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Plasticity Model for Hybrid Fiber Reinforced Concrete under True

Triaxial Compression

'Yin Chi, *Lihua Xu, *Hai-Sui Yu

Abstract: Based on the experimental background of 75 true triaxial compression tests conducted on
cubic specimens, a plasticity constitutive model for hybrid steel-polypropylene fiber reinforced
concrete (HFRC) is developed in this study, aiming to accurately predict the strength and deformation
of HFRC under various loading scenarios. A five-parameter Willam-Warnke failure surface is modified
to account for the presence of hybrid fibers. The evolution of the loading surface is characterized by
uncoupled hardening and softening regimes determined by the accumulated equivalent plastic strain,
and a Drucker-Prager non-associated plastic flow is used to describe the plastic deformation. Various
model parameters are mainly calibrated on the basis of true triaxial compression test data. Subsequently,
the responses of the constitutive model are verified by multiaxial compression test results of both plain
concrete and fiber reinforced concrete reported by various researchers. It is observed that a good
estimation of the strength and the deformation capacity of HFRC with varying fiber volume fractions

and aspect ratios can be achieved by the proposed model.

CE Database subject headings: Plasticity; Constitutive modeling; Fiber reinforced; Concrete;

Strength; Compression;

Introduction

Relatively recent advances in concrete technology have led to the development of fiber reinforced
concrete (FRC), which is now recognized by engineers as a viable concrete reinforcement solution and

has seen widespread application in the construction industry in recent decades. With the increasing use
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of FRC as a primary structural material in building complex structures such as reactor vessels, dams

and offshore structures(ACI Committee 544, 1982; Swamy and Barr, 1989;Bentur and Mindess, 1990).,

it has become necessary to develop a sophisticated analytical model capable of accurately describing

FRC behavior when it is subjected to various loading scenarios.

To date, considerable efforts have been geared towards advancing the development of constitutive

models for plain concrete as well as high strength concrete(e.g., Chen and Han,1985; Belarbi and

Hsu,1995; Ansari and Li, 1998; Attard and Setunge,1996; Hussein and Marzouk, 2000;Babu et al.,

2006;Grassl et al., 2002). Constitutive models with various theories, i.e, plasticity models, damage

models, microplane models, discrete models, or models with coupling theories etc., have been

extensively researched and well acknowledged, which are capable of effectively capturing the

behavioral characteristics of concrete materials. Using existing traditional concrete models as a

foundation, different methods and formulations for constitutive modeling of FRC materials have been

proposed with SFRC in particular, and have been extensively researched in literature. However, it has

been noted that some of the models are only suited to specific loading paths (e.g. Nataraja et al., 1999;

Hsu and Hsu, 1994; Murugappan et al., 1993; Hu et al., 2003). Other models considered to have been

obtained through phenomenological or empirical methods have no systematic expression formulated to

predict the model’s response to variations in the fiber reinforcement index(FRI, which is calculated by

multiplying fiber volume fraction and its aspect ratio) (e.g. Chern et al., 1992; Lu et al., 20006).

Consequently, comparisons between test data and numerical simulations of complex problems often

revealed poor predictive capability of the numerical models owing to inadequate theoretical description

of the FRC materials. In such an instance, the proposed constitutive model may not degenerate back to

the case of conventional concrete as the fiber vanishes. The simulation results by using such model
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may lead to a lack of confidence in computational analysis of structural responses for the cases where
significant material nonlinearities are involved.

A review of existing literature indicated that although previous FRC investigations appears to have
been concentrated on the constitutive modeling of SFRC and HFRC, only the influence of different
volume fraction (e.g.,Yin et al., 1989; Traina and Mansor, 1991;Yun et al., 2007; Di Prisco et al., 2009)
was considered. Of the limited research available on the development of a constitutive model for
HFRC with various fiber reinforcement indices, it is found that the performance of FRC is sensitive to
changes in both the fiber volume fractions and aspect ratios.

In view of the above mentioned, it is clear that significant advancement of knowledge is required
to facilitate the behavioral characterization of HFRC subjected to multiaxial compressive loading
situations. The subsequent focus of this study is therefore to develop a plasticity constitutive model to
take into account the presence of various hybrid fibers of HFRC. True triaxial tests are carried out to
calibrate various model parameters, and the developed model is implemented into general FE package
ABAQUS by UMAT subroutine via an explicit integration algorithm, the model’s performance is then

evaluated by available experimental data.

