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Abstract

Regression of data represented as points on a hypersphere has traditionally been treated using parametric

families of transformations that include the simple rigid rotation as an important, special case. On the other

hand, nonparametric methods have generally focused on modelling a scalar response through a spherical

predictor by representing the regression function as a polynomial, leading to component-wise estimation

of a spherical response. We propose a very flexible, simple regression model where for each location of

the manifold a specific rotation matrix is to be estimated. To make this approach tractable, we assume

continuity of the regression function that, in turn, allows for approximations of rotation matrices based on

a series expansion. It is seen that the non-rigidity of our technique motivates an iterative estimation within

a Newton-Raphson learning scheme which exhibits bias reduction properties. Extensions to general shape

matching are also outlined. Both simulations and real data are used to illustrate the results.

Keywords: Bias Reduction, Fisher’s Method of Scoring, Local Smoothing, Non-Rigid Rotation Estimation,

Singular Value Decomposition, Skew-symmetric Matrices, Spherical Kernels, Wahba’s Problem

1. INTRODUCTION

1.1 Motivation and literature

There are two main categories of spherical data: directional and shape data. Standard examples of direc-

tional phenomena are: animal movements, cosmic rays, winds, ocean currents, in which a direction can be

represented as a point on the unit sphere. Recent fields of interest include genome sequence representations,

text analysis and clustering, morphometrics, and computer vision. In shape analysis (Dryden and Mardia,

2016) the similarity between two objects, each being represented by a set of landmarks, is judged after

superimposing them by translation, scaling and rotation. A further domain for spherical data is in the field

of compositional data analysis, i.e. positive vectors whose components add to a given constant. If the latter

is set to one, a square root transformation puts these data onto the unit hypersphere. This approach has

been successfully used by Wang et al. (2007) as a model for forecasting a time series of compositional data.

Our objective is to obtain a general approach to relate paired spherical data using rotations. We start

with some data examples from various fields in order to highlight the potential scientific interest. The first,

which uses directional data, is to describe the location of magnetic poles using a type of autoregressive model.

Specifically, the location of the magnetic North pole (Fig. 3 of supplementary material) changes each year,

and our objective is to predict next year’s location using previous data. Predicting this change, and the

rate of change, is of interest to geophysicists and geologists. An example using shape data considers tectonic
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plate movement (Chang, 1986). The interest lies in the relative motion of a tectonic plate from another

considered as fixed in its present location, which leads to superposition of two objects, here represented by

11 locations on the Earth’s surface (Figure 1). The solution can be used in a residual analysis, prediction of

new landmarks, and leads to a better understanding of the distribution of species and ecosystems in space

and time. Our final example uses experimental data from vectorcardiograms, which capture aspects of the

electrocardiogram in the form of “loops”. Data are related to children of different ages and genders, using

two different lead systems. Interest here naturally lies in any difference between gender, between the ages or

between the two systems. Using summary of data in form of unit vectors, the systems can be compared by

estimating a rotation which maps one system to the other (Downs, 1972; Rosenthal et al., 2014). Section 7

and supplementary material contain additional details. Further examples of finding an optimal rotation as

a link between two scatters of spherical locations can be found in Mardia & Jupp (2000, p.259).

Given the unit hypersphere S
d−1 := {u ∈ R

d : ||u|| = 1}, d ≥ 2, consider pairs (xi, yi) ∈ S
d−1 × S

d−1,

i ∈ (1, . . . , n). Letting SO(d) be the set of all proper rotations on Rd (orthogonal matrices with determinant

1), the optimal rotation, in the least squares sense, to superimpose the two sets of points is described by

argmin
R∈SO(d)

n
∑

i=1

||yi −Rxi||2, (1)

that can be explained as follows. The matrix R rotates xi in the d-dimensional Euclidean space through

an angle about the origin of the Cartesian coordinate system. The classical way to solve this problem is to

use the Singular Value Decomposition (SVD) of Y T X, in which X and Y are both n × d matrices with

xT
i and yT

i as their respective ith rows. Then, to preclude those solutions which include a reflection, use

R̂ = UT ∆V in which U and V are obtained from the SVD: Y T X = UDV T , and ∆ is a diagonal matrix

of order d with entries (1, . . . , 1, |UT V |), where |A| denotes the determinant of the matrix A.

When we assume that the quantity yi−Rxi is a realization of a random variable, we obtain an inferential

version of problem (1), called spherical regression. Inference was first considered by Chang (1986), who used

maximum likelihood with a rotationally symmetric error distribution. However, estimating a simple rotation,

although widely used, is a very crude way to model regression, as it corresponds to simple data translation

in the Euclidean setting. Even in the classic, favourable example used by Chang (1986) and discussed by

Chang (1989) and Rivest (1989), a rigid fit seems hard to confirm, as can be seen in Figure 1. We can note a

somewhat unsatisfactory fit – though the sample size is small – since these data are virtually noiseless (errors

in plate tectonic data range from 2 to 20 km to be compared with the Earth’s circumference). The reader

is referred to Chang et al. (2000) for more sophisticated spherical regression techniques in plate tectonics.

A more general family of transformations, i.e. the Möbius group, has been introduced by Downs (2003)

for the customary case d = 3. A further generalization has been recently proposed by Rosenthal et al.

(2014), who considered a larger parametric family than the rotation group. Specifically, for a non-singular
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Figure 1: Open circles represent Somalian tectonic plate, black circles represent its reconstruction by rotating

Arabian tectonic plate. The length of the arrows is proportional to the magnitude of the errors.

matrix A of order d they consider the transformations defined as x→ Ax/||Ax||, and use a von Mises-Fisher

distribution to model the noise, and to specify the likelihood function for parameter estimation. Despite these

advances, the authors argue that the richest approach is the nonparametric one, but defer this as a topic for

future research. A recent development of this idea is due to Rosenthal et al. (2017), where diffeomorphisms

are considered to model spherical-spherical regression. Penalised maximum likelihood via gradient-based

optimization is implemented for the three dimensional case. This strategy could be considered somewhat

extreme whereas a very general model for the regression function is proposed, but it is still required that

random errors are homoscedastic and follow a von Mises-Fisher distribution.

