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Abstract

Animals navigate complex and variable environments, but often use only limited
sensory information. Here we present a simulated robot system using a C. elegans
inspired sensory model and navigation strategy and demonstrate its ability to suc-
cessfully identify specific, discretely located cues. We show a range of conditions
under which this approach has performance benefits over other search strategies.

1 Introduction

The development of truly autonomous systems is a major driver of Artificial Intelligence. Despite
remarkable progress, today’s systems tend to be highly task-oriented and struggle to operate appropri-
ately in the presences of variation [8, 9]. Recently, more open-ended embodied approaches to AI
have been shown to be highly adaptive and possess behavioral flexibility in a range of conditions
[9, 10]. Such approaches are often inspired by living systems, that are inherently embodied and
situated. Indeed, evolutionary pressures have led to the emergence of adaptive solutions that are often
relatively "simple". The unassuming nematode worm C. elegans is a perfect example of this. Using
just 302 neurons (including sensory neurons) it exhibits highly streamlined yet rich and effective
adaptive behavior [1, 4, 5, 6].

In this paper we consider a potential application for C. elegans inspired algorithms, in particular its
impressive chemotaxis ability. C. elegans chemotaxis inspired robot models have previously been
shown to allow robust phototaxis in real world environments [11]. Here we consider the potential
of finding discrete objects, using a real world case study of finding road surface damage such as
cracks and potholes. While searching for road damage and following chemical gradients are vastly
different problems and might therefore appear to require vastly different solutions, we find that an
approach inspired by the sensory system of C. elegans provides an effective, elegant and robust search
algorithm.

The motivation for the choice of road surface damage is due to the major challenge they present for
transportation. In the UK alone, deteriorating road conditions are exasperating an existing multi-
billion pound backlog of repairs [3]. Autonomous systems which can find surface damage, and
potentially even repair them would go a long way in furthering the possibility of self-maintaining
cities.

2 Robot model

The C. elegans-inspired model was designed to operate in a simple differential wheeled robot with
limited sensory capacity. In this case a two-wheeled robot was created and simulated in various 3D
environments. The robot possessed a front facing camera that samples every second. The camera
detected surface damage with a simple object detection algorithm using contours and color. IR
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Figure 1: The robot model showing the input and output for one action loop (0.125 seconds). Rather
than having handcrafted behaviors, the model leads to emergent motor behaviors.

sensors surrounding the body exclusively controlled object avoidance. The robot had a top speed of
1m/s; however, this was controlled by the sensory neurons and was usually between 0.2-0.4 m/s. All
computation takes place in an action loop of 0.125 seconds. A schematic of the complete model can
be seen in Figure 1.

2.1 Sensory neurons

In C. elegans, the ASE sensory neuron pair [6] plays a key role as a regulator of salt chemotaxis. C.
elegans follows salt (and other) gradients in search for food [6]. Here, we asked whether ASE-like
sensors could be adapted to detect road surface damage such as potholes, and whether the chemotaxis
strategy that so excels at gradient navigation could mediate a search for discretely dispersed landmarks.
In C. elegans, many sensory neurons (including ASE) respond to changes in the intensity of the
cue, rather than to its absolute value. Unlike other sensory neuron pairs, the ASE pair responds
asymmetrically to sensory cues. The left neuron is an ON-cell which is stimulated by up-steps in
salt concentration. In contrast, the right neuron is an OFF-cell which responds to down-steps in salt
concentration [15]. The sensory neurons’ responses to stimuli C(t) have been modeled here using
two components; a fast component F and slow delayed rectifier S

dF

dt
= −αF + β log C ,

dS

dt
= γ(F − S) , (1)

yielding a differential signal of F − S [5, 14]. ON and OFF sensor responses are shown in Figure 2.

Figure 2: Sensor responses to an up- and down-step of stimulus intensity. Activation rates α, β, γ
are (0.6, 0.8, 0.1Hz) for the ON sensor and (0.3, 0.2, 0.011Hz) for the OFF one, respectively. We
found that a slow re-polarization of the OFF neuron (as compared to the ON neuron), as reported in
C. elegans [15] resulted in a significant performance increase.

2.2 Sensor adaptation

Surprisingly, neuronal recordings have shown the depolarization rate of left and right neurons are
experience dependent ([7, 12, 14] and personal communication with Gert Jansen). Here we model
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this neuronal plasticity as sensitization and desensitization of the OFF and ON polarization rates,
respectively

βON =
0.8

1 + δONCavg
, βOFF = 0.2(1 + δONCavg) ,

where Cavg is the exponential moving average of stimuli exposure [14].