Experimental Program

Materials and mix proportions

The plain concrete mixtures were designed and specified at a 28-day compressive strength of
60MPa. Ordinary Portland cement (P.O 42.5) was used as the binder for the mixtures. Crushed granitic
rocks of sizes between 5~20mm were used as the coarse aggregates. Normal river sand including 5% of
water (by weight) with fineness modulus of 2.7 was used as the fine aggregates. A highly efficient

water reducing agent with a reducing rate of about 20% was used in the mix design. The mix design by
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weight of the plain concrete mixture was in the ratio 1:0.34:1.80:2.49 (cement:water:sand:coarse

aggregate) and designed according to literature (GB/T50081-2002).

For steel fiber, to make the full use of the advantage in strength improvement and toughness, the

volume fraction of steel fiber is suggested between 0.5% and 2.0% and the aspect ratio is suggested

between 30 and 80 according to literature (CECS 2004). Therefore, corrugated steel fibers produced by

WuHan Hansen Steel Fiber Ltd (Fig.1) with the tensile strength over 600MPa were used in volume

fractions of 0.5%, 1% and 1.5% in this study, and the fiber aspect ratios (length/diameter) of 30, 60

with a fixed diameter of 0.5mm were employed.

For polypropylene fiber, according to the product instruction, a low volume fraction from 0.05%

to 0.2% is recommended considering the homogeneity to ensure the evenly distribution of

polypropylene fibers. Hence, a monofilament type of polypropylene fibers provided by Beijing Zhong

Fang Technology (CTA) Co. Ltd (Fig.2) with an elongation rate between 15% and 35% were used in

volume fraction of 0.05%, 0.1% and 0.15% with a diameter of 0.048mm, the lengths of the fibers used

in the study were selected to be 8mm and 19mm, corresponding to aspect ratios of 167 and 396

respectively.

True triaxial facilities

The true triaxial testing system used was specially manufactured by the Science Academic

Research Institute of Yangtze River in China. Fig.3 illustrates a schematic diagram of the apparatus. It

accommodates a 150mmx150mmx150mm cubic specimen. Three directions of pressures were

separately controlled by a servo-hydraulic system. It has a 1500tonne load capacity and is able to apply

a lateral pressure of up to 20 MPa. Axial loads were applied to the specimen via actuators fitted at the

bottom of the device and lateral loads were applied by actuators fitted against the device’s rigid
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reaction frame. All the pressures were measured by pressure transducers. Axial and lateral
extensometers were used to measure the deformations caused by the imposed stresses.
Loading scheme

Under true triaxial compression, a displacement control with a 0.005mm/s loading velocity was
applied in the axial direction (0; direction) until ultimate failure occurred. This was done so that the
entire stress-strain curve would include both ascending and descending branches. The lateral pressures
(0, <0,) were designated as 5/10 MPa, 4/15 MPa and 3/20 MPa respectively in accordance to the
loading capacity of the testing machine. From the plasticity point of view, different lateral pressures
lead to varying Lode angles such that a failure envelope with respect to the deviatoric tracing can be
obtained. A load control was employed for the lateral pressure. Take the loading case of 5/10 MPa for
example: the lateral pressures O,,0, were initially imposed at a relatively low level
(ie., 0, =0, =5 MPa) with a loading velocity of about 0.8Mpa/s. Afterwards, O, remained
unchanged but 0, was increased to 10MPa. Consequently, axial displacement loading was utilized
until ultimate failure occurred. The same loading scheme was also employed for the other two

predetermined lateral pressures (4/15MPa and 3/20MPa).

Triaxial strength

Table 1 summarizes test results showing the axial strengths of plain concrete as well as HFRC
subjected to true triaxial compression with predetermined lateral pressures of 5/10MPa, 4/15MPa and
3/20MPa. The listed triaxial strength for each loading scenario was the average value from three test
specimens, of which the standard variation for each series was also given in the Table 1. The test results
were then used to construct the failure surface of HFRC and calibrate the model’s parameters (See

section: Loading surface), and further detailed results with respect to the stress-strain behavior are
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elaborated in literature (Chi, 2012). As can be seen from Table 1 that by the inclusion of hybrid fibers,
the triaxial strength increases up to 27.7% compared to the strength of plain concrete(C60). It is also
observed that the enhancing effect of hybrid fiber is more significant rather than the effects caused by
single steel and single polypropylene fiber.

