

of the chamber Q-factor or time constant is essential, and as

the Q-factor depends on the chamber contents, it must be deter-

mined explicitly for each particular measurement undertaken.

The Q-factor, Q, and chamber time constant, τ , at angular

frequency ω are simply related by [1]:

Q = ωτ . (1)

A common method for determining the chamber time

constant is to do linear curve fitting on the power delay
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profile (PDP) on a logarithmic scale. The slope of the fitted

straight line gives the rate of power loss in the RC, therefore

the chamber time constant can be extracted from the slope.

The biggest advantage of determining chamber time constant

in this way is that the τ value is not sensitive to antenna

radiation efficiency [7]. The PDP is obtained by calculating

the inverse fast Fourier transform (IFFT) of the scattering

parameter S21 measured in the frequency-domain at the ports

of two antennas in the RC [8]. Since the time constant varies

with frequency, a window function is used to select each

particular frequency band from a broadband S21 measurement

prior to the calculation of a PDP.

However, there are three difficulties in applying such a

method. First, the windowed S21 should have wide enough

bandwidth containing enough frequency samples to give a PDP

with high enough resolution for linear curve fitting, but dense

sweeping S21 is very time consuming, especially in wideband

applications. Second, since the PDP is obtained from the IFFT

of a windowed S21 spectrum, the impulse response of the

window function is convolved with the PDP which distorts

its shape. Third, linear curve fitting does not give the correct

chamber time constant in low signal-to-noise ratio (SNR) cases

as explained in Section III.

In this paper, a new nonlinear curve fitting technique is pre-

sented for extracting chamber time constants more accurately

and more efficiently. Compared to linear curve fitting, non-

linear curve fitting has two advantages. First, nonlinear curve

fitting can cancel the window function’s effect on the PDP,

therefore the extracted chamber time constants are not affected

by the specific choice of window function. Second, since

nonlinear curve fitting allows a narrower window function to

be applied in the extraction of the chamber time constant,

fewer samples of S21 are required to be measured and the

measurement time can be greatly reduced by a segmented

sweep which samples S21 only around desired frequency

points.

The accuracy of nonlinear curve fitting in determining

chamber time constant is demonstrated by measuring the ACS

of a several objects of known properties in the RC. The

measurement speed is improved by continuous mode stirring

and segmented frequency sweeping, which enables the ACS

measurement at 171 frequencies to be completed in 11 min-

utes. The quick measurement speed also facilitates the study of

measurement uncertainty. The type A uncertainty was obtained

by repeating the ACS measurement 16 times, and the results

were compared to the uncertainty predicted by the Monte

Carlo method. Good correspondence was observed between

the measured uncertainty and the Monte Carlo prediction.
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The remainder of this paper is divided into four sections.

In Section II we review the method of determining the

chamber time constant and ACS in an RC. Section III shows

the problems of extracting chamber time constant by linear

regression and how the problems were solved by applying

nonlinear fitting techniques. Section IV presents the validation

experiments for the new measurement techniques.

II. ACS MEASUREMENT IN AN RC

The total average absorption cross section, 〈σtot〉, of all

lossy objects (including apertures) in an RC is defined as [9]:

〈σtot〉 =
〈PT 〉

Sc
, (2)

where Sc is the power density in the chamber and 〈PT 〉 is the

average power loss by all the objects in the RC. The average

power 〈PR〉 received by an antenna in the chamber has the

following relation to Sc [1]:

Sc =
8π 〈PR〉

λ2
, (3)

where 〈PR〉 is the received power measured at the port of a

lossless receiving antenna. Consider the Q-factor’s relation to

〈PR〉 and 〈PT 〉 in an RC [1]:

Q =
16π2V

λ3

〈PR〉

〈PT〉
, (4)

where V is the volume of the RC. Equation (2) can be written

as [10]:

〈σtot〉 =
λ2

8π

16π2V

Qλ3
=

2πV

Qλ
. (5)

Substituting (1) into (5) gives:

〈σtot〉 =
V

cτ
, (6)

where c is the speed of light.