2.3 Motor control

Motor control was achieved by direct modulation of actuators through a minimal set of modulations.
For simplicity only the ON neuron modulated the steering strategy (implemented as direct inputs to
the two wheels, with opposites signs). Sharp turns mimicked so called pirouettes [13] (or Omega
turns) in C. elegans controlled by the ON and OFF neurons. As in the biological worm, the stronger
the ON activation, the lower the probability of a sharp turn, and the higher the OFF activation, the
higher the probability of a sharp turn. Finally object avoidance stimulates movement away from solid
objects and sharp drops, reminiscent of object avoidance in C. elegans.

Additional strategies emerge as combination of the camera ans IR sensors. For instance when
exposed to a sheer pothole, the ON neuron will steer the robot towards it while object avoidance
stimulates aversion, leading to an emergent strategy in which the robot circles around the pothole.
All observable behaviors are therefore a result of the activity of the three sensory neurons, the body
and environmental conditions.

3 Experiments

To test whether the C. elegans inspired robot model is capable of detecting discrete cues, we used the
webots simulator and tested robot performance on various forms of road surface damage. Firstly in
Section 3.1 we compare a number of models in simplified environments of various sizes and various
gradient distributions. Secondly in Section 3.2 we undertake an investigation in a more realistic
setting, using satellite images to recreate environments containing potholes.

Figure 3: Example of the Webot environments and pothole appearances as well as the robot’s vision
used in simple simulation in Section 3.1 (panel 1) and realistic simulation 3.2 (panel 2).

3.1 Preliminary experiments in a simple environment

In the first experiment we tested six different models using the same robot in a simple simulated
environment shown in Figure 3. These models included our C. elegans-inspired model with and
without sensory adaptation (Section 2.2), a Braitenberg vehicle (2b [2]) and three random walks, all
using IR for object avoidance and the camera to detect potholes.

Nine environments of three sizes and pothole densities were tested. Initially, potholes were represented
as black circles (Figure 3). Simulations were run 10 times per environment with a maximum duration
of 20 minutes. Here, if a robot finds a pothole it is instantly “repaired” and removed from the
environment. The results are summarized in Table 1, showing either the time taken to find all
potholes, or the mean % found after 20 minutes, if a robot failed to find all potholes over the 10 runs.

Overall, the adaptive bio-inspired model proved the more effective and in particular performed better
than the non-adaptive robot in environments with lower numbers of potholes. In contrast, sensor
adaptation seemed to hinder the robot in cases of constant exposure, which led to almost complete
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Table 1: Simulation results for six robot types in simple simulated arenas, showing time in (s)econds,
(m)inutes for clearing all potholes, or the % found (in grey) if time expires. The three random walk
models differed in turn probabilities - uniform with Pturn = 0.5 per step, orPturn sampled from either
Cauchy or Gaussian distributions.

Area 5m× 5m 10m× 10m 20m× 20m

# Potholes 1 5 25 1 20 100 1 80 400

Braitenberg 4.5m 68% 24% 9.3m 41% 12% 20m 28% 21%
Non-adaptive 42s 1.8m 8.5m 5.5m 88% 79% 12m 34% 25%
Adaptive 33s 48s 6.4m 4.5m 13.3m 74% 10.1m 28% 20%
Cauchy 17.0m 25% 16% 0% 20% 17% 0% 18% 8%
Gaussian 17.3m 16.5m 58% 34% 28% 25% 19.2m 22% 18%
Random walk 14.3m 52% 47% 15.1m 29% 38% 17.4m 23% 28%

Figure 4: Robots’ performance in five different satellite image generated environments. Left:
Adaptive and nonadaptive results. Middle: Sample height-map used to generate a 3D environment.
Right: sample trajectories of the adaptive C. elegans robot in this environment.

desensitization of the ON neuron, drastically suppressing forward locomotion (speed). Secondly
oversensitivity of the OFF neuron resulted in larger pirouettes, and pothole avoidance, reminiscent of
the emergence of repulsive behavior described in [12].

3.2 Simulation experiments in realistic arenas

Given the strong performance of the adaptive C. elegans-inspired model our next step was to
investigate it in a more realistic simulation. Here we used satellite images of a major UK city to
model and generate virtual pothole formation found in roads (Figure 3). In total we investigated the
robots’ performance in 5 different environments of 10x10m with between 1-3 potholes in each. Each
experiment was conducted 100 times, and lasted until all potholes had been found or 10 minutes had
passed. Once again, upon successful detection of a pothole it was instantly “repaired”. As shown
in Figure 4 the adaptive C. elegans-inspired robot demonstrated the best performance. In all cases
it was able to find all potholes within the 10 minute limit. The non-adaptive C. elegans model also
showed good performance in one to two pothole environments, but had limited success with three.
The Braitenberg and random walk variations rarely completed the search in time for any environment.

4 Conclusions

In this paper we have briefly outlined our initial investigation into a potential C. elegans inspired
adaptive sensory computational model. In particular we focused on the application of finding road
damage such as potholes. Over two sets of experiments we demonstrated how our approach leads to
a highly robust and efficient search algorithm that is achieved with limited sensory capabilities and
no prior knowledge of the environments.
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