Basic elastoplastic formulation

A basic assumption in the classical theory of incremental plasticity is that the total strain rate is
divided into an elastic component dgeijl. and a plastic component d& }Z/l by simple superposition as
shown here (Yu, 2006):

ds;" =ds+ds] (1)

At the beginning of loading, the behavior of FRC materials could be approximated as elastic, by
virtue of all the deformations before initial yielding being recoverable after unloading. As a
consequence, a Hooke’s type stiffness matrix may be applied for calculating the elastic strain which
involves two material constants when isotropy is assumed, namely, the elastic modulus £ and the
Poisson’s ratio v, as expressed by this equation:

do, =Dy, -dzj; =Dy, -(de) —de()) 2)
where D;,il =2G(6,0,+ ﬁdjé‘k,) denotes the isotropic elastic tensor.

The elastic modulus generally rises with increasing steel fiber volume fraction and aspect ratio
owing to the higher modulus of steel fiber. Likewise, it decreases as the polypropylene fiber volume
fraction and aspect ratio increases because of polypropylene fiber’s lower modulus. However, as a
relatively low polypropylene fiber content is investigated in the research, and experimental
observations (Zhang, 2010) indicate that it does not significantly influence elastic modulus £ with

various polypropylene fiber volume fractions ranging from 0% to 0.15%, its impact on the elastic
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stiffness of concrete thereof can be regarded as negligible. It is therefore assumed that the value of
elastic modulus E has the following relationship with steel fiber volume fraction suggested by Huang
(2004):

10°

22434741 1, e

where [ 4 Tepresents the uniaxial compressive strength of SFRC, which can be calculated as:

S =k o (4)
in which fw denotes the uniaxial compressive strength of plain concrete; the value of kc will be
addressed later.

In regards to the Poisson’s ratio, the values most often quoted in the literature for FRC are in the
range 0.2 to 0.25(ACI Committee 544,1996; Hu et al., 2003; Yin et al., 1989; Zhang et al., 2010).
However, it was also reported that the average Poisson’s ratio v remained practically unchanged
regardless of the fiber type (Yin et al., 1989; Zhang, 2010) in the concrete, and according to the
literature (ACI Committee 544), which referred that when the volume percentage of fibers is less than
2%, the Poisson’s ratios of FRC are generally taken as equal to those of a similar non fibrous concrete.
Consequently, a constant value of 0.2 is assumed for modeling of FRC in this study.

Moving forward, the plastic component d SZZ. is determined using plastic flow rule. Generally, a
non-associated flow is assumed, which implies that the direction of the incremental plastic strain is

normal to a plastic potential surface which differs from the loading surface and is given by:

og
dej' =di="— (g% ) (5)

ij
where d A is the plastic multiplier determined in accordance to the consistency condition to ensure

that the stress state after yielding satisfies the yield criteria at the end of each increment step.
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Generally, the loading surface can be formulated in terms of either a combination of the three
principal stress invariants or the coordinates in Haigh-Westergaard stress space (Fig.4) as expressed
below:

floy) = U,y J3) = f(p,£.0)=0 (6)

In this study, the loading surface comprises the three unified coordinates 0,&,6 , which are

computed as follows:

§=[1/\/§,11:tm (7)

9,
7,J2=(s:s)/2 (8)

1 |33

0 =—cos < ——
3 2 073

2

,J5 = det(s) (9)
Loading surface
In this study, the mathematical form of the loading surface, involving the Willam-Warnke (W-W)
five-parameter failure model is described using Haigh-Westergaard coordinates as follows:
[&p.0)=\2J, -K(z,)-p" (£,0)=0 (10)
where K, <K (e p) <1 is the hardening/softening parameter that defines the increase of strength
during hardening and the strength deterioration during softening. Before any plastic deformation occurs,
the hardening parameter keeps a constant value of K, defining the initial yield surface that bounds
the elastic region. The function phf (£,60) defines the parabolic shape of meridians which bounds
the ultimate strength of HFRC (Eq.13). It is interpolated between the tensile meridian p, (Eq.11)
where Lode angle @ =0, and the compressive meridian P, (Eq.12) where Lode angle @ = 60" as

follows:

