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A finite-element model combining the frequency domain thin-layer method with paraxial boundary conditions to

simulate the semi-infinite extent of a soil medium is presented in this paper. The combined numerical model is used

to deal with harmonic vibrations of surface rigid foundations on non-horizontal soil profiles. The model can deal with

soil media over rigid bedrock or significant depths of half-space. Structured finite elements are used to mesh simple

geometry soil domains, whereas unstructured triangular mesh grids are employed to deal with complex geometry

problems. Dynamic responses of homogeneous as well as layered soil profiles are simulated and validated against

analytical and approximate solutions. Finally, the model is used to deal with surface ground vibration reduction, in

which it is first validated against published results and then followed by an example involving a bridge.

Notation
A, G matrices dependent on geometry and material

properties of layered region
A area under vertical displacement curve
A0 dimensionless frequency
Ar amplitude reduction factor
cp pressure wave velocity
cs shear wave velocity
D, B matrices dependent on material properties of layered

region
Ec elasticity modulus of concrete
Es elasticity modulus of soil
fj
v natural frequencies of vertical excitation

f1 fundamental frequency of upper layer
f2 fundamental frequency of bottom layer
H diagonal matrix containing wavenumber
H thickness of soil domain
H1 thickness of upper soil layer
H2 thickness of bottom soil layer
i imaginary number
Kapp approximate stiffness matrix of SV-P waves in a

half-space
Ks stiffness matrix of the domain
k wavenumber
L dynamic stiffness matrix of consistent transmitting

boundary on left side

M mass matrix of layered region
Ms mass matrix of domain
n number of soil layers
P nodal forces vector
PL nodal force vector on left side of domain
PR nodal force vector on right side of domain
R dynamic stiffness matrix of consistent transmitting

boundary on right side
U nodal displacement vector
UL nodal displacement vector of left side vertical

boundary
UR nodal displacement vector of right side vertical

boundary
uR contains eigenvectors
V modal matrix contains eigenmodes
V−1 inverse of modal matrix
X distance between applied load and edge of bridge
zi thickness of each soil layer
α rate of linearity
β damping coefficient
γ ratio of shear wave velocity to dilatational wave

velocity
θ rigid bedrock inclination angle/soil layer interface

inclination angle
λR Rayleigh wavelength
μ shear modulus
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μ0 shear modulus of surface soil layer
μ1 shear modulus of upper soil layer
μ2 shear modulus of bottom soil layer
ν Poisson ratio of soil
ρ density of soil
ρ1 density of upper soil layer
ρ2 density of bottom soil layer
ω circular frequency

1. Introduction
Dynamic response of soil media and surface rigid foundations
has been investigated intensively using various numerical
techniques such as the finite-element method (FEM) and the
boundary-element method (BEM). The BEM became popular
for such problems thanks to its ability to incorporate auto-
matically wave radiation to infinity and hence simulate the
semi-infinite extent of soil media. The FEM is more flexible
in dealing with material and geometry complexities; however,
for wave radiation to infinity it requires special treatment of
the boundaries. Combined FEM–BEM models are very practi-
cal for such problems, in which all discontinuities are con-
tained within the finite-element domain and the far field is
modelled by way of boundary integrals.

Examples of BEM approaches include the work of Beskos
et al. (1986), who presented a comprehensive review of the
work carried out on the dynamics of foundations up to the
1980s. The BEM was employed by von Estroff and Schmid
(1984) to model the dynamic behaviour of a strip foundation
overlying a soil stratum over bedrock and by Abascal and
Dominguez (1984), who used the same technique for simulating
the dynamic behaviour of strip foundations over half-space.
Spyrakos and Beskos (1986) developed a boundary-element
time domain method and examined the dynamic response of
surface and embedded foundations under plane strain con-
ditions. Israil and Ahmad (1989) presented a parametric study
using the BEM for modelling the dynamic behaviour of strip
foundations over homogeneous half-space media and then over
a soil deposit over either half-space or bedrock. The authors
investigated the effect of material properties such as damping
and relative stiffness between the soil layers. They also con-
sidered the effect of the half-space and the stratum depth.
A detailed review of BEM, its formulation and applications can
be found, for example, in the review paper by Liu et al. (2011)
or in text books such as Boundary Element Methods for Soil–
Structure Interaction by Hall and Oliveto (2003). More recently,
Romero et al. (2013a) used a three-dimensional (3D) non-linear
BEM–FEM to deal with soil–structure interaction problems
and Romero et al. (2013b) investigated the dynamic soil–bridge
interaction in high-speed rail lines. The BEM was also coupled
with the FEM to deal with train-induced ground vibrations –

for example, Costa et al. (2012) and Barbosa et al. (2015).