The ACS of an object in an RC can be determined from

the difference in 〈σtot〉 for the chamber with and without the

object. From (6) the ACS of a lossy object can be written as

follows [1], [11]:

〈σobj〉 =
V

c

(

1

τwo
−

1

τno

)

, (7)

where the subscript ‘wo’ means ‘with object’ loaded in the

chamber; ‘no’ means ‘no object’ is loaded in the chamber.

Equation (7) indicates an accurate ACS measurement relies

on the accurate determination of chamber time constants.

Therefore the validation of nonlinear curve fitting in extracting

chamber time constant is demonstrated by measuring the ACS

as in Section IV.

III. DETERMINATION OF THE CHAMBER TIME CONSTANT

A. Determining Chamber Time Constant by Linear Curve

Fitting

The chamber time constant can be extracted from the power

delay profile (PDP):

PDP =< |IFFT(S21·W )|2 > . (8)

0 1 2 3 4 5 6 7 8 9 10

Time ( s)µ

-105

-100

-95

-90

-85

-80

-75

-70

P
D

P
d

B

Empty Chamber

Loaded Chamber

Fig. 1. An example of PDP measured in the University of York RC. The
effect of loaded object can be seen from change of the slope of the PDP.

where W is a window function which is used to select the nar-

row frequency range required from a broadband measurement.

We typically choose a set of window functions to calculate

the time constant at each desired frequency from broadband

measurement data. The PDP gives the power level in an RC

as a function of time and typical results are shown in Fig.

1, which shows the PDP in decibels and how it changes as

the chamber is loaded with a lossy object. The value of the

chamber time constant can be obtained from the slope of the

linear part of the PDP by curve fitting:

PDPdB(t) = 10log10(Ae−t/τ )

=

(

−
10 log10 e

τ

)

t+ 10log10A , (9)

where τ is the chamber time constant and A is a positive

constant which gives the signal power. Both τ and A can be

determined from linear curve fitting to the PDP on a decibel

scale. We call (9) the linear model of PDP.

However, there are three problems in extracting the chamber

constant by linear regression. First, a suitable fitting range

must be selected. The shape of PDP is not a perfect straight

line but a combination of a declining slope and the horizontal

noise floor of the measurement system. In the method of [12],

the linear fitting range was selected as the time interval that

gives the top 30 dB of the PDP. This fitting range only works

well with a large SNR. In this study, the fitting range was

chosen as the time range that corresponds to the top half of

the PDP on a decibel scale, as shown in in Fig. 2.

Second, in the low SNR case, the slope of the PDP is not

a good indicator of the chamber time constant. This problem

can be demonstrated by transforming the PDP model into a

logarithmic scale and then calculating its derivative. The PDP

with a noise floor can be modelled by [13]:

PDPnoise,dB = 10 log10(Ae−t/τ +B) , (10)

where B is a positive constant that gives the noise power.

Calculating the derivative of PDPnoise,dB with respect to t
gives:

dPDPnoise,dB

dt
=

(

−
10 log10 e

τ

)

(A/B)e−t/τ

(A/B)e−t/τ + 1
, (11)
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Fig. 2. The linear fitting range is chosen as the time interval which gives
the upper half of PDP response. PDPmax is the maximum reading of PDP;
PDPmin is the minimum reading of PDP.
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Fig. 3. Failure of linear curve fitting in low SNR case. The linear curve fit
(solid line) does not match the original noise free PDP (dash-dot line). Fitting
range was chosen by the method illustrated in Fig. 2.

where (A/B) is the SNR. The term in the bracket is equal

to the slope of the noise-free PDP from which the correct

chamber time constant can be obtained, as given in (9). If

(A/B) was a small value, the derivative in (11) would be

dominated by the factors outside of the bracket, so linear curve

fitting would not give the right answer. As an example, the

low SNR problem is illustrated in Fig. 3 by setting A = 10,

B = 1, and τ = 1µs. The result of linear curve fitting does

not correspond with the noise free PDP whose A = 10, B =
1, and τ = 1µs. A SNR of (A/B) ≤ 10 would make the

problem even worse.