2
fizaz(k}iJ +al(k}’0’)+a0 (11)
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2
fi ~b, (_"c”c ) +h, (—k}pf J+b0 (12)

cu cu

phf (é: 9) — ‘ 2pth[(pLh/)2 _(pth/)z COS ‘9] ‘

AT Y = (pl ) 1cos® 0+(p -2 )
P 2p = p") AP ) = (p) ) ]cos’ 6+5(p) ) —4pl p!}"?
AP =(p ) ]cos* O+(p! =2p" )’

(13)

+

in which p"” =k p,,p"” =k p,.a,a,,a,,b,,b,b,arc material constants sourced from a large
number of typical experimental data points lying on the two meridians of conventional concrete.
Because the tensile and compressive meridians intersect with the hydrostatic axis, they are subjected to
equal triaxial tension which results in the parameter @, =D, , thereby reducing the number of

parameters to five, as shown below (Willam and Warnke, 1974):

a,=b,=0.1775
a, =-1.4554,a, =-0.1576 (14)
b, =0.7806,b, =—0.1763

It is also noted from Eq.10 to Eq.13 that apart from the concrete compressive strength ( f,,)
which is a variable parameter, another two coefficients (kc,kl) are introduced into the meridian
functions to account for the presence of hybrid fibers. These two coefficients can be calibrated from
experimental results by considering the ultimate state of the failure surface, at which the value of
hardening/softening function K (£,) =1.

Calibration of k,

The coefficient &, in Eq.12 for the compressive meridian of HFRC is determined by fitting the
failure envelope to uniaxial compression test data to ensure that the compressive meridian passes
through the HFRC’s stress value at failure i.e. the uniaxial compressive strength of HFRC. Hereof, It
has to be noted that because of the varying uniaxial compressive strength of HFRC, from the theory of

plasticity point of view, the stress state (0,,0,,0;)=(0,0,—f fc) (compression is designated as
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negative) lying on the compressive meridian may lead to different hydrostatic stresses. The

corresponding values of deviatoric stress pf/ and hydrostatic stress & can be calculated as:

p! = \/2%‘[(0_0)2 +(0+fﬁ')2 (=12 _0)2} = \E|fﬂ-

$==/k /N3 (16)

(15)

By substituting the value of & into the W-W model, the deviatoric stress ©, on compressive

meridian of plain concrete can then be determined as follows:

1 f.
—b — |b? —4b, (b, + ——2L
R Er )
p(.' 2b2 cu

the coefficient k, is consequently determined by k, = o' / p, .

It is observed from the literature (Zhang, 2010) that the steel fiber has major influence on the
compressive strength, whilst polypropylene fiber is reported to have no discernible effect on the
compressive strength with relative low volume fractions ranging from 0.05% to 0.3% (Bayasi and Zeng,
1993) ,written as:

k. =1+a,A, (18)

where @, denotes the influence factor of steel fiber, it is fitted to 0.056 according to the

experimental results reported in literature (Zhang, 2010). /Fisf denotes the FRI of steel fiber calculated

as /15/. = st i , st is the volume fraction of steel fiber and L is the aspect ratio of steel fiber.
s sf

The calibrated values of k, from the available experimental data reported in (Yin et al., 1989;
Traina and Mansor, 1991; Chern et al., 1992; Lim and Navy, 2005; Jiao et al., 2007) which were not
used in the calibration are also compared to Equation.18 as shown in Fig.5. It is clear that the value of

k. can be predicted for varying FRI by the approximate equation, and the predictions are in general
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agree with the test results reasonably well.
Calibration of k,

As the points lying on the compressive meridians are first examined, the coefficient k, in Eq.11
for the tensile meridian of HFRC is then calibrated by rotating the tensile meridian of plain concrete
p, and ensuring that the interpolated meridians as well as the deviatoric tracings coincide with all the
test points under true triaxial compressions in this study as illustrated in Fig.6.