The FEM has also been extensively used to simulate soil dynamic
problems but, given the semi-infinite extent of soil media, as

indicated above, special conditions are required at the compu-
tational domain boundaries to prevent wave reflection. This has
led to the development of various approaches that combine a
finite-element model with local or non-local boundary condition
operators. Such approaches include, for example, the FEM–

BEM combined model as mentioned above, finite–infinite
elements such as in the paper by Yang et al. (2007), absorbing
boundary layers and dampers as seen in the paper by Semblat
et al. (2010), and the perfectly matched layer (PML) of Basu and
Chopra (2003, 2004), Lee et al. (2014) and Lopes et al. (2014).

In the present work, the FEM is used with the thin-layer
method (TLM) and paraxial boundary condition (PBC) to
simulate the semi-infinite extent of soil media. The TLM was
first developed by Waas (1972) and has been extended and used
by various other authors such as Kausel (1974), Tassoulas
(1981), Laghrouche (1996), Park and Tassoulas (2002), Ikeda
and Tassoulas (2008), Hamdan et al. (2013) and others. It can
be used to compute the nodal forces needed on the lateral
domain boundaries to allow wave radiation to infinity.
Regarding PBC, the dynamic stiffness of a half-space medium
is approximated and coupled to a soil domain model to allow
waves to propagate with respect to depth, with no or very little
reflection. Kausel and Roësset (1981) employed the Thomson–
Haskell transfer matrix technique to derive the dynamic stiff-
ness matrix for layered media. This approach was also extended
by Andrade (1999), who obtained a formulation for a half-
space element and assembled its contribution to adjacent finite
elements of the soil domain. A further development was
achieved by Lee et al. (2011a), who dealt with saturated half-
space media under plane strain conditions, while Lee et al.
(2011b) considered porous half-space media. The TLM was
combined with PBC by Hamdan et al. (2015a), where the
authors investigated the effect of the thickness of a buffer layer
on the performance of the combined model. It is worth noting
that the TLM was also combined with the PML method by
Barbosa et al. (2012), where it proved effective in terms of accu-
racy and computational cost. Finally, it is useful to mention
that the TLM has also been used by Park and Kausel (2004) to
compute dispersion curves for anti-plane and in-plane waves in
unbounded domains.

Analytical and numerical solutions have been developed for
computing the fundamental frequency or the dynamic com-
pliances of surface rigid foundations overlying rigid bedrock.
However, there are no such solutions or even empirical
expressions for the case of inclined rigid bedrock or inclined
soil layers. These cases are important from a practical point of
view for investigating, for example, cases of vibratory machines
sensitive to minor changes in the fundamental frequency of the
underlain soil profiles. It will be shown that the proposed
model can deal with such cases and that geometry complexities
can be accommodated by the use of unstructured mesh grids.
For the purpose of validation, the combined model is used in
the case of a homogeneous half-space soil to compare with
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published results, when a sufficient thickness of the half-space
is taken into account.

The outline of this paper is as follows. A brief description of
the coupled finite-element model is given in Section 2. In
Section 3, theoretical models providing the natural frequencies
of a soil layer over a rigid base and for a two-layer soil profile
are presented. The presented coupled finite-element model is
then used in Section 4 to examine the effect of the inclination
of both the bedrock and the soil layer interface, in the case of
a two-layer soil profile, on the dynamic response of a surface
rigid foundation. The effect of the relative thickness and stiff-
ness of the soil layers is also investigated. In Section 5, the
dynamic behaviour of a multi-layered soil profile is examined
and in Section 6 an example of ground vibration reduction is
presented. Finally, conclusions are drawn in the last section
based on the numerical results.