As opposed to the above parametric strategies, we could cite a number of nonparametric methods for

regression or interpolation of spherical data. Their common strategy is similar to the Euclidean one; see, for

example, Ruppert & Wand (1994), where a polynomial is used to locally (splines, needlets or Taylor-like ones)

or globally (spherical harmonics) model the regression function. As a result, they generally work component-

wise when used to predict spherical responses. A serious problem with these approaches obviously lies in

explicitly modelling (or excluding) any correlation between dimensions, that, due to the spherical geometry,

is customarily very relevant. For details, see Di Marzio et al. (2014), who proposed Taylor-like polynomials.
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1.2 Main idea

Consider a pair of random variables (X , Y), both taking values on Sd−1. Assume that the regression of Y

on X exists for each x ∈ Sd−1. Since any two points on the sphere are related by a rotation describing the

shortest arc joining them, we could always write such regression function by specifying a distinct rotation

for each predictor value x

E[Y |X = x] = Rxx . (2)

As for the experimental error, it is naturally represented as a small random rotation of the true regression

function. For more details on this see Rancourt et al. (2000) and Jupp (1988). To conveniently represent

it, we need to preliminarily recall the formula of the matrix exponential, i.e., for a matrix A of order d,

exp(A) = Id + A + A2/2 + · · · , with Id denoting the identity matrix of order d. Any rotation matrix R

has an exponential form R = exp(S), where S is a skew-symmetric matrix, i.e. ST = −S. Using more

general concepts, we would say that the real skew-symmetric matrices, that constitute a Lie algebra, are

mapped into the Lie group of orthogonal matrices by the matrix exponential. For a gentle introduction to

computational results regarding exponentials of skew-symmetric matrices see Gallier & Xu (2003).

The above discussion motivates the regression for independent copies (x1, y1), . . . , (xn, yn) of (X , Y) as

yi = exp (Φ(εi))Rxi
xi, i ∈ (1, . . . , n), (3)

where the function Φ(a) maps an Rd vector a = (a1, a2, . . . , ad(d−1)/2)
T into a skew-symmetric matrix; for

example, for d = 3 we could use

Φ(a) =











0 −a3 a2

a3 0 −a1

−a2 a1 0











;

and the εis are random error terms satisfying E [εi | xi] = 0d, where 0d stands for a d-dimensional vector

of zeros, and Var [yi | xi] = Σxi
, with Σxi

being a matrix of order d with finite entries. Observe that, if

εi has entries close to zero, then exp(Φ(εi)) ≈ Id. This is equivalent to assuming that the distribution of

Y | X = xi has expectation Rxi
xi. An advantage of this error characterization is that εi can be assumed

to be a d-dimensional Euclidean random variable, making the model formulation more familiar.

Remark 1. In our context, the usual Euclidean additive error undoubtedly appears to be somewhat more

artificial than a rotational one because it cannot be a realization of a spherical density. In fact, sphere

locations are not closed with respect to addition because the sphere is not a convex space. Specifically, it

could even appear restrictive when we require that its distribution needs to be symmetric around the null

direction. On the other hand, the multiplicative version used in model (3) makes things easy. For example,

Downs (1972) requires that εis are independent copies of a normal random vector (which could be seen
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as a multivariate version of the wrapped normal distribution). Surely, in our nonparametric context the

noise distribution does not need to belong to a known parametric family. Conversely, a maximum likelihood

approach could be more appropriate.

Model (3) is too general for inferential purposes because it requires the estimation of a distinct rotation

matrix corresponding to each xi. However, it could be made more tractable by assuming that, within wide

enough regions, the rotation matrices are “similar”. In this paper we discuss model (3) under the assumption

that the regression function (2) is continuous, i.e. limxi→x Rxi
= Rx. This assumption motivates: (a) a

local approximation of Rxi
in terms of Rx under suitable smoothness conditions, and (b) the use of the

whole sample in the inference about Rx, provided that xi contributes inversely to its distance from x. In

such a framework the shape of the scatter of predicted values is, in general, different from the shape of

predictors. Such a transformation is usually referred to as a non-rigid rotation. Notice that, differently from

any previous nonparametric technique, our scenario is set up as simple regression – although the observations

are multidimensional – and the need to model correlation is removed.

The paper is organized as follows. Section 2 explores some mathematical tools, establishing that a

specific estimator corresponds to a given order of a Taylor-like approximation of Rxi
. The simplest case,

i.e. the one-term approximation estimator, is studied in Section 3. Section 4 contains some theory for the

two-term approximation. Motivated by the fact that a smoothing process yields biased estimates, Section

5 introduces a Newton-Raphson algorithm that iterates the estimate using a progressive bias reduction.

Section 6 investigates performance of our methods by means of simulations. Section 7 shows a real data

experiment, also considering other methods for comparison. Extensions to shape matching is discussed in

the concluding Section 8. Supplementary material contains additional simulations and real data case studies.

2. EXPANSIONS AND APPROXIMATIONS

Since the model associates a distinct rotation with each location on the sphere, it is natural to assume

dependency of the entries of rotation matrices from the associated locations. Therefore, for x ∈ Sd−1, we

write Rx = exp(Sx), where

Sx =

























0 s12(x) · · · · · · s1d(x)

−s12(x) 0 · · · · · · s2d(x)

...
...

. . .
. . .

...

...
...

. . .
. . . s(d−1) d(x)

−s1d(x) −s2d(x) · · · −s(d−1)d(x) 0

























.