Subsequently, the value of kt is determined according to the true triaxial test results calculated by
kt = ,Oth 7 P, it is then regressed to the following equation by relating to FRI of both steel and

polypropylene fiber:

k =1+0.082, +0.1322,, (19)

where, ﬁpf denotes the polypropylene fiber reinforcements index calculated as ﬂpf = fo 2L , fo
pf

is the volume fraction of polypropylene fiber and s the aspect ratio of polypropylene fiber.
»f

By using Eq.18 and Eq.19, the predicted values of deviatoric stresses p” (£,60) are compared
to the experimental results under all the lateral pressure combinations, as illustrated in Fig.7. It is seen
that the proposed model is validated and provides fairly close estimation to the experimental values.

Hardening and softening functions

The hardening and softening rule define the shape and location of the loading surface as well as
the material’s response after initial yielding, wherein the hardening rule describes the pre-peak
behavior as the elastic region terminates and the softening rule corresponds to the post-peak behavior
during plastic flow. Generally, the evolution of subsequent surfaces is governed by a

hardening/softening parameter which is usually related to the length of an accumulated plastic strain



235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

25

N

253

254

vector or an accumulated equivalent plastic strain (Chen, 1982). For the model in this study, the
accumulated equivalent plastic strain is used as the hardening/softening parameter.
Isotropic hardening
Numerous experimental investigations carried out indicated that the loading envelope of concrete
materials is similar to the shape of its failure envelope with the exception of the slight difference in the
tension-tension zone (Tasuji et al, 1978). Therefore, an isotropic hardening (Chen 1988) is assumed in
this study for simplicity, which indicates a uniform expansion of the loading surface, as shown in Fig.8.
The hardening parameter is scaled by:

dk = dF, (20)
where k the hardening parameter is governed by the accumulated equivalent plastic strain & s Of

which the value is given as (Chen 1982):

dz, = | ’%de;deﬁ = [da-|m| (21)

where M denotes the gradient of the plastic potential such that M = a— .

The mathematical description of the hardening function involves an ascending part of Guo (1997)

parabola:

- F _aE o E) s E)
K(k)—K(sp)—f a8‘+(3 2a)(8) +(a 2)[5,) (22)

cu c & c

For its numerical implementation, the hardening function is generalized as a rate form, given by:

)giw(a_z)[gi

c c

dK (Z,) = ai+2(3—2a)(§
&g &

c

2
1 _ _
) . -dg, =H (k,s)-dg, € <¢&,(2

c c

3)

where £ denotes the total equivalent strain at the current increment step, calculated with respect to a
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three-dimensional stress state (Yu, 20006):

N =

g = %{2[(8,“ -£, )2 +(8yy —-£_ )2 +(e.—¢. )2} +3(gfy +&, +E, )} (24)

Coefficient a is a parameter related to the FRI of hybrid fibers which controls the slope of
hardening curve to enable the hardening rule account for the presence of hybrid fibers. It was
determined by Zhang (2010) through a uniaxial compression test as:

a=28.2283-2327711," +0.47722,, —0.4917,, (25)
£, represents the amount of equivalent strain when the stress state reaches the failure surface. Here,
for derivation of the &. of HFRC under true triaxial stresses, a linear relationship between a
confinement level ((o ,+o 2)/ fc) and the strain amplification (&, / 8q) under the true triaxial
compression is developed, as shown in literature (Papanikolaou and Kappos, 2007), where &, the
corresponding equivalent strain of HFRC at its uniaxial compressive strength is calculated as:

g, = %(53 _51) (26)

the recommended value of & p is given according to literature (Zhang, 2010):

s
g, =2633[f,(1+0.2064, +03882,) x10 (27)
and the predictive equation for &£, relating to the confinement level is then developed based on the
true triaxial test results as:

£ =¢, -(1+20.Mj (28)

cu

where 0,0, represent the applied lateral pressure respectively, which reduces to &. =&, as

subjected to the uniaxial compression. Fig.9 compares the predicted and experimental values of

equivalent strain for HFRC for both the uniaxial (&, ) and true triaxial compression loading cases (&,).
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It was found during the testing that the strain of FRC material with various hybrid fiber combinations
deviated significantly under different loadings, which is mainly attributed to the inherent discreteness
of concrete material. Even though the approximations cannot always be mathematically consistent with
the scattered experimental results, the proposed equations, as a reference, were still able to effectively
characterize the peak strain of HFRC having different volume fractions and aspect ratios.