Third, the multiplication of S21 by a window function

affects the shape of the PDP. The linear fit is quite sensitive

to this, whereas the nonlinear method includes the effect of

the window function on its optimisation and so it is largely

insensitive to the window used. In this paper, we chose raised

cosine windows, as shown in Fig. 4, because they give better

results, compared to windows with a sharper roll-off, when the

linear fit is used, though we have not exhaustively searched for

an optimum window shape for the linear fit. Fig. 5 compares

the PDP calculated using the three different window functions

and the same S21 data set. It can be seen that the change in

shape of the PDP due to the width of the window function

has a significant effect on the linear fit.
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Frequency (MHz)
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Fig. 4. Window functions at 15 GHz are all raised cosine windows with
rolling off factor β = 1 and frequency step 100 kHz [14].
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Fig. 5. PDP extracted by applying different window functions at 15 GHz. The
filtered S21 were all zero padded to zero frequency to show the effect of the
window functions in full detail. The window function changes the shape of
the PDP, thus the time constant given by linear regression is changed by the
window function as well. The fitting range is selected in the way demonstrated
in Fig. 2.

B. Determining the Chamber Time Constant by Nonlinear

Curve Fitting

The difficulty in extracting the chamber time constant from

the PDP can be solved by introducing a nonlinear PDP

model [13]. The new nonlinear model takes the effects of

both the window function and the noise floor into account,

therefore the chamber time constant can be extracted with

better accuracy. This model is based on the assumption that

the channel impulse response (CIR) can be modelled as the

summation of many incoming rays with random phase shifts

and exponentially decaying magnitudes [15]:

h(t) =
∞
∑

l=0

βle
jθlδ(t− Tl) , (12)

where h(t) is the CIR; the coefficient βl is the magnitude

of each ray, which decays exponentially with time; ejθl is

the phase shift of each ray; and δ(t − Tl) is the Dirac delta

function. In terms of the central limit theorem, h(t) observed

at any specific moment in the chamber should follow a

complex Gaussian distribution and its amplitude should decay
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exponentially as well:

h(t) = Vse
−t/2τN1(t) , (13)

where Vs is the received signal voltage; N1(t) is a standard

complex Gaussian random process with zero mean and vari-

ance of one.

Equation (13) corresponds with Hill’s idea that the transient

behavior of an RC can be described by an exponential function

[1]:

U = Use
−t/τ , t > 0 , (14)

where Us is a constant indicating the power density in the

chamber. However, (13) still misses the effects of the noise

floor and the window function. Adding both into (13) gives

the filtered CIR:

h(t)⊗W (t) =
[

Vse
(−t/2τ)N1(t) + VnN2(t)

]

⊗W (t) , (15)

where Vn is the background noise level; N2(t) is another

standard complex Gaussian random process independent from

N1(t); W (t) is the time-domain response of the window

function; and ⊗ means circular convolution whose period

equals the maximum time range of h(t). The power of the

filtered h(t) can be calculated, as in [16] (A brief proof can

be found in Appendix A):

E (PDP(ti)) = E
(

|h(ti)⊗W (ti)|
2
)

=
[

V 2
s e

−ti/τ + V 2
n

]

⊗
∣

∣

∣
W (ti)

∣

∣

∣

2

, (16)

where E(·) means expectation; ti is the ith sample of time

in the time-domain. Equation (16) is the full form of the

nonlinear model for curve fitting. It is controlled by four

parameters: Vs, Vn, τ , and W in which W is known. The

model (16) can be fitted to the measured PDP using a method

such as the Levenberg-Marquardt algorithm [17].

