This is a repository copy of *Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/125178/

Version: Published Version

Article:
Bernatsky, Sasha, Velásquez García, Héctor A, Spinelli, John J. et al. (98 more authors) (2017) Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma. Lupus science & medicine. e000187. ISSN 2053-8790

https://doi.org/10.1136/lupus-2016-000187

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don't have to license any derivative works on the same terms. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma

ABSTRACT

Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL.

Methods: GWAS data on European Caucasians from the International Lymphoma Epidemiology Consortium (InterLymph) provided a total of 3857 DLBCL cases and 7666 general-population controls. Data were pooled in a random-effects meta-analysis.

Results: Among the 28 SLE-related SNPs investigated, the two most convincingly associated with risk of DLBCL included the CD40 SLE risk allele rs4810485 on chromosome 20q13 (OR per risk allele=1.09, 95% CI 1.02 to 1.16, p=0.0134), and the HLA SLE risk allele rs1270942 on chromosome 6p21.33 (OR per risk allele=1.17, 95% CI 1.01 to 1.36, p=0.0362). Of additional possible interest were rs2203958 and rs12537284. The rs2205960 SNP, related to a cytokine of the tumour necrosis factor superfamily TNFSF4, was associated with an OR per risk allele of 1.07, 95% CI 1.00 to 1.16, p=0.0549. The OR for the rs12537284 (chromosome 7q32, IRF5 gene) risk allele was 1.08, 95% CI 0.99 to 1.18, p=0.0763.

Conclusions: These data suggest several plausible genetic links between DLBCL and SLE.

Several recent studies have highlighted an increased risk of haematological malignancies, particularly non-Hodgkin’s lymphoma (NHL), in patients with SLE. The determinants of the increased risk of NHL in SLE are unclear. The most common type of NHL in SLE (as in the general population) is the diffuse large B-cell lymphoma (DLBCL)...
subtype. Using data from a recent NHL genome-wide association study (GWAS), our objective was to determine if certain SLE-related single nucleotide polymorphisms (SNPs) were also associated with the risk of DLBCL.

We focused on 28 SNPs independently associated with SLE in European Caucasians. All of these SNPs have been strongly associated with lupus risk, with a p value of 1×10^{-7} or stronger. Our hypothesis was that these SNPs would also be associated with DLBCL risk.

METHODS

GWAS data on European Caucasians from the International Lymphoma Epidemiology Consortium (InterLymph [http://www.epi.grants.cancer.gov/InterLymph]) studies and participating cohort studies were based on a total of 3857 DLBCL cases and 7666 controls. Each participating study’s investigators obtained approval from human subjects review committees and informed consent from all participants. De-identified data were provided by the InterLymph Data Coordinating Center (Mayo Clinic, Rochester, Minnesota, USA).

For each SLE-related SNP, the ORs and 95% CIs were computed using a log-additive logistic regression model. Results from three previously conducted DLBCL GWAS studies were pooled in a random-effects meta-analysis. With 28 comparisons, an α of 0.05 would correspond to a Bonferroni-corrected p value of 0.0018.

RESULTS

Among the 28 SLE-related SNPs investigated (table 1), the two most convincingly associated with risk of DLBCL when correcting for multiple comparisons included the CD40 SLE risk allele rs4810485 on chromosome 20q13 (OR per risk allele=1.09, 95% CI 1.02 to 1.16, p=0.0134) and the HLA SLE risk allele rs1270942 on chromosome 6p21.33 (OR per risk allele 1.17, 95% CI 1.01 to 1.36, p=0.0362). Two other SNPs were of additional possible interest in DLBCL, with 95% CIs that just barely included the null value. The rs2205960 SNP, related to a cytokine of the tumour necrosis factor superfamily TNFSF4, was associated with an OR per risk allele of 1.07, 95% CI 1.00 to 1.16, p=0.0549. The OR for the SLE interferon regulatory factor (IRF5) risk allele