For equalbiaxial compression, the expression initially proposed by Darwin and Pecknold (1977)
for plain concrete can be adopted and modified by using biaxial strength ( f’ Jee )and uniaxial strength

(f ") of FRC instead, written as:

-2) (29)

Note that the softening contribution remains inactive during hardening process of numerical

implementation.
Isotropic softening

For further plastic flow in post-peak regime, the value of hardening function is maintained as
K(k)=1, at which point softening takes place and the material behavior is controlled by the
softening function K (s). This function governs the post-peak behavior of the loading surface i.e.
when it contracts. A softening function, described in terms of the accumulated equivalent plastic strain
and derived from the uniaxial compressive stress-strain relation was adopted. As the mathematical
description of the softening function considered utilizes the descending part of the stress-strain

equation proposed by Guo (1997):

|

c

= _ 2 _ (30)
S b(i—lJ + &
gC gC

3]

[

K(s)=K(F,)=
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where 1> K(s)>0,
For numerical implementation, the rate form of the softening function was generalized and

differentiated as follows:

— 2 — — —
1 b(i_lj LE _i{zb[i_ljhl}
£, g, .| & &, g &,

-d§p =H,(k,s)-dg, £>¢,

(31)
where &, is defined the same as with hardening regime(see Eq.28) and coefficient b, a parameter
relating to the FRI of hybrid fibers, which controls the slope of the softening function was calibrated
against the true triaxial experimental results to enable the softening rule simulate the varying softening
behavior as the FRI changed. The b value was developed and computed using the following
equation:

b=0.01+0.037 " ~0.02372, ~0.23351,, (32)
Consequently, at the end of each finite time interval 7, =7, + At , the value of
hardening/softening function is updated as:
K, =K, +dK,(&,) (33)
Fig.10 shows the evolution of both hardening and softening regimes with respect to changing a
and b values. It is worth noting that the proposed model is able to describe the various stress-strain
behaviors that are usually arise as a result of varying fiber content.

Plastic potential

The plastic potential function plays a significant role in the correct estimation of the deformation

capacity. It is the connection between the loading surface function and the stress-strain relation for a
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hardening material which determines the direction of plastic flow in terms of the gradient M (Eq.21). It
is recognized from many literatures that associated flow assuming the direction of plastic strain
increment normal to the loading surface restricts the inelastic volume dilatation or contraction behavior
of concrete materials (Chen and Han, 1985), which results in a most conservative estimation of
volumetric expansion. Hence in this study, a linear plastic potential of the Drucker-Prager model with a
varying slope is adopted due to its simplicity:
g(O'l.j,Ol)ZOZ§+,D—C=O (34)
where ¢= constant. Parameter @ in above equation is the slope of the plastic potential function
defined by the ratio:
a=d&'dp' (35)

where d &' denotes the first invariant of hydrostatic length and d p' represents the second invariant
of deviatoic length of plastic strain increment (see Imran, 1994). In this study, the Parameter & is
assumed to be a constant during the loading for simplicity, calculated by ¢ =&Y p', e.g. the
hydrostatic part/deviatoric part of total plastic strain at peak stress.

Constitutive equations

In the elastic range, Hooke’s elastic stiffness matrix (Dez) associates the stress strain increments as
follows:

de =D"de” =D (de” —de") (36)
where the plastic strain increment vector(de” l) is evaluated via the plastic flow rule, it may be
ascribed to either the associate plastic potential or the non-associated plastic potential, written as

shown:

de =dr 2 aer =an 28 (37)
o6 06

wherein the plastic multiplier( A ) is determined using the consistency condition, implying that:
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of o oK
df =L ge + LK e g
/=29 ok e e (38)

and where the hardening parameter K is a function of accumulated plastic strain in this study. dA is

then solved as:

a0 2e)D"de”
Y a0 _Of K og (39)

oo o6 0K 0" 0o

By substituting of Eq.39 and Eq.37 into Eq.36 and solving for deo , we obtain:

Del a_giT Del
| we 06 06 P
do=|D 1Dela_g 7 oK o2 de (40)

06 06 OK og” Oo
The elastoplastic matrix )% may then be expressed as:
D? =D — D" (41)
where ?' denotes the plastic stiffness matrix representing stiffness degradation as a results of the
plastic flow.