2. Method of analysis
The TLM technique is based on subdividing the soil domain
layers into sub-layers and employing a plane wave propagating
in the horizontal direction within each sub-layer. In this work,
linear variation of the displacement field is assumed in the ver-
tical direction with the thickness of the sub-layers not exceed-
ing one-tenth of the shear wavelength, as reported by Waas
(1972). This approach is used for deriving nodal forces to be
used on the vertical boundaries of the computational domain
to allow wave radiation to infinity. Models based on this ap-
proach are capable of dealing with problems involving complex
geometries with variations in material properties. Structured
mesh grids have been used in most associated publications with
this approach. However, it is usually not practical to employ
such mesh grids in engineering applications where complex
geometries have to be considered. Chen (1994), for example,
used eight-node quadrilateral finite elements in the irregular
region and, in order to guarantee the linear variation of dis-
placement with respect to depth at the lateral boundaries, the
author employed seven-node quadrilateral finite elements,
which have only two nodes at the interface of the irregular and
regular regions. Recently, Jones and Hunt (2011) used a step-
wise fashion technique to approximate the soil layer interface
inclination. Both techniques are useful to model soil media
with non-horizontal profiles; however, the development of a
more flexible procedure is desirable. In the current work, a prac-
tical technique is employed by meshing the irregular domain
randomly using an automatic mesh generator provided by
Geuzaine and Remacle (2009). The flexibility and practicality
of the unstructured mesh grids have merits, as they allow prac-
titioners to deal with complex engineering problems. A typical
soil–structure interaction problem is depicted in Figure 1, in
which the soil profile consists of non-horizontal soil layers
resting on bedrock and including some man-made discontinu-
ities such as tunnels, structures, foundations and wave barriers.
Practical problems dealing with surface reduction of ground-
borne vibration are presented by Hamdan et al. (2015b), where

the effect of wave barriers of various shapes and embedded
mats is examined. Moreover, the flexibility of the unstructured
mesh grids is used to investigate train-induced surface vi-
bration in the presence of conventional railway embankments
or embankment with vertical walls.

The irregular domain is handled with FEM by discretising it
into three-node triangular finite elements with two degrees of
freedom at each node, horizontal and vertical displacements.
The effect of the two lateral semi-infinite media is replaced by
the nodal forces they apply on the irregular domain. Following
Waas (1972), the appropriate governing differential equation of
motion is applied for each individual sub-layer. Free vibration
of all sub-layers, while ensuring compatibility of stresses and
displacements at the interfaces, as well as taking into account
the free and fixed boundary conditions, leads to two global
second-order eigenvalue problems, one for each lateral bound-
ary. For example, the eigenvalue problem related to the right
lateral boundary has the form

1: k2Aþ ikBþG� ω2M
� �

uR ¼ 0

where k is the wavenumber, ω is the circular frequency of the
load, i is the pure imaginary number such that i2 =−1 and uR
represents the eigenvectors of the vibrating right boundary.
Matrices A, G and M, which are symmetrical, are obtained
from the geometry and material properties of the horizontal
sub-layers of the right semi-infinite domain. Matrix B, which
is a skew matrix, depends only on the material properties of
the sub-layers. Each matrix is of dimension 2(n+1)� 2(n+1),
with n being the number of sub-layers. These global matrices
are obtained by assembling the corresponding sub-layer
matrices Aj, Bj, Gj and Mj, of dimensions (4� 4). The solution

Wave barrier

Foundations

Bedrock

Figure 1. Configuration and idealisation of a soil–structure

interaction problem
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of expression (1) yields to computing 2(n+1) eigenvalues and
their corresponding eigenvectors. If the soil domain is over-
lying rigid bedrock, the last two rows and columns of the
global matrices are omitted owing to base fixity. This yields to
an eigenvalue problem with 2n eigenvalues and corresponding
eigenvectors. Hamdan et al. (2013) investigated the effect of
selecting a few eigenmodes and hence reducing the compu-
tational cost of the method.

Kausel and Roësset (1981) derived an exact form for the
dynamic impedance matrix for SV–P waves in a half-space. An
approximate matrix was obtained by expanding the exact
matrix using a Taylor series about k=0 and retaining the first
three terms of the series (Hull and Kausel, 1984). The approxi-
mate matrix is expressed as

2:

Kapp ¼ iωρcs
1 0

0 1=γ

" #
þ μ

1� 2γð Þ
γ

k
0 1

1 0

" #

þ iμ
cs
2ω

k2
� 2� γð Þ=γ 0

0 1� 2γð Þ=γ3

" #

where ρ represents the half-space density, μ is the shear
modulus of the half-space and γ represents the ratio of the
shear wave velocity cs to the dilatational wave velocity cp of
the half-space. The approximate matrix of expression (2) is
a second-order equation in the wave number k and it relates
the tractions and the displacements at the half-space surface.
Hence, the half-space is taken into account using the inverse
Fourier transform on the tractions–displacements to derive
the stiffness matrix of the half-space elements and include the
corner nodes. The soil–half-space interface is discretised into
two-noded half-space elements. These elements share two
nodes with the irregular region and thus the stiffness matrices
of the half-space elements are assembled into the global stiff-
ness matrix of expression (5). More details can be found in
the references by Andrade (1999), Jones and Hunt (2011) and
Hamdan (2013). The displacement field on each boundary is
written as a combination of all computed eigenvalues and
eigenvectors (Waas, 1972). The nodal forces vectors acting
on the right and left boundaries of the model are expressed as