Now, before introducing a local approximation for Rxi
, we need to recall some basic facts about parametriza-

tion and expansion of a function defined on Sd−1. In particular, the ensuing discussion will provide tools
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aimed to nonparametrically model the entries of the skew-symmetrix matrices Sxi
, i ∈ (1, . . . , n), which,

through matrix exponential, define the rotation matrices Rxi
. An obvious alternative, although not pursued

in the literature, would be to consider parametric expressions for the entries of these matrices. In this latter

case we could still preserve flexibility by using the weighting scheme as discussed in the sequel.

Coming to the parametrization, given x ∈ Sd−1, any vector u ∈ Sd−1 can be expressed as

u(ξ, θ) := x cos(θ) + ξ sin(θ), (4)

where θ = arccos
(

uT x
)

, and ξ is a vector orthogonal to x. Now, given a function g : Sd−1 → R, denoting as

µd the Lebesgue measure of Sd, and letting Tx := {ξ ∈ Sd−1 : ξ ⊥ x}, the integration formula corresponding

to parametrization (4) is

∫

Sd−1

g(u)dµd−1(u) =

∫ π

0

dθ sind−2(θ)

∫

Tx

g(u(ξ, θ))dµd−2(ξ). (5)

Moreover, letting ḡ(x) := g(x/||x||) be the homogeneous extension of g to Rd \ {0d}, we have that

∂ℓ

∂θℓ
g(u(ξ, θ))

∣

∣

∣

∣

θ=0

= D(ℓ)
ξ ḡ(x),

where D(ℓ)
ξ ḡ(x) is the directional derivative of order ℓ of ḡ at x in the direction of ξ. Clearly D(0)

ξ ḡ(x) = g(x),

while, letting ∇ḡ(x) and ∇2ḡ(x) respectively be the gradient and the Hessian matrix of ḡ at x, we have

D(1)
ξ ḡ(x) = ξT∇ḡ(x), and D(2)

ξ ḡ(x) = ξT∇2ḡ(x)ξ. Further, under continuity assumptions of the directional

derivatives up to a suitable order, a pth-order Taylor series expansion of g around x yields

g(u) ≈ g(x) +

p
∑

ℓ=1

θℓ

ℓ!
D(ℓ)

ξ ḡ(x). (6)

Expansion (6) has been employed for deriving the asymptotic properties of kernel estimators for spherical

densities by Hall et al. (1987) and Klemelä (2000), and to obtain a component-wise local approximation of

spherical-spherical regression by Di Marzio et al. (2014).

Now, provided that the homogeneous extension of each non-zero entry of the skew-symmetric matrix Sxi
,

say sjk(xi), with (j, k) ∈ (1, . . . , d)×(1, . . . , d) (with j 6= k), has p continuous derivatives in a neighbourhood

of x ∈ Sd−1, expansion (6), for sjk(xi) around x, yields

Rxi
= exp(Sxi

) ≈ exp

(

Sx +

p
∑

ℓ=1

D
(ℓ)
Sx

(xi, x)

)

, (7)

where D
(ℓ)
Sx

(xi, x) is the matrix of order d having θℓ
i/(ℓ!)D(ℓ)

ξi
s̄jk(x) as its (j, k)th entry. A further approxi-

mation, which uses the expansion of the matrix exponential, yields

Rxi
≈ Rx

(

Id +

p
∑

ℓ=1

D
(ℓ)
Sx

(xi, x)

)

. (8)
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Now, if in model (3) we approximate Rxi
by (7), or, equivalently, by (8), we see that — due to the local

character of the expansion — Rx can be approximated by all the n rotations Rxi
, i ∈ (1, . . . , n), more

accurately as the locations xi are closer to x. Consequently, we attain a tractable estimation problem, in

the sense that each observation xi can participate in the estimation of the rotation at x with the caveat that

its contribution needs to be as smaller for larger ||xi − x||. Indeed, we have defined a class of estimators,

depending on the number of terms, p, we choose in the expansion of Rxi
. In the next two sections we will

examine the main cases.

3. ONE-TERM FIT

3.1 Estimator

A single term (p = 0) version of expansion (8) yields Rxi
≈ Rx, and so our estimator is given by the solution

of the locally weighted least squares problem

argmin
Rx∈SO(d)

n
∑

i=1

||yi −Rxxi||2Kκ

(

xT
i x
)

, (9)

where the weight function Kκ(xT
i x) — often referred to as kernel — is chosen to reflect the geodesic distance

from xi to x rescaled by the concentration parameter κ > 0. To roughly understand the rôle of κ, suffice it to

say that 1/κ is proportional to the width of the neighbourhood of x containing the observations effectively

involved in the estimation process. As a weight function we could use Kk(xT
i x) ∝ exp

(

κxT
i x
)

. This is

a rotationally symmetric function with maximum at x, and a parameter κ which governs how much the

weight spreads around x. As a result, xi will receive a bigger weight the closer it is to x, and for larger

κ. Clearly, because model (3) assigns a rotation to each point, in order to reduce the bias we require κ

to be sufficiently large, although this would involve a smaller effective sample size and therefore variance

inflation. Additionally, given any finite dataset, we could always select a large enough κ that guarantees

perfect superimposition of predictions and observed responses, and therefore complete adaptation. In the

presence of experimental errors, this extreme scenario would perform very poorly on an out-of-sample test

set of data. Taking all this into account, a natural strategy would set κ as increasing with n. Importantly,

observe that such a rule will result in an arbitrarily accurate approximation (7), depending on n.