Validations

An iteration algorithm, which was originally proposed by Sloan (1987), is developed for the
numerical integration of elastoplastic stress-strain relations of HFRC (Chi, 2012). This scheme was
then specifically incorporated into ABAQUS through a User-defined Material subroutine (UMAT).
Apart from the proposed constitutive model, the development of an appropriate and separate finite
element model was undertaken in this study. In view of the loading situation in true triaxial
compression with no bending moment and bending deformation of the specimen observed, a ‘C3D8’
element, which is an iso-parametric, eight-noded solid element, was selected for the numerical

simulation, and Fig.11 illustrates the finite element mesh. The size of the finite element model used
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exactly matched that of the tested specimen, and the lateral pressure applied was the same as in the true

triaxial test. Additionally, the FE model used strain control for vertical loading to capture the post peak

behavior of the FRC.

The model’s response was initially validated by comparing its outputs with results from the true

triaxial test. Fig 12 shows a representative comparison of the analytical and the experimental results of

HFRC under true triaxial compression with a lateral pressure combination of 4/15MPa. The input

parameters were calibrated using respective equations described in previous sections. It is observed that

the proposed model provides a fairly good estimate of ultimate stresses, whereas the strains in lateral

direction showed a moderate deviation. The discrepancies observed between the analytical and

experimental results assessed were largely stemming from the difference between the scattered

experimental results and developed equations (see Fig.9).

Verifications

failure envelope

The failure model was compared to the strengths of FRC as determined by earlier existing

multiaxial tests. In the p- & plane, the experimental results of Chern et al.(1992) were compared to the

developed model’s outputs as shown in Fig.13. For the triaxial strength of SFRC, the data points falling

on the compressive and tensile meridians were compared to the proposed model, in which the volume

fractions of steel fiber ranged from 0% to 2% for a fixed aspect ratio of 44. Good correlation was

observed for relatively low hydrostatic pressures (&/f. <5), while the predicted strengths appear to be

slightly underestimated for higher hydrostatic pressures (§/f. >5).

Fig.14 shows the comparison between the proposed model’s envelope and the experimental data

of SFRC as provided by Song et al. (1994) in the deviatoric plane. Song et al., (1994) conducted their
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tests under true triaxial loading for different Lode angles, shown lying on the interpolated meridians in

Fig.14. Typical data points representing to different Lode angles and hydrostatic pressures were

selected for the comparison, wherein the steel fiber volume fraction was fixed at 1%, having an aspect

ratio of 50. It is evident that the proposed model’s envelope gives a close approximation of the

experimental data point for the various Lode angles and hydrostatic pressures considered.

Furthermore, the proposed model’s biaxial failure envelope was verified using experimentally

derived data points of SFRC under varying biaxial loading ratio as illustrated in Figs.15 and 16. In

Fig.15, the data points determined by Traina et al.(1991) were compared to the proposed model’s

biaxial envelopes, wherein the steel fiber volume fraction ranges from 0% to 1.5%, having a fixed

aspect ratio of 60. In addition, Yin et al’s., (1989) test results were also used for the verification, having

steel fibers aspect ratios of 45 and 59, as shown in Fig.16.

It is seen from the above figures that although the predicted strengths may not always coincide

with the scattered experimental data points, the proposed model’s failure envelope is still be able to

predict with reasonable accuracy the ultimate strengths of fiber reinforced concrete having different

volume fractions and aspect ratios, and subjected to multiaxial loading.
stress-strain curves

The numerical performance of the developed constitutive model was evaluated by comparing its

outputs against multiaxial stress-strain relations. Prior to comparing the experimental results, it must be

noted that all the relevant input parameters in each experimental study were calibrated before

numerical analysis commenced, where the parameters k., k;, a, b and &_ are calibrated using Eqs.18,

19, 25, 32 and 28, 29 respectively.