3: PR ¼ �RUR and PL ¼ �LUL

The dynamic stiffness matrix of the consistent transmitting
boundary of the right side regular region, R, is expressed as

4: R ¼ iAVHV�1 þD

where V is the modal matrix containing all 2n+1 eigenvectors
column-wise with the associated eigenvalues, with negative
imaginary number, contained in the diagonal matrix H.

Matrix D is a function of the horizontal sub-layers properties.
The left side lateral region is treated in a similar way as was
done for the right boundary, where the eigenvalues with posi-
tive imaginary part are used to form the diagonal matrix.

Usually, horizontal layers are used in the soil model and the
left side boundary is a mirror of the right boundary. Hence,
one eigenvalue problem can be solved. However, in this paper,
two separate eigenvalue problems have been solved, as the
problem includes an inclined base and non-horizontal soil
layers. Therefore, the dynamic stiffness matrix of the left boun-
dary is different from the one of the right boundary. The
obtained matrices R and L are added to the stiffness matrix of
the central region K.

5: 1þ iβð ÞKs � ω2Ms þ Rþ L
� �

U ¼ P

where β denotes the damping coefficient, and the global
matrices Ks and Ms are obtained by assembling the stiffness
and mass matrices of the three-node finite elements in the irre-
gular soil domain and the two-node half-space finite elements.
The external nodal vector is expressed by P. A direct solver is
used for the solution of the linear system (5) where the results
are obtained as complex numbers for the vertical and hori-
zontal displacements, for which the amplitudes |v| and |u| are
computed, respectively.

3. Theoretical and approximate solutions
of the fundamental frequency of
soil profiles

The natural frequencies of a homogeneous soil layer of
depth H and subjected to a vertical harmonic load is given by
expression (6). For more details see Kramer (1996).

6: f vj ¼ cp
4H

2j þ 1ð Þ

where fj
v represents the natural frequencies of the vertical

loading and j is an integer. The assumptions associated with
deriving Equation 6 consider the soil layer to be isotropic
linear and elastic, overlying horizontal rigid bedrock. Recently,
Rovithis et al. (2011) investigated numerically and derived a
closed-form solution for wave propagation in one dimensional
(1D) layered inhomogeneous soil over rigid bedrock. The
authors considered a case of an inhomogeneous soil layer over
bedrock and an inhomogeneous soil layer overlying a homo-
geneous soil layer over horizontal bedrock. The fundamental
frequency of a constant-depth soil layer could be estimated
from expression (6); however, no such theoretical or even
empirical solutions are available in the case of non-uniform
depth of the soil. Therefore, numerical solutions could be an
alternative and act as a guide for similar problems in practical
engineering applications. For the two-layer soil profile case,
Hadjian (2002) estimated the fundamental frequency by an
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approximate relationship involving the height of each soil
layer, their fundamental periods and two parameters represent-
ing the ratio between the thicknesses of the soil layers.

7a:

f ¼ f1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2=8 0 � 75þ f1=f2ð Þ2 1þ 2 ρ1H1=ρ2H2ð Þ½ �

n or

for
H1

H2
. 1

7b: f ¼ f1

1þ χ f1=f2ð Þn 1þ ρ1H1=ρ2H2ð Þn½ �1=n
for

H1

H2
� 1

where

χ ¼ 1� 0�2 ρ1H1

ρ2H2

� �2

and n ¼ 4� 1�8 ρ1H1

ρ2H2

f1 and f2 being the fundamental frequencies of the upper
and bottom layers, ρ1 and ρ2 are their densities and H1 and
H2 are the thicknesses of the upper and bottom layers,
respectively.

4. Harmonic vibration of surface rigid
foundations over soil media with
non-horizontal profile

In the following sections, two soil profiles are used in the
analysis. In the first one, a surface rigid foundation is assumed
to be overlying a soil layer over inclined bedrock. In the
second model, a two-layer soil profile over horizontal bedrock
is considered by assuming a pre-defined inclined soil layer
interface. The results are presented in terms of the dimension-
less frequency, a0 =ωH/2πcs, where cs is the shear wave velocity
of the upper soil layer, and the vertical and horizontal normal-
ised compliances of the foundation μ|v| and μ|u|.