Rosenthal et al. (2017) use a roughness penalty as a bias-variance trade-off technique. This is equivalent

to our smoothing parameter approach. As a global modelling strategy, their method has obviously a greater

capacity to extrapolate to sparse regions, provided that the regression function belongs to the space of

diffeomorphisms. Local methods, like ours, could in these cases still reasonably work if the smoothing

parameter is not chosen by cross-validation and is not kept fixed for all locations. Surely, flexibility due to

locality needs to be carefully managed, but has less chance of incurring model misspecification errors. In fact,

many analysts would prefer not to carry out estimation in regions of no data. Our asymptotic theory, that
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we will present later to describe accuracy, clearly depends on the density of the observations, and requires

this to be non-zero. Rosenthal et al. (2017) do not provide asymptotic properties.

Finally note that, whatever the value of d is, we have always a scalar concentration parameter κ. This

contrasts with Euclidean theory where we may have a smoothing matrix of order d allowing specific smoothing

degrees along the directions. Unfortunately, current distributions on the sphere do not allow such kind of

flexibility when used as weights. Therefore directional smoothing on the sphere could be regarded an active

research field. On the other hand, using a specific concentration for each observation (or estimation point),

would constitute a straight extension of Euclidean theory.

Remark 2. Optimization (9) could be considered a generalization of a problem posed by Wahba (1965). This

latter was formulated for d = 3 in a non-stochastic framework, where xi represents the known coordinates of

a star, yi refers to the position registered by a satellite, and the weight for the ith observation reproduces the

precision of the experimental measurement xi. Importantly, in our case κ is not a feature of the observed

phenomenon, but rather a parameter chosen by the statistician. The focus has traditionally been on the

quality of superimposing algorithm, and SVD was seen to be one of the most robust, though not the fastest.

Likewise for (1), we have R̂x = UT ∆V , in which UDV T is the SVD of Y T Wκ(x)X, with X, Y and

∆ as before and, for a ∈ Sd−1, Wκ(a) is a diagonal matrix of order n having Kk

(

xT
i a
)

as its (i, i)th entry.

Notice that, due to the non-linearity of the constraints required by a proper rotation, we do not have a

closed-form estimator and this will make it difficult to establish statistical properties.

It is possible to compare this estimator with the approach of Di Marzio et al. (2014). They propose

a nonparametric, component-wise spherical regression fit. Due to the localization of the estimator, spatial

weights are also involved there. Exploring the limiting cases of κ, with sample size kept as fixed, indicates

some differences and similarities. As κ → 0, i.e. nearly zero concentration, the weights tend to have same

value for all estimation points. Clearly the inference changes its nature into a parametric one because

R̂x → R̂, the rigid rotation solution. This is relevant because our method, although very flexible, still has

the potential to include the basic parametric spherical regression model, i.e. the rigid rotation. On the other

hand, using the same weight within Di Marzio et al. (2014) procedure for all observations produces the

interpolating surface used for the expansion, a very poor result. Conversely, as κ → ∞ for both methods

the region containing the observations really participating to the estimation will become too small with the

result of involving in the estimate one or no data depending on we are estimating either at xi or at x.

As for the smoothness degree selection, we see that, using a standard cross-validation (CV) procedure,

the optimal choice of κ minimizes −∑i yT
i ŷ

(−i)
i , where ŷ

(−i)
i = R̂

(−i)
xi

xi, and R̂
(−i)
xi

is estimated using the

SVD but after removing the ith rows from the matrices X, Y , and the ith row and column from the matrix

Wκ(x). Note that the CV function requires n SVD solutions to be found. Having obtained a suitable κ,
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this then defines function Kκ in Equation (9) with the proposed solution giving a predicted value ŷ = R̂xx.

3.2 Asymptotic properties

As observed, we do not have a closed-form estimator, and therefore we are unable to use a “direct” approach

to derive asymptotic properties. Importantly, it will emerge that the estimator resulting from the search over

Rd×d, rather than over SO(d) — which we refer to as the unconstrained estimator — is consistent, which

means that constraints are asymptotically inactive within our rotation model. This per se would make it

sufficient to simply explore the unconstrained solution. However, to be more detailed, we can still take into

account, as an approximation, the solution of a least square problem with a linear constraint. In fact we

could use the linear truncation Rx = exp(Sx) ≈ Id + Sx. Such a truncation is more precise for smaller

rotation angles. However, this assumption is not very restrictive because our model requires that rotations

are similar within a region centred on the estimation point. In fact, a smoothness hypothesis motivates a

preliminary estimation of a pale rigid rotation in order to move the predictor values close to their respective

responses.

Specifically, let Skewq :=
{

M ∈ R
q×q : MT = −M

}

, and recall that the Frobenius norm of a matrix A

is ||A||F := (trace(AT A))1/2. Then, letting A and B be p× q matrices, and

C̃ := argmin
C∈Rq×q

||A−BC||2F ,

we have that the solution of this least squares problem under a skew-symmetric constraint is

argmin
C∈ Skewq

||A−BC||2F =
1

2

(

C̃ − C̃T
)

,

which is the skew-symmetric part of the unconstrained solution. Now, letting X and Y be defined as before,

the solution of the least squares problem

argmin
Sx∈ Skewd

||Wκ(x)1/2{Y −X(Id + Sx)}||2F

yields a locally constant estimator of Sx. Specifically, the above argument with A = Wκ(x)1/2(Y −X),

and B = Wκ(x)1/2X, yields

Ŝx =
1

2

{

(XT Wκ(x)X)−1XT Wκ(x)Y − Y T Wκ(x)X(XT Wκ(x)X)−1
}

. (10)

Now, for a given weight function Kκ, and j ∈ N, set

bj(κ) := ωd−2

∫ π

0

Kκ(cos(θ))θj sind−2(θ)dθ, and ν(κ) := ωd−2

∫ π

0

K2
κ(cos(θ)) sind−2(θ)dθ,

where ωd := µd

(

Sd
)

= 2π(d+1)/2/Γ((d + 1)/2) is the surface area of Sd. Now, let uℓ be the ℓth entry of a

d-dimensional vector u, and for j ∈ (1, . . . , d), let Dj(x) be a matrix of order d having ∂s̄ik(u)/∂uj |u=x
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as its (i, k)th entry, and, for (j, ℓ) ∈ (1, . . . , d) × (1, . . . , d), let Hjℓ(x) be the matrix of order d having

∂2s̄ik(u)/(∂uj∂uℓ) |u=x as its (i, k)th entry. Also, define the block matrices

P (x) :=













D1(x)

...