<table>
<thead>
<tr>
<th>Gene</th>
<th>Chromosome</th>
<th>SNP</th>
<th>Allele* DBLCL SLE ref.</th>
<th>DBLCL OR</th>
<th>DBLCL 95% CI</th>
<th>p Value* DBLCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD40</td>
<td>20</td>
<td>rs4810485</td>
<td>T T C</td>
<td>1.088</td>
<td>(1.017 to 1.162)</td>
<td>0.013355</td>
</tr>
<tr>
<td>HLA</td>
<td>6</td>
<td>rs1270942</td>
<td>G G A</td>
<td>1.171</td>
<td>(1.010 to 1.357)</td>
<td>0.036172</td>
</tr>
<tr>
<td>TNFSF4</td>
<td>1</td>
<td>rs2205960</td>
<td>A A G</td>
<td>1.074</td>
<td>(0.998 to 1.156)</td>
<td>0.054899</td>
</tr>
<tr>
<td>IRF5</td>
<td>7</td>
<td>rs12537284</td>
<td>A A G</td>
<td>1.081</td>
<td>(0.992 to 1.179)</td>
<td>0.076450</td>
</tr>
<tr>
<td>IL10</td>
<td>1</td>
<td>rs3024505</td>
<td>A A G</td>
<td>1.102</td>
<td>(0.898 to 1.353)</td>
<td>0.352319</td>
</tr>
<tr>
<td>BANK1</td>
<td>4</td>
<td>rs10516487</td>
<td>A A G</td>
<td>1.035</td>
<td>(0.969 to 1.106)</td>
<td>0.303231</td>
</tr>
<tr>
<td>Mir146a</td>
<td>5</td>
<td>rs57095329</td>
<td>G G A</td>
<td>1.020</td>
<td>(0.756 to 1.377)</td>
<td>0.896089</td>
</tr>
<tr>
<td>ITGAM</td>
<td>16</td>
<td>rs9888739</td>
<td>T T C</td>
<td>1.008</td>
<td>(0.923 to 1.102)</td>
<td>0.851519</td>
</tr>
<tr>
<td>IFIH1</td>
<td>2</td>
<td>rs1990760</td>
<td>T T C</td>
<td>1.037</td>
<td>(0.978 to 1.101)</td>
<td>0.223359</td>
</tr>
<tr>
<td>TNFAIP3</td>
<td>6</td>
<td>rs7749323</td>
<td>A A G</td>
<td>1.053</td>
<td>(0.884 to 1.253)</td>
<td>0.564425</td>
</tr>
<tr>
<td>NCF2</td>
<td>1</td>
<td>rs17849502</td>
<td>T G G</td>
<td>1.050</td>
<td>(0.892 to 1.236)</td>
<td>0.554699</td>
</tr>
<tr>
<td>STAT4</td>
<td>2</td>
<td>rs7582694</td>
<td>G C C</td>
<td>1.110</td>
<td>(0.977 to 1.260)</td>
<td>0.108048</td>
</tr>
<tr>
<td>PTNP22</td>
<td>1</td>
<td>rs2476601</td>
<td>A A A</td>
<td>1.043</td>
<td>(0.937 to 1.161)</td>
<td>0.441704</td>
</tr>
<tr>
<td>TYK2</td>
<td>19</td>
<td>rs280519</td>
<td>G A A</td>
<td>1.016</td>
<td>(0.959 to 1.077)</td>
<td>0.582604</td>
</tr>
<tr>
<td>PHRF1/IRF7/ KIAA1542</td>
<td>11</td>
<td>rs4963128</td>
<td>C T T</td>
<td>1.018</td>
<td>(0.956 to 1.085)</td>
<td>0.570646</td>
</tr>
</tbody>
</table>

*With 28 comparisons, an α of 0.05 would correspond to a Bonferroni-corrected p value of 0.0018.
rs12537284 (chromosome 7q32, gene) was 1.08, 95% CI 0.99 to 1.18, p=0.0765. A table presenting the study-specific contributions to the meta-analysis is provided in the online supplemental material.

