This is a repository copy of *Focusing THz radiation in μm-scale waveguides*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/125242/

Version: Accepted Version

Proceedings Paper:

https://doi.org/10.1109/IRMMW-THz.2017.8067054

(c) 2017, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Focusing THz radiation in μm-scale waveguides

* University of Leeds

Email: elnap@leeds.ac.uk

Abstract—THz coplanar waveguides were fabricated on quartz wafers with integrated epitaxially transferred low temperature grown gallium arsenide photoconductive switches. THz radiation was excited on-chip and transmitted through a tapering of the coplanar waveguide structure where it was focused down to $\sim 1.66\mu m$. Theoretical modelling of the device confirms high E-field confinement and concentration.

I. INTRODUCTION AND BACKGROUND

PLASMONIC devices are among the most promising for the control and focusing of THz radiation. The THz electric field couples to charge density oscillations in a metal allowing the effective transmission of THz radiation on metal waveguides on subwavelength length scales [4]. Possible applications include near-field imaging [1] and spectroscopy [5], while subwavelength control of THz radiation is a necessary step along the road to many potential integrated THz systems.

In this paper, tapered coplanar waveguides (CPWs), are both modelled and fabricated. THz pulse propagation through a CPW with total width of $\sim 1.66\mu m$ is demonstrated experimentally.

II. MODELLING

HFSS simulations were conducted for a tapered CPW. The starting width from ground plane to ground plane in the CPW was $50\mu m$, with the centre track having a width of $30\mu m$ and gaps of $10\mu m$ to the ground plane on each side, before being linearly tapered to a width of $1.66\mu m$ over a distance of $500\mu m$. The centre track-to-gap ratio was maintained at 3:1 to avoid impedance discontinuities. Cross sections of the electric field were plotted at regular points along the tapered CPW, and the field intensity profiles extracted. The confinement area was defined as the area where the field is within an order of magnitude of the maximum value. Confinement area and the average field in this area are plotted against taper width in Fig. 1.

III. FABRICATION

300 nm of low temperature grown Gallium Arsenide (LT-GaAs) was grown on a Gallium Arsenide substrate at a temperature of $205^\circ C$ with a 100 nm release layer of AlAs in-between. It was annealed at a temperature of $550^\circ C$ in order to increase its dark resistivity [3]. Black wax was melted on to protect the LT-GaAs surface and the edges were cleaned using a non-selective fast sulphuric acid etch ensuring that the AlAs boundary layer was fully exposed. A slow HF acid etch was then performed for ~ 24 hours at $3^\circ C$ to separate the LT-GaAs and black wax from the GaAs substrate. The LT GaAs was then transferred onto a quartz substrate, ensuring that there was a thin film of water between the LT-GaAs and the quartz. Next, the device was heated at $80^\circ C$ for two hours to allow the water film to evaporate without boiling while also softening the black wax to allow for conformal adhesion. The black wax was then removed in trichloroethylene. Finally the device was baked at $250^\circ C$ at a pressure of 30 mBar for 15 hours to ensure total dehydration and improve LT-GaAs adhesion to the substrate.

Electron beam lithography was used to define a narrow taper region with optical lithography used to define the rest of the waveguide and photoconductive switches. In both cases Ti/Au was evaporated, with thicknesses of $(5/100)$nm for the
Transmission of THz radiation through tapered CPWs was demonstrated experimentally and modelled in HFSS. Transmitted powers follow a similar functional form between the model and experiment. The high field confinement, associated with the ability to guide THz radiation via lithography defined waveguides opens the possibility of direct sensing or excitation of submicron electronic/spintronic devices.

VI. ACKNOWLEDGEMENTS

The authors gratefully acknowledge funding from EPSRC.

REFERENCES