The starting value for nonlinear fitting can be estimated in

the following way. The initial value of τ is first estimated as

τ0 by linear regression. Then we can generate a reference PDP

signal e−ti/τ0 ⊗|W (ti)| by which the starting value of Vs can

be determined as Vs,0 due to the linearity of convolution:

PDPmeas(ti)

e−ti/τ0 ⊗
∣

∣W (ti)
∣

∣

2 ≈

[

V 2
s e

−ti/τ + V 2
n

]

⊗ |W (ti)|
2

e−ti/τ0 ⊗
∣

∣W (ti)
∣

∣

2

≈ V 2
s = V 2

s,0 , (17)

where PDPmeas is the measured PDP response. Here

PDPmeas(ti) ≈ E(PDP(ti)) is assumed if the measured PDP

is of good quality. We suggest calculating the value of (17)

at the time when PDPmeas(ti) reaches its maximum, because

at this time the noise term V 2
n can be neglected by assuming

Vs ≫ Vn. After the estimation of τ0 and Vs,0, the initial value

of the noise, Vn,0, can be estimated. Here we use the reference

signal I(ti)⊗W (ti) where I(ti) is a constant function whose

value is 1 so that:

PDPmeas(ti)− V 2
s,0e

(−ti/τ0) ⊗W (ti)

I(ti)⊗W (ti)
≈

V 2
n ⊗W (ti)

I(ti)⊗W (ti)

= V 2
n = V 2

n,0 , (18)
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Fig. 6. A comparison between the nonlinear PDP model and PDP measured
in the University of York reverberation chamber, with S21 filtered by Win #1.
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f
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Fig. 7. Measurement speed can be increased by measuring only those S21
values included in the IFFT.

where Vn,0 is the starting value of Vn.

Fig. 6 shows that the optimized nonlinear model matches

very well with the measured PDP. Compared to the linear

regression for determining the chamber time constant, fitting

with the nonlinear PDP model has the following advantages.

First, the noise floor and window functions are parts of the

nonlinear model, thus their effect can be compensated for in

the determination of the chamber time constant. Second, since

the effect of the window function is quantified in the nonlinear

PDP model, a narrower window with fewer S21 samples can

be used in the determination of the chamber time constant.

This may save measurement time because any S21 values not

included in the IFFT can be skipped in the measurement by

segmented frequency sweeping, as illustrated in Fig. 7.

C. Monte Carlo Study on the Statistical Variance of Chamber

Time Constant Determined by Nonlinear Curve Fitting

Since the chamber time constant τ is extracted from the

PDP whose statistical model is given in (15), the distribution

of τ can be estimated by the Monte Carlo method, as shown

in Fig. 8 [18].

The CIR model has the form of (15), therefore an artificial

CIR can be generated with chosen values of Vs, Vn, τ , and

W . The sequence of Gaussian processes N1(t) and N2(t)
were produced by the built-in function of MATLAB. Each

generated CIR represents a single measurement of CIR at

each independent stirrer position in the RC. Therefore, the

CIR measurement during stirrer movement can be simulated

by generating the artificial CIR for Nind times, where Nind
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Fig. 8. Monte Carlo method of estimating the measurement uncertainty.

denotes the number of independent stirrer positions. Finally,

one τ value can be obtained by nonlinear curve fitting the PDP

calculated from averaging the power of Nind generated CIRs.

Such a process can be repeated for n times to obtain n
values of τ , then the distribution of τ can be calculated from

these n values.

IV. EXPERIMENTS

To demonstrate the accuracy of nonlinear curve fitting

techniques for determining the chamber time constant, an

ACS measurement on a lossy sphere was conducted in the

University of York RC from 1 GHz to 16 GHz. The RC is a

galvanised steel room with dimensions of 4.7m×3m×2.37m.

The transmitting and receiving antennas were ETS 3115 and

ETS 3117 horn antennas, which both work from 1 GHz to 18

GHz. S21 between two antenna ports was measured by a vector

network analyser. Segmented sweeping was applied to skip

the frequencies not included in IFFT. The setup of frequency

segments is as follows: The central frequencies of each seg-

ment are linearly stepped from 1 GHz to 16 GHz with a step

size of 100 MHz, giving 151 segments in total; each segment

is 5 MHz wide and each segment has 51 linearly distributed

frequency samples. The segmented frequency sweeping from

1 GHz to 16 GHz was performed 800 times as the stirrer

turned 360 degrees. The whole measurement took about 11

minutes. In general the frequency spacing of the points in

each segment must be small enough to give a time response

several (≈ 5) time constants long so that a good decay of the

chamber energy occurs, and as the number of points in the

segment determines the number of points in the time response,

enough must be used to give a good representation of it.