Dd(x)













, and Q(x) :=







































H11(x)

...

H1d(x)

...

Hd1(x)

...

Hdd(x)







































.

Now, let vec(A) denote the vectorization of matrix A. If A⊗B indicates the Kronecker product of matrices

A and B, and f is the common density of the xis, we get

Theorem 1. Given the Sd−1 × Sd−1-valued random sample (x1, y1), . . . , (xn, yn), assume model (3). If,

i) f(x) > 0, the derivatives of f̄ up to order 1, and the derivatives of s̄ik up to order 2, are continuous

at x ∈ Sd−1, with (i, k) ∈ (1, . . . , d)× (1, . . . , d) and i 6= k,

ii) lim
n→∞

b2(κ) = 0,

iii) bj(κ) = o(b2(κ)), for each j > 2,

then, for estimator (10), it holds that

E[Ŝx−Sx |X] =
b2(κ)

2f(x)

{

2(d− 1)(∇T
f̄ (x)⊗ Id)P (x) + f(x)

(
∫

Tx

vecT (ξξT )dµd−2(ξ)⊗ Id

)

Q(x)

}

+o(b2(κ)Id).

Proof. See supplementary material.

4. TWO-TERM FIT

4.1 Estimator

A two-term formulation could be appropriate in some cases. This assumes that, in a neighbourhood of x,

Rxi
is adequately approximated by (8) with p = 1. This results in solving

argmin
Rx∈SO(d),D

(1)
Sx

(xi,x)∈Skewd

n
∑

i=1

∣

∣

∣

∣

∣

∣yi −Rx

{

Id + D
(1)
Sx

(xi, x)
}

xi

∣

∣

∣

∣

∣

∣

2

Kκ

(

xT
i x
)

, (11)

for which — distinctly from the case p = 0 where the SVD is used — we are not aware of any closed form

solution. Some computational comments for numerical methods are considered in Section 6.1.
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4.2 Asymptotic properties

Extending the reasoning of Section 3.2 to p = 1, we consider the approximation Rxi
≈ Id +Sx +D

(1)
Sx

(xi, x).

Then, letting X and β respectively be nd× (d + 1)d and (d + 1)d× d matrices defined as

X =













1 θ1ξ
T
1

...
...

1 θnξT
n













⊗ Id, and β =



















Sx

D1(x)

...

Dd(x)



















,

and setting X̃ = diag(xT
1 , . . . ,xT

n )X, according to the above expansion, we have E[Y |X] ≈ X + X̃β, and

the solution for Sx of the locally weighted least squares problem

argmin
Sx∈ Skewd,D1(x)∈ Skewd,··· ,Dd(x)∈ Skewd

||Wκ(x)1/2(Y −X − X̃β)||2F , (12)

defines a two-term estimator of Sx. In particular, reasoning as before, we can write the solutions of problem

(12) as the skew-symmetric parts of the unconstrained solutions. Hence, the solution for Sx is

Ŝx =
1

2

{

ET
1

(

X̃
T Wκ(x)X̃

)−1

X̃
T Wκ(x)(Y −X)− (Y −X)T Wκ(x)X̃

(

X̃
T Wκ(x)X̃

)−1

E1

}

, (13)

where E1 is a (d + 1)d× d block matrix having Id as its first block and null matrices otherwise. Concerning

asymptotic properties, we get the following

Theorem 2. Given the S
d−1×S

d−1-valued random sample (x1, y1), . . . , (xn, yn), under assumptions i)−iii)

of Theorem 1, for estimator (13), it holds that

E[Ŝx − Sx |X] =
b2(Kκ)

2

(∫

Tx

vecT (ξξT )dµd−2(ξ)⊗ Id

)

Q(x) + o (b2(κ)Id)

Proof. See supplementary material.

Comparing this result with Theorem 1, it emerges that the asymptotic bias of the two-term version

of Ŝx, differently from the one-term one, does not depend on the design density f , nor on the first order

derivatives of the homogeneous extensions of the entries of Sx. However, the estimators share the order of

the asymptotic bias. As for the asymptotic variance, for both the one and two-term versions of Ŝx, we get

Theorem 3. Given the S
d−1 × S

d−1-valued random sample (x1, y1), . . . , (xn, yn), if

i) f(x) > 0, and all entries of Σxi
, i ∈ (1, . . . , n), are continuous at x ∈ Sd−1,

ii) the weight function Kκ is such that lim
n→∞

n−1ν(κ) = 0,

then the asymptotic variances of the vectorizations of estimators (10) and (13) are both O(n−1ν(κ)Id2).
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Proof. See supplementary material.