DISCUSSION

Multiple studies have highlighted an increased risk of haematological malignancies, particularly NHL, in patients with SLE. To date, the reason for this excess risk has remained elusive. Recently, advances have been made in our understanding of lymphoma risk in other autoimmune rheumatic diseases, such as primary Sjögren’s syndrome, where the majority of patients with mucosa-associated lymphoid tissue (MALT) lymphoma have either germline polymorphisms of TNFAIP3 related to the A20 protein important in nuclear factor κB activation or somatic alterations of the gene within the lymphoma tissue. In their assessment of genetic risk overlap between rheumatoid arthritis (RA) and haematological cancers, Okada et al. found that polymorphisms of TNFAIP3 were common to both RA and Hodgkin’s lymphoma. Our analyses did not confirm a strong relationship with the lupus-related TNFAIP3 SNP rs7749323 specifically for DLBCL, but this may be a power issue, or may reflect the importance of different pathways for different haematological risk profiles across different autoimmune rheumatic diseases. Of note, our analyses were done in Caucasian populations; several non-Caucasian race/ethnic groups (eg, blacks, Asians) may have different genetic risk profiles and clinical presentations, thus future analyses could consider these populations as well. We have previously shown that the increased risk of lymphoma in SLE is similar across white, black and Asian patients. In addition, it may be that specific genetic risk factors for different clinical SLE manifestations may drive some of the risk of lymphoma, although we were unable to investigate that hypothesis here.

Existing data do suggest that some human leukocyte antigen (HLA) polymorphisms influence risk of DLBCL. In recent DLBCL GWAS analyses, HLA-B*08:01 reached genome-wide significance. In SLE, the strongest association in HLA is for the Class II allele DRB1*03:01. This allele is in strong linkage disequilibrium with HLA-B*08:01 in Caucasians so we are likely tagging the same HLA effect. CD40, a member of the tumour necrosis superfamily, plays a central role in regulating immune cells; CD40 is expressed on several B-cell neoplasms including DLBCL. Data have suggested a possible role for functional polymorphisms (specifically, C vs T, rs1883832) in the TNFRSF5 gene encoding CD40 in lymphomas originating within the germinal centre (both DLBCL and follicular).

Tumour necrosis factor ligand superfamily involvement has been suggested in the pathology of malignant lymphomas. Furthermore, in human NHL B-cell lines, IRF5 initiates a regulatory cascade by inducing the transcription factor activator protein 1 (AP-1) and cooperating with nuclear factor kappa B (NF-κB), which appears to represent a potentially important tumour promoting role of IRF5 in lymphoma.

Not all of the excess risk of haematological malignancies in SLE is necessarily due to genetic factors; exposures within the environment may also be at play. However, in the InterLymph Subtypes pooling project, autoimmune diseases as a risk for lymphoma appeared to be independent of other potentially shared environmental risk factors (body mass index, sun, alcohol, occupation, etc.). In the work of Ekström Smedby et al., SLE was associated with a 2.7-fold increase in risk of NHL risk overall; this was highest among patients with SLE of short duration (2–5 years), but a near twofold increase was also observed with more than 10 years of disease. Use of corticosteroid and immunosuppressive drugs categorically was not clearly linked to higher or lower risk, but analyses were not detailed. Two very comprehensive case-control studies of SLE-related medications have suggested a link between cyclophosphamide (used intravenously in severe or resistant forms of SLE, especially nephritis) and haematological malignancies in general and, specifically, in lymphoma. Fortunately, lymphoma after cyclophosphamide SLE treatment is a relatively uncommon outcome. Future studies of interactions between genetic factors and drug exposures may be warranted.

In conclusion, we studied a large GWAS datasets and found several plausible pathways linking DLBCL and SLE. Given that cyclophosphamide exposure in SLE is also associated with DLBCL risk, future studies might be able to explore whether these genetic risk factors may aid in risk stratification and decision-making when cyclophosphamide treatment is being considered for severe forms of SLE.

Author affiliations

1Division of Clinical Epidemiology, Research Institute of the McGill University Health Centre, Montreal, Canada
2BC Cancer Research Centre and School of Population and Public Health, University of British Columbia, Vancouver, Canada
3Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
4Clinical Epidemiology Unit, Department of Medicine, Karolinska Institutet, and Hematology Center, Karolinska University Hospital, Stockholm, Sweden
5Feinberg School of Medicine, Northwestern University, Chicago, USA
6Division of Cancer Etiology, Department of Population Sciences, Beckman Research Institute, Duarte, USA
7Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
8Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
9Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, USA
10Hematology Unit, Ospedale Policlinico di Riferimento Regionale A. Businco, Cagliari, Italy
11Department of Medicine, Mayo Clinic, Rochester, USA
12Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, USA
13Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
14Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
Leucémie, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES).