Fig. 9. Measurement of a sphere model in the University of York RC.

1 2 4 6 8 10 12 14 16

Frequency (GHz)

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

A
C

S
 (

m
2
)

Win #1
Win #2
Win #3
Analytical Solution

Fig. 10. The ACS of the sphere extracted by nonlinear fitting.

The sphere under test is a spherical shell filled with deion-

ized water (Fig. 9). The outer radius of the sphere was 19.4 cm,

obtained by measuring the circumference. The shell thickness

was 3.9 mm, measured by a caliper close to rim of the sphere.

The shell of the sphere is made of high density polyethylene

(HDPE), whose relative permittivity is close to 2.35 over our

frequency range [19]. The complex permittivity of water was

taken from Kaatze [20]. The room temperature was 20◦C.

The three window functions shown in Fig. 4 were applied

to test the accuracy of nonlinear curve fitting in extracting the

chamber time constant. The ACS calculated from the chamber

time constant is compared to the analytical solution given by

Mie series calculator SPlaC V1.1 [21] in Fig. 10. The result

for linear curve fitting is shown in Fig. 11.

Fig. 11 shows that the linear curve fitting loses accuracy

when narrower window functions are applied. The worst case

happens when the window function is only 1 MHz wide (Win

#3). In this case, the measured ACS extracted by linear curve

fitting is 10% lower than the analytical solution. The mean
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Fig. 11. The ACS of the sphere extracted by linear curve fitting.

absolute percentage errors (MAPEs) of the ACSs extracted by

linear curve fitting with Win #1, Win #2, and Win #3 are 4.0%,

5.0% and 8.5%. The MAPE is defined as [22]:

MAPE(σmeas) = mean(
∣

∣

∣

σmeas(f)− σsim(f)

σsim(f)

∣

∣

∣
)× 100% ,

(19)

where σmeas is measured ACS of the object under test; σsim is

the theoretical value of ACS; and mean(·) denotes averaging

over frequencies from 1 GHz to 16 GHz.

The nonlinear curve fitting achieves a much better accuracy

in determining the chamber time constant, thus a more accu-

rate ACS was obtained, as shown in Fig. 10. The MAPEs of

the ACSs extracted by nonlinear curve fitting with Win #1,

Win #2, and Win #3 are 3.4%, 3.5% and 4.6%. Compared to

linear curve fitting with Win #1, the nonlinear curve fitting

with Win #2 gives the ACS with better accuracy but from

30 fewer samples of S21. Even in the case of applying a 1-

MHz width window, the measured ACS result still follows the

analytical solution, only with a larger variance.

To evaluate the uncertainty of measured ACS extracted from

nonlinear curve fitting, a series of measurements with similar

setups, but different positioning of the transmitting antenna

and the sphere model, were performed. A simple diagram

of measurement setups is shown in Fig. 12. The receiving

antenna was moved to four different positions, at least one

wavelength apart (30 cm) from each other to ensure field

independence. The sphere was also moved to four different

positions for each receiving antenna position, which gives 16

different measurement setups in total. The nonlinear curve

fitting with window function Win#1 was used to extract ACSs

from the 16 measurements and the measurement uncertainty

was characterized by calculating the coefficient of variation

of 16 ACS results. The coefficient of variation is defined

as the ratio of the standard deviation to the mean [23]. The

measurement uncertainty was also evaluated in the same way

with the application of Win#2 and Win#3. The coefficient

of variation obtained from measurement was compared to

that given by the Monte Carlo model in Fig. 13. The figure

Reverberation chamber

Tx

Rx

30 cm

1234

30 cm
3

0
 c

m

sphere positions

stirrer

Fig. 12. The uncertainty study set up: the transmitting antenna was moved
to 4 positions, and for each antenna position, the sphere was moved to 4
different positions too.