4.1 Rigid surface foundation on a soil layer over
inclined bedrock

A rigid surface strip foundation is assumed to be resting on a
homogeneous soil layer overlying bedrock. The same example
examined by Park and Tassoulas (2002) and Hamdan et al.
(2013) is revisited here. The foundation has a width of 2B,
where 2B=H, with H being the thickness of the soil layer. The
soil medium has shear modulus and density of unit values,
a Poisson ratio of 0·3 and a damping coefficient of 0·05.
The bedrock is assumed to be horizontal in the first instance,
θ=0°, in order to obtain a reference solution and for which
the analytical solution, Kramer (1996), and numerical sol-
utions, Park and Tassoulas (2002) and Hamdan et al. (2013),
are available. The problem is illustrated in Figure 2(a) where
the surface rigid foundation is resting on a soil layer over an

inclined rigid base. The domain is meshed using linear triangu-
lar elements with the mesh size not exceeding one-tenth of the
Rayleigh wave length corresponding to the applied frequency.
The centre of the foundation is subjected to a time-harmonic
unit load with a range of frequencies ω. The dynamic com-
pliances of the foundation are computed and the real parts are
plotted in Figure 2(b). As shown in the figure, the real parts of
the vertical response of the foundation reach a peak around
the dimensionless frequency of 0·45. In fact, this value is very
close to the analytical value estimated from expression (6) to
be around 0·47.

Next, the bedrock is inclined with angles of 5°, 10° and 15°.
This is achieved by maintaining the thickness of the left lateral
boundary constant at H and changing the thickness of the
right lateral boundary. This scenario leads to a decrease in the
overall volume of the soil medium in the model. The dynamic
response of the rigid foundation is examined by comparing

θ

Soil layer over inclined rigid bedrock
FEM

TLMTLM

H = 2B

2B

(a)
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Figure 2. (a) Schematic diagram of a surface rigid foundation

over soil layer over inclined base and (b) normalised real part of

the compliance of the foundation (right image)
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its behaviour with the horizontal base case. As shown in
Figure 2(b), for the angle of inclination of 5° there is a shift or
an increase in the fundamental frequency of the soil profile.
This is more pronounced in the results of the vertical com-
pliances. This is also observed for higher angles of inclination
and, as the angle of inclination increases, the overall volume of
the soil in the model decreases. As a consequence, the overall
thickness of the soil model decreases and hence the denomi-
nator of expression (6) also decreases, leading the fundamental
frequency to increase.

4.2 Rigid surface foundation over a two-layer soil
profile with inclined interface over horizontal
bedrock

The profile of a soil medium plays a key role in the dynamic
response of embedded structures (Foinquinos and Roësset,
2000; Israil and Ahmad, 1989), where generally soil media are
assumed to overlie a horizontal rigid base or a half-space.
Chen (1994) simulated the effect of an inclined rigid base and
inclined soil layers on the dynamic behaviour of surface foun-
dations. The model consisted of three layers with the same
angle of inclination. In this paper, a two-layer soil profile is
dealt with to validate the presented model against the approxi-
mate solutions that are available for this case.

In this section, the soil profile is assumed to be underlain by a
horizontal rigid base. The interface between the two layers is
inclined in the same manner as in the previous section, leading
to a decrease in the volume of the upper soil layer and an
increase in the volume of the bottom layer. The total depth of
the soil profile satisfies (H/B=4), where B is the half width
of the foundation. The fundamental frequencies f1 and f2, of
expressions (7a) and (7b), are related to the upper and the
bottom layer, respectively. The relative densities, damping
ratios and Poisson ratios of the two layers are all assumed to
be equal to a unit, for simplicity. In the current analysis, the
ratio (H1/H2) is kept constant at 1 and the ratio of the relative
stiffness between the two layers is chosen to be 2. H1 and H2

represent, respectively, the right lateral thicknesses of the upper
and bottom soil layers. These will be varied according to the
considered angles of inclination. Using the approximate sol-
ution of expression (7a), the fundamental frequency for the
vertical loading can be evaluated. The dimensionless value is
around 0·17, while the numerical code predicted a very close
value of around 0·15. The same behaviour is obtained for the
case of horizontal loading response. The interface between the
soil layers is inclined with the angles 5°, 10° and 15°. It was
shown by Hamdan (2013) that the inclination of the interface
does not have a significant effect on the natural frequency of
the soil profile. The variations of the compliances with the
dimensionless frequency remain practically unchanged for all
inclination cases considered in the analysis. This could be due
to low angles of inclination or to the effect of the relative stiff-
ness and thicknesses between the soil layers. This is investi-
gated in the following sections.