EPIC: Coordinated Action (Contract #006438, SP23-CT-2005-006438); HuGeF (Human Genetics Foundation), Torino, Italy; Cancer Research UK; Danish Cancer Society.

EpiLymph: European Commission (grant references OLK4-CT-2000-00422 and FOOD-CT-2006-023103); the Spanish Ministry of Health (grant references CIBERESP, PI11/01810, PI14/01219, RCEPS 03/09, RTICESP C03/10 and RTIC RD06/0020/0095, the Marató de TV3 Foundation (grant reference 051210), the Agència de Gestió d'Ajuts Universitaris de Recerca—Generalitat de Catalunya (grant reference 2014SGR5756) who had no role in the data collection, analysis or interpretation of the results; the NIH (contract NO1-CO-12400); the Compagnia di San Paolo—Programma Oncologia: the Federal Office for Radiation Protection grants StSc2611 and StSc4420; the Health Research Board, Ireland and Cancer Research Ireland; Czech Republic supported by MH CZ—DRO (MMCI, 00209805) and by MEYS—NPI—L101413; Fondation de France and Association de Recherche Contre le Cancer.

GEC/Mayo GWAS: National Institutes of Health (CA118444, CA148690, CA92153); Intramural Research Program of the NIH, National Cancer Institute, Veterans Affairs Research Service. Data collection for Duke University was supported by a Leukemia & Lymphoma Society Career Development Award, the Bernstein Family Fund for Leukemia and Lymphoma Research and the National Institutes of Health (K08CA134919), National Center for Advancing Translational Science (UL1 TR000135).

HPFS: The HPFS was supported in part by National Institutes of Health grants CA167552, CA149445, CA098122 and CA098566. We would like to thank the participants and staff of the Health Professionals Follow-up Study for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

Iowa-Mayo SPORE: NICI Specialized Programs of Research Excellence (SPORE) in Human Cancer (P50 CA97274); National Cancer Institute (P30 CA086862, P30 CA15083); Henry J. Predolin Foundation.

Italian GxE: Italian Association for Cancer Research (AIRC, Investigator Grant Iowa-Mayo SPORE: NCI Specialized Programs of Research Excellence (SPORE) in Human Cancer (P50 CA97274); National Cancer Institute (P30 CA086862, P30 CA15083); Henry J. Predolin Foundation.

Italian GxE: Italian Association for Cancer Research (AIRC, Investigator Grant Iowa-Mayo SPORE: NCI Specialized Programs of Research Excellence (SPORE) in Human Cancer (P50 CA97274); National Cancer Institute (P30 CA086862, P30 CA15083); Henry J. Predolin Foundation.

Mayo Clinic Case-Control: National Institutes of Health (R01 CA92153); National Cancer Institute (P30 CA105083).

MCCS: The Melbourne Collaborative Cohort Study recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry (VCR) and the Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian Cancer Database.

MD Anderson: Institutional support to the Center for Translational and Public Health Genomics.

MSKCC: Geoffrey Beene Cancer Research Grant, Lymphoma Foundation (LS541); Barbara K. Lipman Lymphoma Research Fund (74419); Robert and Kate Niehaus Clinical Cancer Genetics Research Initiative (S7470); U01 HG007033; ENCODE; U01 HG007033.

NICI-SEER: Intramural Research Program of the National Cancer Institute, National Institutes of Health, and Public Health Service (01-PC-65064, 01-PC-67008, 01-PC-67009, 01-PC-67010, 02-PC-71105), NHIS—The NHIS was supported in part by National Institutes of Health grants CA186107, CA87969, CA44944, CA414944, CA081122 and CA098566. We would like to thank the participants and staff of the Nurses’ Health Study for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

NSW: NSW was supported by grants from the Australian National Health and Medical Research Council (ID990920), the Cancer Council NSW, and the University of Sydney Faculty of Medicine.

NYU-WHS: National Cancer Institute (UM1 CA182934, P30 CA016087); National Institute of Environmental Health Sciences (ES000260).

PLCO: This research was supported by the Intramural Research Program of the National Cancer Institute and by contracts from the Division of Cancer Prevention, National Cancer Institute, NIH, DHHS.