As a consequence of Theorems 1–3, the asymptotic biases of the vectorizations of estimators (10) and

(13) are both O(b2(κ)1d2), with 1d being a d-dimensional vector of ones, while the asymptotic variances are

both O(n−1ν(κ)Id2). Now, consider the special case of a von Mises-Fisher kernel, which can be regarded as

the spherical counterpart of the Gaussian kernel, and is defined, on Sd−1, as

Kκ(xT µ) =
κd/2−1eκxT µ

(2π)d/2Id/2−1(κ)
,

where µ ∈ Sd−1 is the mean direction, κ > 0 is the concentration parameter, and Iu(·) stands for the

modified Bessel function of the first kind and order u. For such a kernel, and for κ big enough, it holds that

bj(κ) ∼ 2j/2Γ ((d + j − 1)/2)

κj/2Γ ((d− 1)/2)
, and ν(κ) ∼ κ(d−1)/2

2d−1π(d−1)/2
,

hence it satisfies condition iii) of Theorem 1, whereas assumption ii) of Theorem 1 and assumption ii) of

Theorem 3 respectively imply that, as n → ∞, κ → ∞, and n−1κ(d−1)/2 → 0. Then, using the above

kernel as the weight function Kκ, for both (10) and (13), vec(Ŝx) has conditional asymptotic bias of order

O(κ−11d2), and conditional asymptotic variance of order O(n−1κ(d−1)/2Id2). Thus the optimal value of κ,

which minimizes the conditional asymptotic mean squared error of vec(Ŝx), being the leading part of

E[||vec(Ŝx)− vec(Sx)||2 |X] = trace(Var[Ŝx | X]) + ||E[vec(Ŝx)− vec(Sx) |X]||2,

is O(n2/(d+3)). The resulting convergence rate of vec(Ŝx), given by the order of the asymptotic mean squared

error using the optimal κ, is O(n−4/(d+3)).

5. AN ITERATIVE ALGORITHM FOR BIAS REDUCTION

5.1 Motivation

After obtaining ŷis, a natural question is whether a further rotation of the predicted values could improve

the fit. As a motivation, observe that in such an iteration we could use different weights. Also note, since

our method gives non-rigid rotations, then the interpoint distances of the fitted values will differ from those

of the original covariates. In general, we could perform several iterations such that, at each step, the current

estimate of yi is used in place of xi. As a sort of residuals fitting technique, this idea clearly has a relationship

with L2-boosting, which has been used with splines, and kernel methods in regression; see Bühlmann and Yu

(2003) and Di Marzio and Taylor (2008), respectively.

Algorithm 1, which can easily be adjusted to make predictions for several new design points, implements

the proposed method. Moreover, note that, if κ = 0 (line 1), we would obtain the rigid solution, and

taking further iterations (M > 1) will have no effect. Further, several variants of this algorithm could be

investigated. For example, κ could be allowed to change along iterations, or the weight matrix could be

14



Require: X and Y are n× d data matrices

input:

1: κ← smoothing parameter

2: M ← number of iterations

3: given x ∈ S
d−1

initialize:

4: R̂x ← Id

5: W ←Wκ(x)

6: Ŷ ← X

loop:

7: for m← 1 to M do

8: factorize: Y T WŶ = UDV T

9: R← UT V

10: Ŷ ← Ŷ RT

11: R̂x ← RR̂x

output:

12: ŷ ← R̂xx

algorithm 1: Newton-Raphson iterative rotation fitting.

updated (after line 10) to correspond to the current Ŷ , or — as in the case of some boosting algorithms —

to depend on the current residuals. In any case, κ and M will need to be jointly chosen, with larger values

of M corresponding to smaller κ in order to obtain perfect superimposition for very large values of M .

Noting that Algorithm 1 is computationally intensive — particularly if leave-one-out cross-validation is

used to select κ — and considering analogous situations for boosting kernel regression in the Euclidean case,

we also investigate an approximation in which the weight function is adjusted to mimic the solution for

further iterations. So, for M = 2, simple algebra leads to define the ith kernel as

2Kκ

(

xT
i x
)

−Kκ/4

(

xT
i x
)

, (14)

without any iterations. Such kernel structure is reminiscent of the twicing estimator proposed by Stuetzle

& Mittal (1979) in the context of robust, nonparametric estimation. It should be noted that this weight is

not necessarily positive, and that, in this case, the normalizing constant for the kernel will be required.

We now show that Algorithm 1 iteratively estimates the bias, and then corrects for it. We will also see

that it has an optimal (Newton-Raphson) convergence rate to the local minimum.
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5.2 Some properties

To keep things simple consider a one-term version of (8) for Rxi
, i.e. Rxi

≈ Rx. The one-step problem

requires minimizing the function

F(R, L, λ) := ||Wκ(x)1/2(Y −XR)||2F − trace

(

1

2
L(RT R− I)

)

− λ(|R| − 1),

where L is a diagonal matrix of order d of Lagrange multipliers and λ is also a Lagrange multiplier. Partial

differentiation of F with respect to R, L and λ leads to the following system of equations

∂F(R, L, λ)

∂R
= −2Y T Wκ(x)X + 2RXT Wκ(x)X −RL− λR = 0d×d

∂F(R, L, λ)

∂L
=

1

2
(RT R− I) = 0d×d

∂F(R, L, λ)

∂λ
= |R| − 1 = 0,

where 0d×d is the null matrix of order d. In order to obtain some properties, according to the Fisher’s

scoring idea (see, for example, Osborne (1992)), we expand the gradient of the objective function taken at

the SVD solution R̂x around the unknown Rx. This will lead to an expression for the unknown estimation

error R̂x − Rx. Specifically, letting f(R) := ∂F(R, L, λ)/∂R, by expanding f(R̂x) around Rx, we obtain

f(R̂x) = f(Rx) + f
′(Rx)(R̂x −Rx) = 0d×d, where f

′(Rx) := ∂f(R)/∂R|R=Rx
. Notice that this equality is

due to the linearity of first derivative. Consequently, we get

R̂x −Rx = −f
′(Rx)−1

f(Rx). (15)

Now, the objective function, at step m ≥ 1, is

Fm(R, L, λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Wκ,m(x)1/2

{

Y −
(

X

m−1
∏

ℓ=0

R̂x,ℓ

)

R

}∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

F

− trace

(

1

2
L
(

RT R− I
)

)

− λ(|R| − 1),

where R̂x,0 = Id, R̂x,ℓ is the rotation matrix estimated at the ℓth step, and Wκ,m(x) is the weight matrix

used at the mth step. The resulting rotation matrix, using obvious notation, is

R̂x,m = R̂x,m−1 − f
′

m(R̂x,m−1)
−1

fm(R̂x,m−1).