4.2.1 Effect of relative stiffness μ1/μ2
Israil and Ahmad (1989) presented a parametric study using
BEM for the dynamic behaviour of strip foundations overlying
a homogeneous half-space, or a soil layer over a half-space and
a soil layer over bedrock. The authors examined the effect of
the material damping, the relative stiffness between the soil
layer and the half-space and the effect of stratum depth con-
sidering only vertical loading. A similar parametric study is
carried out in the current work to investigate the dynamic re-
sponse of surface strip footings over two-layer soil media with
inclined interface overlying horizontal bedrock. Here the effect
of the relative stiffness of the two layers is studied.

Both layers have a Poisson ratio of 0·3 and a damping coeffi-
cient of 0·05. The ratio between their relative stiffness is taken
as 0·5 and 4. The normalised amplitudes of the vertical dis-
placements are computed and plotted in Figure 3 for various
angles of inclination of the interface between the two layers.
From the results, it is clear that this has an insignificant effect
on the vertical displacements under the centre of the foun-
dation when the angle of inclination is changed. Various stiff-
ness ratios were examined by Hamdan (2013) and the same
behaviour was observed.

4.2.2 Effect of relative thickness H1/H2

The thicknesses of the two soil layers appear in the denomi-
nator of expressions (7a) and (7b), in the form of (ρ1 H1)/
(ρ2 H2), and each layer thickness is included, implicitly, in the
terms expressing f1 and f1/f2. Hence, they may have some effect
on the fundamental frequency of the soil profile. This aspect is
investigated here. For simplicity, Poisson ratio, damping ratio
and soil densities are considered to be the same for both
layers. The only difference in material properties is expressed
in the ratio of the relative stiffness, μ1/μ2, which is taken as
0·25. The total depth of the stratum is kept constant at 4B.
The ratio H1/H2 is varied between 0·25 and 4 and the results
for ratios 0·25 and 4 are presented. The normalised amplitudes
of the vertical displacements under the foundation are shown
in Figure 4. The results show that the interface inclination
has an influence on the dynamic compliances, especially at
low values of H1/H2. For example, for H1/H2 = 0·25, the nor-
malised amplitudes of the displacements decrease when the
angle of inclination θ increases. Moreover, the peak values
show slight shifts with respect to the dimensionless frequency.
As can be seen from Figure 4(a), the amplitudes of the vertical
displacements, before and after the fundamental frequency,
decrease when comparing to the case of the horizontal inter-
face. This could be due to the relative stiffness of the soil
layers. In other words, the bottom soil layer is stiffer than the
upper layer. Hence, increasing the volume of the stiffer layer
leads to decreasing the amplitudes of the vertical displace-
ments. For the case of H1/H2 = 4, the interface inclination
leads to very little change in comparison to the previous cases.
A slight shift in the fundamental frequency is noticed. The am-
plitudes of the vertical displacements (above the fundamental
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frequency) have shown a slight increase compared to those of
the horizontal layers. The same trend for relative thickness
ratios of 1, 1·67 and 3 was observed (Hamdan, 2013).

5. Dynamic behaviour of multi-layered
soil profile

The model is used in this section to simulate the dynamic be-
haviour of a multi-layered soil profile and compute its funda-
mental frequency. The computed fundamental frequencies, for
varying parameters, are compared with those obtained using
the expressions (7a) and (7b), where the successive use of a
two-layer solution is adopted to compute the fundamental fre-
quencies of the multi-layered medium. This is achieved first by
computing the fundamental frequency of the first two layers,

then the two layers are replaced by an equivalent layer and the
fundamental frequency of the equivalent layer and the under-
lain layer is computed. The procedure is repeated until reach-
ing the last soil layer. This is straightforward but it may lead to
cumulating errors as it relies on successive use of approximat-
ions. Hence, a one-step numerical solution can tackle this prob-
lem more efficiently. Here, a soil profile with a linear increase
in stiffness with depth, as in expression (8), is considered.