TABLE I
MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) OF CUBE ACS

MEASUREMENT.

cube/cuboid size
Win #1 Win #2 Win #3

linear nonlinear linear nonlinear linear nonlinear

40×40×33mm3 58% 27% 95% 36% 144% 50%

(50mm)3 31% 19% 44% 23% 60% 28%

(70mm)3 26% 18% 38% 18% 49% 21%

(90mm)3 16% 11% 21% 10% 28% 13%

(115mm)3 8% 5% 11% 6% 15% 7%

shows that the Monte Carlo model can successfully predict the

measurement uncertainty and that the application of narrower

windows tend to give higher uncertainty in evaluating ACS.

To further test the measurement range of the nonlinear

curve fitting technique, the ACS of a series of cubes (and one

cuboid), fabricated from LS22 absorber [24] of different sizes,

were measured (Fig. 14). The complex permittivity of LS22

absorber was fitted to a three-pole Debye dispersion model

[25]:

ǫ̂r = ǫ∞ +

3
∑

k=1

∆ǫk
1 + jωτk

+
σDC

jωǫ0
, (20)

where ǫ∞ = 1.1725, ∆ǫ1 = 1.04×10−3, ∆ǫ2 = 17.9, ∆ǫ3 =
0.490, τ1 = 55.3ms, τ2 = 0.188ns, τ3 = 6.20ps, and σDC =
0.1mS/m. The ACS of the cubes in an RC was simulated by

the CST time-domain solver with the method of Carlberg [26].

The MAPEs of the measured cube ACSs are listed in Table

I. The table shows that the cube ACS extracted by nonlinear

curve fitting is more accurate than that obtained by linear curve

fitting in all experiments, no matter which window function

was used. Even though the accuracy of the ACS measurement

deteriorated as the size of cube became smaller, the ACS of

the smallest absorber was still able to be determined with a
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Fig. 13. The coefficient of variation of ACS given by measurement and by the
Monte Carlo method. Since the Monte Carlo method only estimates statistical
uncertainty of the multipath model, the discrepancy at high frequencies may
be due to other sources such as imperfect stirring, moving of cables, etc.

Fig. 14. The series of absorber cubes made from carbon-loaded foam.

MAPE of 27%, which was achieved by measuring only 51 S21

samples about each desired frequency and applying nonlinear

curve fitting.

V. CONCLUSION

A new nonlinear fitting method has been demonstrated,

which allows accurate automated calculation of the chamber

time constant from the PDP of band-limited IFFT data from

a reverberant environment, without knowledge of the antenna

efficiencies. It overcomes the problems of measurement noise

floor and frequency window effects on the PDP data that

make the linear fitting technique unreliable. This allows a

fast segmented frequency sweep to be used to determine the

chamber time constant over a wide frequency range. The

operation of the method has been validated by comparison

of the ACS of a spherical test object with that computed by

means of the Mie series and with a range of absorptive cubes in

comparison with a solution from a full wave solver. The ACS

extracted by nonlinear curve fitting shows better accuracy in

all of the validation experiments compared to that given by

linear curve fitting. Combined with the use of mode stirring

and a segmented frequency sweep, it significantly reduces

the test time for measurements, which has been most useful,

particularly with human subjects where a large group study is

involved and a short test time is important. A Monte Carlo

model for the prediction of the accuracy of the nonlinear

fitting method has also been presented and validated against

measurement.

APPENDIX A

PROOF FOR THE NONLINEAR MODEL

Assume the signal received at the port of the receiving

antenna in the time-domain has the form of (15) which is:

h(t) = hs(t) + hn(t) = Vse
(−t/2τ)N1(t) + VnN2(t) ,

where hs(t) = Vse
(−t/2τ)N1(t) and hn(t) = VnN2(t), the

subscripts ‘s’ and ‘n’ means ‘signal’ and ‘noise’; Vs and Vn are

the signal level and noise level, which are real numbers; N1(t)
and N2(t) are two independent complex Gaussian random

processes with zero mean and variance of one. Written in

discrete form:

h(m) = hs(m) + hn(m) , (21)

where

hs(m) = Vs exp

(

−m∆t

2τ

)

N1(m) , (22)

hn(m) = VnN2(m) , (23)

m is the index of responses in the time-domain and ∆t is the

time step size.