Such a solution resembles an iteration of a Newton-Raphson minimization algorithm. Indeed, it also coincides

with an iteration in the gradient descent algorithm, where the step length is equal to f
′

m(R̂x,m−1)
−1. A

statistical interpretation of the algorithm is possible in connection with Equation (15). In fact, it says that

f
′

m(R̂x,m−1)
−1

fm(R̂x,m−1) is an estimate of the bias matrix, therefore the algorithm iteratively estimates

the bias and corrects for it.

Regarding the asymptotic accuracy, we observe that theory contained in Section 3.2 (or 4.2 if we use the

two-term fit as the base learner) provides an improving description of it at each step because the algorithm

will estimate progressively smaller rotations.
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6. SIMULATIONS

6.1 Computational Comments

To simulate data, a model of the form (2) can be specified either by providing Rx or by specifying a

skew-symmetric matrix. In the latter case, given Sx, we obtained Rx = exp(Sx) from a truncated (after

the second term) summation of the exponential series such that computed value satisfies the condition

max(| |Rx| − 1|, ||RT
x −R−1

x ||2F ) < 10−7.

The one-term solution is straightforward to obtain, since the rotation matrix is available from the SVD.

This was used as a starting value in the two-term solution of (11), for which we resorted to a nonlinear

optimization in the components of the 4 skew-symmetric matrices (i.e. 12 parameters) for 3-d data. Use of

the skew-symmetric matrix seemed well-behaved in the Newton-Raphson optimization, and no constraints

were required — as they would have been for a direct rotation solution. For d = 3 it is then easy to obtain R̂x

from Ŝx using the Rodrigues rotation formula. Although we found the two-term solution to be well-behaved,

even for small n, it was very slow.

For the two-term fit, and the one-term fit (any M in Algorithm 1) the kernel function used for the weights

was the von-Mises Fisher density. However, since normalization of the weights makes no difference to the

SVD solution, we simply used Kκ(xT
i x) = exp(κ(xT

i x− 1)), which is numerically stable for all κ.

6.2 Models

Fixing d = 3 we consider models in which the explanatory variable X is uniformly distributed, as well

as limited support. The response variable Y is simulated according to model (3), in which the errors εi

come from a normal distribution with independent components all having zero mean and variance 0.10,

although other error densities, symmetric around the null direction, would surely lead to similar results. The

distribution of the random errors is less important due to the nonparametric character of our estimators.

There are many choices for Rxi
, but those reported in Table 1 cover the situations in which: the two-term

model should be optimal (Model 1); the rotation is far from rigid (Model 2); and a reflection-rotation is

permitted (Model 3). A non-smooth model is discussed in the supplementary material as a counter-example.

The first two models are specified by a skew-symmetric matrix Sx, for x = (x1, x2, x3)
T ∈ S2. For each

Model 1 Model 2 Model 3

Sx = 1
2











0 −x1 −x2

x1 0 −x3

x2 x3 0











, Sx = 1
2











0 −e2x1 −e2x2

e2x1 0 −e2x3

e2x2 e2x3 0











, R =











−0.36 0.48 −0.8

0.8 0.48 0

−0.48 0.64 0.6











.

Table 1: Regression models used for simulations.
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training dataset of size n, we simulate an independent test set of size N from the same model. Unless

otherwise stated, the smoothing parameter is selected by cross-validation. The estimates are obtained using

the training data, with a goodness of fit computed from the test set using E = (Nd)−1
∑

i ||yi− ŷi||2. When

multiple simulations are performed, the average over all datasets of this error is reported. The methods

investigated include (a) rigid rotation (Chang, 1986), which is a special case (κ = 0) of the (b) one-term fit;

(c) an iterated solution, using Algorithm 1; (d) two-term fit; (e) one-term fit using weight (14); and (f) the

spherical regression methods (both local constant and local linear) of Di Marzio et al. (2014).

6.3 Mean squared error and κ

In the first experiment we show the dependence on smoothing parameter; cross-validation is not used here,

see the supplementary material for examples on this. We simulate 50 samples of size n = 100 from each

model, with an independent test set of size N = 100. Figure 2 shows the average value of E for the standard

weighted solution, and up to three further iterations, together with that of the two-term fit and one-term

fit with weight function (14). Notice that using an error variance equal to 0.10 corresponds to E = 0.066

with perfect knowledge of the model, so this would be a lower bound on any method. As can be seen in

Figure 2, the rigid solution (Chang, 1986), which corresponds to κ = 0, is clearly suboptimal. The method of

Rosenthal et al. (2014) — who consider non-rotation transformations followed by a projection onto the sphere

— does somewhat better on these models, with errors of 0.101, 0.367 and 0.226 for Models 1–3, respectively.

However, for suitable choice of smoothing parameter, the weighted solutions perform much better.

In common with other iterative schemes, the optimal smoothing parameter depends on the number

of iterations M , and decreases with it. Also, to higher values of M correspond reduced errors, though

by increasingly smaller amounts. This is in accordance with theory, where we saw that at each step the

algorithm fits “residuals”of the previous one. The slightly odd behaviour for one-term fit using kernel (14)

is due to the fact that negative weights result if κ is chosen too large, which causes some instability. The

two-term solution performs very well on Model 1 — as may be expected — since, in this case, the first

derivative of Sx is constant, so this will capture all of the signal in the model. Finally, comparison of the

first and fourth panels indicates a slight deterioration in the performance when the design points in the

training set are restricted — particularly when using weight (14), but the average error is increased more for

the rigid solution (κ = 0) than for the standard kernel solutions, both local constant and local linear. This

last point is investigated further in the next subsection.