8: μ ¼ μ0 1þ αzið Þ

where α is the rate of increase, μ0 is a reference shear modulus
at the soil surface and zi is the depth below the soil surface.
The soil density and Poisson ratio are assumed to be constant
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for convenience. Hence, the soil deposit is assumed to be soft
at the surface and the stiffness is increased gradually to rep-
resent hard soil at the bottom. Table 1 shows soil properties
corresponding to α=0·5.

A soil domain 30 m long and 10 m deep is used in this
example. It is subjected to a vertical harmonic load of 1 kN
magnitude with a frequency varying from 0·25 Hz to 15 Hz.
Three values of the rate of stiffness increase are used, α=0, 0·5
and 1. The first case is equivalent to the homogeneous soil
medium with the stiffness of the top layer.

The vertical displacement curves at the soil surface are com-
puted for each loading frequency. The area under the dis-
placement curve is computed using an integration scheme and
plotted against the loading frequency. The results are shown
in Figure 5. The numerical model estimated a fundamental
frequency of 3·5 Hz for the case of an homogeneous profile,
while expression (6) gives a value of 3·3 Hz. Moreover, the
current model predicted the fundamental frequencies of 5·5 Hz
and 7·5 Hz, respectively, for α=0·5 and α=1, while 6 Hz and
7·9 Hz are obtained from expressions (7a) and (7b). It is clear
that the numerically predicted fundamental frequencies and
those obtained from the analytical and approximate solutions
are in very good agreement. Hence, for more complex cases
where analytical or approximate predictions are not possible,
the presented numerical approach should become a very practi-
cal tool.

6. Application to ground vibration
reduction

The developed coupled model is used in this work to model
ground vibration reduction by an empty trench. This appli-
cation is presented owing to the fact that the presence of dis-
continuities within the model produces multiple reflections and
refractions. Thus, waves’ amplitudes will vary within the homo-
geneous half-space. Consider a soil domain 20λR long and 4λR
deep, as shown in Figure 6(a), subjected to a surface vertical

harmonic load at the middle of the domain surface with a loading
frequency of 31 Hz. The derivation of the two-node half-space
elements can be found in the references by Andrade (1999),
Hamdan et al. (2015a) and Jones and Hunt (2011). It should be
noted that the 4λR thickness of the model is very close to 0 · 5λP
as recommended by Hamdan et al. (2015a) for modelling half-
space media using this approach. Soil properties are adopted
from the work of Yang and Hung (1997). An empty trench
is placed at a distance of 5λR from the harmonic load. The verti-
cal displacements at the surface of the domain are computed
with and without the presence of the trench. The amplitude
reduction factor, which relates the surface displacements with
and without the trench, is computed for a distance of 5λR after
the trench. Beskos et al. (1986) used a constant element-base
boundary for investigating the screening effects of empty
trenches, whereas Ahmad and Al-Hussaini (1991) employed an
advanced direct BEM to deal with the same problem. As shown
in Figure 6(b), the same trend is observed when comparing the
coupled model results with the published results.

Another example is presented here to show the flexibility
of adopting unstructured mesh grids to model problems of
practical interest. The examined model consists of a harmonic
load operating at the soil surface in the vicinity of a bridge.
The model is 100 m long and 25 m deep, and is overlying rigid
bedrock. The bridge has a 1 m wall thickness and 1 m of con-
crete thickness at its deck. This example is considered to show
the diversity of cases which can be dealt with using the pre-
sented finite-element model. The loading can be applied on
the bridge and levels of transmitted vibration can be monitored
in the surrounding field. The distance between the applied
load and the edge of the bridge, X, is varied from 5 m to 20 m
and the area under the vertical displacement curves at the
surface of the bridge is computed for a range of the loading
frequency. Material properties used in the analysis are shown

n ρ: kg/m3 cs: m/s ν β: %

1 1550 70·4 0·3 2·5
2 1550 80·3 0·3 2·5
3 1550 89·8 0·3 2·5
4 1550 98·4 0·3 2·5
5 1550 105·1 0·3 2·5
6 1550 113·6 0·3 2·5
7 1550 120·5 0·3 2·5
8 1550 127·0 0·3 2·5
9 1550 133·2 0·3 2·5
10 1550 139·1 0·3 2·5