SCALE: Swedish Cancer Society (2009-659), Stockholm County Council (20110209) and the Strategic Research Program in Epidemiology at Karolinska Institute. Swedish Cancer Society grant (02 6661). National Institutes of Health (SR01 CA169926-02); Plan Denmark. UCSF—UCSF and the UCSF NHL study were supported by the following grants (including joint grants to University California Berkeley (Skikola and M. Smith)): NIH grant R01-CA45614; NC1 grant R01 CA78014; NC1 grant R03 CA87945; NC1 263-MQ-7017111; NC1 grant R01 CA122663; NC1 grant R01 CA104682; NC1 grant P01-CA43233.

UCSF2: The UCSF studies were supported by the NCIC, National Institutes of Health, CA1046282 and CA154643. The collection of cancer incidence data used in this study was supported by the California Department of Health Services as part of the state-wide cancer reporting programme mandated by California Health and Safety Code Section 103885; the National Cancer Institute’s Surveillance, Epidemiology, and End Results Program under contract HHSN261210100014C awarded to the Cancer Prevention Institute of California, contract HHSN2612101000035C awarded to the University of Southern California, and contract HHSN261210100034C awarded to the Public Health Institute; and the Centers for Disease Control and Prevention’s National Program of Cancer Registries, under agreement #1U58 DP008087-01 awarded to the Public Health Institute. The ideas and opinions expressed herein are those of the authors, and endorsement by the State of California, the California Department of Health Services, the National Cancer Institute, or the Centers for Disease Control and Prevention or their contractors and subcontractors is neither intended nor should be inferred.

UTAH/Shelfield: National Institutes of Health CA134674. Partial support for data collection at the Utah site was made possible by the Utah Population Database (UPDB) and the Utah Cancer Registry (UCR). Partial support for all datasets within the UPDB is provided by the Huntsman Cancer Institute (HCI) and the HCI Cancer Center Support grant, P30 CA42014. The UCR is supported in part by NIH contract HHSN2612101000026C from the National Cancer Institute SEER Program with additional support from the Utah State Department of Health and the University of Utah. Partial support for data collection in Sheffield, UK was made possible by funds from Yorkshire Cancer Research and the Sheffield Experimental Cancer Medicine Centre. We thank the NCRI Haemato-Oncology Clinical Studies Group, colleagues in the North Trent Cancer Network the North Trent Haemato-Oncology Database.

WHI: WHI investigators are: Program Office—(National Heart, Lung, and Blood Institute, Bethesda, Maryland) Jacques Rossouw, Shari Ludlam, Dale Burwen, Joan McGowan, Leslie Ford, and Nancy Geller; Clinical Coordinating Center—(Fred Hutchinson Cancer Research Center, Seattle, WA) Garnet Anderson, Ross Prentice, Andrea LaCroix, and Charles Kooperberg; Investigators and Academic Centers—(Brigham and Women’s Hospital, Harvard Medical School, Boston, MA) JoAnn E. Manson; (MedStar Health Research Institute/Howard University, Washington, DC) Barbara V. Howard; (Stanford Prevention Research Center, Stanford, CA) Marcia L. Stefanick; (The Ohio State University, Columbus, OH) Rebecca Jackson; (University of Arizona, Tucson/Phoenix, AZ) Cynthia A. Thomson; (University at Buffalo, Buffalo, NY) Jean Wactawski-Wende; (University of Florida, Gainesville/ Jacksonville, FL) Marian Limacher; (University of Iowa, Iowa City/Davenport, IA) Robert Wallace; (University of Pittsburgh, Pittsburgh, PA) Lewis Kuller; (Wake Forest University School of Medicine, Winston-Salem, NC) Sally Shumaker; (Women’s Health Initiative Memory Study—Wake Forest University School of Medicine, Winston-Salem, NC) Sally Shumaker. The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts.
REFERENCES

Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma

Lupus Sci Med 2017 4:
doi: 10.1136/lupus-2016-000187

Updated information and services can be found at:
http://lupus.bmj.com/content/4/1/e000187

These include:

References

This article cites 15 articles, 6 of which you can access for free at:
http://lupus.bmj.com/content/4/1/e000187#BIBL

Open Access

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/