6.4 Bias-squared and variance

A residual analysis was also carried out in order to examine the bias and variance of the various solutions.

In this case, we used a random design (over the whole sphere) for the training data (100 observations), but

chose a regular grid of 104 test data points (x) at which to predict. The box-plots in Figure 3 show how the
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Figure 2: Average (over 50 simulations) of average squared error (E) of N = 100 test data, with trans-

formations estimated (for each test data point) from n = 100 training data. The data are simulated from

Model 1 (top left), Model 2 (top right), Model 3 (bottom left) — each with train and test x values which are

uniformly i.i.d. over the sphere — and Model 1 (bottom right), with (only) the training set x restricted to
∏

j xj > 0, with xj being the jth entry of x. Lines drawn show values corresponding to smoothing parameter

κ (κ = 0 is the rigid solution), with local minima shown by points for iterations M = 1, 2, 3 and M = 4,

together with B: weights obtained from (14), and L: two-term solution.

bias and variance change in the iterative method. As expected, with fixed κ the bias-squared is decreased

with iteration, but with smaller corresponding increase in variance. Further analysis of this decomposition is

made by comparing the one-term (M = 1 iteration) with the two-term solution. At each test data point we

obtained an average of the predictions, which leads to a “bias vector”, and
√

(variance). Specifically, for each

test point x we obtained the predicted ŷ, and then computed (over all simulations) the spherical average and

variance corresponding to the known y. Figure 3 also shows results of the two-term, and one-term solutions
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for Model 1 with training data which is uniform over the sphere, or restricted as above.
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Figure 3: Over 100 datasets, with n = 100 training pairs from Model 1, the bias and variance for 104 equally

spaced testing design points are computed. In the left column the box-plots show the effect of iteration, in

which κ is chosen according to M from Figure 2 (top) and κ = 1.35 is fixed (bottom). We plot a “bias line”

from the mean of the predicted values to the true y, with circles which have radius equal to
√

(variance) for

a one-term solution (middle panels) and two-term solution (right) with κ chosen according to the results in

Figure 2. Top right panels have design training data uniformly distributed on the sphere, and the lower right

panels have restricted design (such that
∏

xj > 0, with xj being the jth entry of x) in which we indicate

the (transformed equally-spaced) test data associated with the design condition with filled points.

In the plot of data we have projected the sphere, so the vectors will appear longer at the poles, and no

attempt has been made to project the “circles” corresponding to the standard deviations. We can see that

the two-term solution has almost eliminated the bias, which is much more evident in the one-term solution,

(with an appearance of a “vector-field” of errors) which, in turn, has a smaller variance.

A comparison of the lower panels with the upper panels shows that the test points which are not in the

restricted training set region are not predicted so well, as expected. Comparing the average of the mean-

squared error (MSE) of the test points which were “out” vs “in” the restricted region, showed an increase of
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34%, 111% and 20% for the rigid, one-term, and two-term solutions respectively. However, for those points

out of the restricted region, again the average of the MSE of the two-term solution (0.0085) was better

than the one-term solution (0.0363), which, in turn, was much better than the rigid solution (0.1615). The

supplementary material contains an additional simulation study on the bias of our methods.

7. EXPERIMENTS WITH REAL DATA

Using the data displayed in Figure 1, which are taken from Table 1 of Chang (1986), we consider three

methods to estimate the corresponding points of the Arabian tectonic plate, using the latitude and longitude

of the Somalian plate. In this experiment we use leave-one-out estimation, in which parameters are estimated

using all pairs except the ith observation, i ∈ (1, . . . , n). For the one-term estimator, we select the smoothing

parameter for each of the n datasets, using leave-one-out cross-validation amongst the n − 1 observations.

For the rigid rotation, we simply estimate R using X(−i). We also consider the projective general linear

(PGL) model of Rosenthal et al. (2014). The average squared errors (E × 107) over the 11 observations are:

5.44 (rigid rotation), 3.45 (one-term solution) and 5.84 (PGL). This is a very small dataset — too small to

consider the two-term solution — but this encouraging result provides a useful comparison with a previous

analysis. Additional examples are contained in the accompanying supplementary material.

8. GENERALIZATION TO SHAPE MATCHING

A generalization of our method to non-spherical data is to similarly consider weights in ordinary Procrustes

analysis (Dryden and Mardia, 2016). In the standard (non-weighted) setting, this seeks to match two sets

of landmarks by a suitable rotation, translation and scaling. So, in this more general shape context, the

conditional expectation (2) would be extended to

E[Y |X = x] = ρxRxx + τx ,

where ρx > 0 is a scale parameter, τx is a location (or translation) vector, and Rx is a rotation matrix

depending on x. Here the data points are not i.i.d. since they are generally obtained as landmarks be-

longing to a single “object”. Using our core hypothesis of smoothness, we could say that transformations

associated to close locations are similar. Consequently, if we are given a location x which is related to the

landmarks of object X we could seek a weighted (with respect to x) solution giving local estimates τ̂x, R̂x

and ρ̂x. However, since shape analysis is intended to eliminate different choices of origin (which may have

no meaning), it seems unnecessary to have a centring (or translation) transformation which is weighted in

any way. This would lead to the estimates: R̂x = UT V , in which U and V are obtained from the SVD of

||X||−1
F ||Y ||−1

F Y T Wκ(x)X, and

ρ̂x =
trace(Y T Wκ(x)XR̂x)

trace(XT Wκ(x)X)
.
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Depending on the smoothing degree and the distance function used, these nonparametric transformations

will give a continuous, smooth deformation, but may lead to folding in the case that κ is chosen too large. It

is also equivariant under location, scale and rotation of the objects. The flexible solutions may be similar to

the thin-plate spline deformations which have previously been used for aligning objects (Bookstein, 1989).
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