Table 1. Layered soil profile properties for α=0·5

f: Hz
A

/A
0

0 2 4 6 8 10 12 14 16
0

0·001

0·002
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0·004

α = 0
α = 0·5
α = 1

Figure 5. Fundamental frequency of a multi-layer soil profile over

rigid base
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in Table 2. First, the elasticity modulus of the soil, Es, is con-
sidered to be 0·0033 of the concrete, Ec. For this case the first
natural frequency of the examined model is around 2·2 Hz.
The area under the vertical displacement curves for the ranges
of frequencies is computed using the numerical model and
plotted in Figure 7. At first, the load is assumed to be 5 m
away from the left edge of the bridge. The previous figure
shows that the bridge experiences displacement amplification
at around 2 Hz. This is in agreement with the computed value
of the natural frequency using expression (6). The amplifica-
tion decays beyond this frequency. The same response is ob-
tained when the load is applied at 10 m and 20 m away from
the edge of the bridge. The ratio of soil–concrete elasticity

moduli is increased to 0·01 and the response is computed
for different locations of the applied load under various fre-
quencies. The numerical model informs that the bridge amplifi-
cation would occur at around 3·7 Hz, which is in agreement
with the value of 4 Hz computed using expression (6).

7. Conclusions
A frequency domain finite-element model is used in this work
to model dynamic soil–structure interaction problems. The
model combines the TLM and the PBC to simulate the semi-
infinite extent of the soil. The model uses unstructured mesh
grids to deal with problems of complex geometries with
varying material properties.

Two types of applications are dealt with, namely, harmonic
vibration of surface rigid foundation and harmonic-loads-
induced ground-borne vibration. The numerical model is
employed to investigate the effect of non-horizontal soil pro-
files on the dynamic behaviour of surface rigid foundations.

Two examples of harmonic vibration of surface rigid foundat-
ions over bedrock are examined. The soil layer is assumed to
overlie inclined rigid bedrock in the first model. The numerical
results showed a slight increase in the fundamental frequency.

x/λR

(b)

Ar

0 2 4 6 8 10
0

0·5

1·0

1·5

2·0

2·5

Current model

Ahmad and Al-Hussaini (1991)

Beskos et al. (1986)

10λR5λR

1λR

Po e
iω t

TLMTLM

Two-node half-space elements

(a)

Figure 6. (a) Half-space finite-element model representation;

(b) amplitude reduction factor of surface ground-borne vibration

induced by a harmonic load on homogeneous half-space with

distance from trench

f: Hz

A
/A

0

0 2 4 6 8 10 12 14 16 18 20
0

0·01

0·02

0·03

0·04

0·05

0·06 X = 5     (Es = 0·003Ec)
X = 10   (Es = 0·003Ec)
X = 20   (Es = 0·003Ec)
X = 5     (Es = 0·01Ec)
X = 10   (Es = 0·01Ec)
X = 20   (Es = 0·01Ec)

Figure 7. Area under vertical displacement curves along surface

of bridge

ρ: kg/m3 E: MPa ν β: %

Concrete 2500 15 000 0·15 1
Soil Es/Ec = 0·0033 1700 50 0·35 2·5
Soil Es/Ec = 0·01 1700 150 0·35 2·5

Table 2. Concrete and soil material properties
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This increase is affected by the angle of inclination. As the
angle of inclination increases, the overall soil volume decreases
and hence the fundamental frequency increases. A non-
horizontal layer interface is considered in the second example.
The relative stiffness of the soil layers seems not to have any
noticeable effect on the dynamic response of the soil medium.
However, the relative thickness of the soil layers has a sig-
nificant effect on the dynamic response of the soil medium,
especially for a relative thickness ratio less than one. It is clear
that the fundamental frequency has slightly shifted. For the
case of H1/H2 = 0·25, a slight reduction is observed in the fun-
damental frequency. More importantly, the amplitudes of the
vertical displacements have decreased with increasing the angle
of inclination for all applied dimensionless frequencies lower
and greater than the cut-off frequency. This is due to decreas-
ing the volume of the upper soil layer (less stiff layer). In the
case of H1/H2 = 4, the upper soil layer is much deeper than
the bottom layer and hence it has more influence on the funda-
mental frequency of the soil medium. This is clear as the
amplitudes of displacements and the fundamental frequency
are affected by the interface inclination.

The numerical model is also used to simulate the dynamic
response of a multi-layered soil profile. The presented model
predicted fundamental frequencies in good agreement with
results of approximate solutions.

An example of surface ground vibration reduction is presented
where an empty trench is placed between the load and the pro-
tected area. The model consisted of an homogeneous half-space
meshed with structured elements. Another problem of practical
interest is also presented where an unstructured mesh grid is
employed, showing the flexibility and diversity of problems that
can be dealt with using the presented numerical model.
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