According to the properties of the discrete Fourier trans-

form, the signal filtered (multiplied) by a window function

in the frequency-domain equals the circular convolution of

their response in the time-domain, therefore (21) filtered by a

window function can be written as:

h(m)⊗W (m) = hs(m)⊗W (m)

+ hn(m)⊗W (m) , (24)

where W (m) is the impulse response of the window function

in the time-domain. It is obtained from doing the IFFT on the

spectrum of window function W (fk) zero-padded all the way

to zero frequency.

In real measurement, the power response of (24) is:

|h(m)⊗W (m)|
2
=

|hs(m)⊗W (m)|
2
+ |hn(m)⊗W (m)|

2
+

[hs(m)⊗W (m)] [hn(m)⊗W (m)] +

[hs(m)⊗W (m)] [hn(m)⊗W (m)] , (25)
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where the bar over a term α means complex conjugate of α.

Then, the expectation of (25) is calculated. Because of the

independence between N1(m) and N2(m), the two rightmost

terms of (25) vanish:

E
(

|h(m)⊗W (m)|
2
)

= E
(

|hs(m)⊗W (m)|
2
)

+

E
(

|hn(m)⊗W (m)|
2
)

. (26)

Due to the property of Gaussian random process that the ran-

dom variables at any two different moments are independent,

(26) can be simplified as:

E
(

|h(m)⊗W (m)|
2
)

=
[

V 2
s e

−t/τ + V 2
n

]

⊗|W (m)|2, (27)

which is (16).

REFERENCES

[1] D. A. Hill, Electromagnetic fields in cavities: deterministic and statisti-

cal theories. New York: John Wiley & Sons, 2009.
[2] IEC-61000-4-21: Electromagnetic compatibility (EMC): Testing and

Measurement Techniques - Reverberation chamber test methods, IEC
Std., 2011.

[3] C. L. Holloway, J. Ladbury, J. Coder, G. Koepke, and D. A. Hill,
“Measuring the shielding effectiveness of small enclosures/cavities with
a reverberation chamber,” in 2007 IEEE International Symposium on

Electromagnetic Compatibility, July 2007, pp. 1–5.
[4] P. Hallbjorner, U. Carlberg, K. Madsen, and J. Andersson, “Extracting

electrical material parameters of electrically large dielectric objects from
reverberation chamber measurements of absorption cross section,” IEEE

Transactions on Electromagnetic Compatibility, vol. 47, no. 2, pp. 291–
303, May 2005.

[5] G. C. R. Melia, M. P. Robinson, I. D. Flintoft, A. C. Marvin, and J. F.
Dawson, “Broadband measurement of absorption cross section of the
human body in a reverberation chamber,” Electromagnetic Compatibility,

IEEE Transactions on, vol. 55, no. 6, pp. 1043–1050, 2013.
[6] J. N. H. Dortmans, K. A. Remley, D. Seni, C. M. Wang, and C. L. Hol-

loway, “Use of absorption cross section to predict coherence bandwidth
and other characteristics of a reverberation chamber setup for wireless-
system tests,” IEEE Transactions on Electromagnetic Compatibility,
vol. 58, no. 5, pp. 1653–1661, Oct 2016.

[7] C. L. Holloway, H. A. Shah, R. J. Pirkl, W. F. Young, D. A. Hill,
and J. Ladbury, “Reverberation chamber techniques for determining the
radiation and total efficiency of antennas,” Antennas and Propagation,

IEEE Transactions on, vol. 60, no. 4, pp. 1758–1770, 2012.
[8] S. S. Ghassemzadeh, R. Jana, C. W. Rice, W. Turin, and V. Tarokh,

“Measurement and modeling of an ultra-wide bandwidth indoor chan-
nel,” IEEE Transactions on Communications, vol. 52, no. 10, pp. 1786–
1796, 2004.

[9] A. Gifuni, “On the measurement of the absorption cross section and
material reflectivity in a reverberation chamber,” IEEE Transactions on

Electromagnetic Compatibility, vol. 51, no. 4, pp. 1047–1050, Nov 2009.

[10] G. Gradoni, D. Micheli, F. Moglie, and V. Mariani Primiani, “Absorbing
cross section in reverberation chamber: Experimental and numerical
results,” Progress In Electromagnetics Research B, vol. 45, pp. 187–
202, 2012.

[11] Z. Tian, Y. Huang, Q. Xu, T. H. Loh, and C. Li, “Measurement of
absorption cross section of a lossy object in reverberation chamber
without the need for calibration,” in 2016 Loughborough Antennas

Propagation Conference (LAPC), Nov 2016, pp. 1–5.
[12] D. Cox and R. Leck, “Distributions of multipath delay spread and

average excess delay for 910-MHz urban mobile radio paths,” IEEE

Transactions on Antennas and Propagation, vol. 23, no. 2, pp. 206–
213, 1975.

[13] X. Zhang, M. P. Robinson, I. D. Flintoft, and J. F. Dawson, “Inverse
fourier transform technique of measuring averaged absorption cross
section in the reverberation chamber and Monte Carlo study of its
uncertainty,” in 2016 International Symposium on Electromagnetic Com-

patibility - EMC EUROPE, Sept 2016, pp. 263–267.
[14] I. Glover and P. M. Grant, Digital communications. Essex, England:

Pearson Education, 2010.
[15] A. A. Saleh and R. Valenzuela, “A statistical model for indoor multipath

propagation,” IEEE Journal on selected areas in communications, vol. 5,
no. 2, pp. 128–137, 1987.

[16] X. Zhang, M. Robinson, and I. Flintoft, “On measurement of reverber-
ation chamber time constant and related curve fitting techniques,” in
2015 IEEE International Symposium on Electromagnetic Compatibility

(EMC), Aug 2015, pp. 406–411.
[17] D. W. Marquardt, “An algorithm for least-squares estimation of non-

linear parameters,” Journal of the society for Industrial and Applied

Mathematics, vol. 11, no. 2, pp. 431–441, 1963.
[18] Joint Committee for Guides in Metrology/Work Group1 (JCGM/WG1),

“ISO/IEC guide 98-3:2008:uncertainty of measurement – part 3: Guide
to the expression of uncertainty in measurement (gum:1995),” 2008.

[19] B. Riddle, J. Baker-Jarvis, and J. Krupka, “Complex permittivity
measurements of common plastics over variable temperatures,” IEEE

Transactions on Microwave Theory and Techniques, vol. 51, no. 3, pp.
727–733, 2003.

[20] U. Kaatze, “Complex permittivity of water as a function of frequency
and temperature,” Journal of Chemical and Engineering Data, vol. 34,
no. 4, pp. 371–374, 1989.

[21] E. Le Ru and P. Etchegoin, “SPlaC package v1.0 guide and
supplementary information,” Victoria University, Tech. Rep., 2008.
[Online]. Available: http://www.victoria.ac.nz/scps/research/research-
groups/raman-lab/numerical-tools/sers-and-plasmonics-codes

[22] C. Tofallis, “A better measure of relative prediction accuracy for model
selection and model estimation,” Journal of the Operational Research

Society, vol. 66, no. 8, pp. 1352–1362, 2015.
[23] B. Everitt and A. Skrondal, The Cambridge dictionary of statistics.

Cambridge University Press Cambridge, 2002, vol. 106.
[24] “Emerson & Cuming, ECCOSORB LS permittivity &

permeability data,” [Online; accessed 13-July-2017]. [Online].
Available: http://www.eccosorb.com/Collateral/Documents/English-
US/Electrical%20Parameters/ls%20parameters.pdf

[25] I. D. Flintoft, S. J. Bale, S. L. Parker, A. C. Marvin, J. F. Dawson, and
M. P. Robinson, “On the measurable range of absorption cross section
in a reverberation chamber,” IEEE Transactions on Electromagnetic

Compatibility, vol. 58, no. 1, pp. 22–29, 2016.
[26] U. Carlberg, P.-S. Kildal, A. Wolfgang, O. Sotoudeh, and C. Orlenius,

“Calculated and measured absorption cross sections of lossy objects in
reverberation chamber,” Electromagnetic Compatibility, IEEE Transac-

tions on, vol. 46, no. 2, pp. 146–154, 2004.