Figs.17 and 18 compare the analytical results to the experimental results of plain concrete under



401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

uniaxial compression as determined by Kupfer et al., (1969) and plain concrete under laterally confined
triaxial compression provided by Kotsovos et al., (1978) in both axial and lateral directions. In Kupfer
etal, (1969), f., =32.1MPa, E=2.9x ¢ MPa, and model parameters were calibrated to a=1.727,
b=0.109, kc=kr=1, &.=0.00149 . In Kotsovos et al., (1978), f. =31.7MPa, E = 3xe*MPa
and the model parameters were set to @ =1.739,b=0.109,k, =k, =1, and &, =0.03702 for
laterally confined triaxial compression (0,=6,=-19MPa), &, =0.04638 and &, =0.08379 for
(61=02=-24MPa) and (c1=62=-44MPa) respectively. It is seen that the stress-strain behaviors of plain
concrete are well predicted by the constitutive model. It can therefore be inferred that the developed

model will revert back to the behavior of plain concrete with the removal of the fibers.

Fig.19 shows the comparison between the predicted curves and experimental results of HFRC
(with steel fiber volume fraction ranging from 0.5% to 1.5% and aspect ratio of 30, and polypropylene
fiber at 0.1% fixed volume fraction and aspect ratio of 167) under uniaxial compression as reported by
Zhang (2010). Based on Zhang’s test with f, =28.6MPa and E =2.9x e* MPa, the model
parameters were calibrated as shown below: a=1.83, b=0.064, kc=1.0084, k=1.034,&, = 0.00147
(for SAO5PA10), a=1.902, b=0.06, kc=1.0168, kt=1.046,&, =0.00149 (for SA10PA10), a=1.974,
b=0.056, kc=1.0252, k=1.058, €, =0.00151 (for SA15PA10). As shown in Fig.19, very good
conformance exists between the experimental and analytical curves of HFRC where both strength and
deformation is concerned, with the exception of a slight underestimation of strength loss at the latter

stages of the softening period.

Moving forward, the constitutive models description of equal biaxial stress-strain behavior of
SFRC was experimentally derived from results (Traina et al., 1991) that utilized SFRC (with steel fiber

volume fraction of 0.5% and aspect ratio of 33) as shown in Fig.20. Similarly Yin et al’s (1989) results
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were compared to the model’s output for steel fiber volume fraction of 1% with aspect ratio of 45 as
shown in Fig.21. In Traina etal. (1991), f, =40MPa, E =3.2xe"*MPaand the model parameters
are calibrated to @ =1.586,b=0.112,k, =1.0092,k, =1.013,£, =0.00196 . In Yin et al
(1989), f.,=37.6 MPa, E=32x ¢’ MPa, and the model parameters are set

asa=1.784,b=0.103,k, =1.0252,k, =1.036,&, = 0.00195.

It is noted from Figs.20 and 21 that the analytical results yield a slightly conservative estimation
of the biaxial strength of SFRC, whilst both the axial and lateral strains are in good concurrence with
the experimental values. Moreover, due to the absence of softening curves in Traina et al., (1991) and
Yin et al., (1989), the predicted curve in post-peak region may prove useful as a reference for further
comparison.

Finally, typical experimental results of SFRC obtained by Chern et al. (1992) under triaxial
compression were compared to the model’s prediction. Fig.22 shows the triaxial stress-strain behavior
of SFRC with 2% steel fiber volume fraction and aspect ratio of 44 in both axial and lateral directions.
The concrete specimens were subjected to lateral confining pressures ranging from 10MPa up to
70MPa. In this comparison, fcu =20.65MPa, E =2.6xe*MPa, the model parameters are set
to a=2.85,b=0.077,k,=1.0493,k, =1.07 , and &, =0.02649 for 10MPa confining
pressure, &, =0.05168 for 20MPa, &, =0.10206 for 40MPa and &, =0.17763 for 70MPa

respectively.

As shown in Fig.22, the proposed model provides a good estimation of triaxial strength for
relative low confinement (<40MPa), however, the predicted ductility performance due to the lateral
confinement is underestimated. In addition, the axial strength appears to be underestimated for

increasing confinement levels, in that it deviates by about 10% from the experimental value as the
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lateral confining pressure reaches 70MPa. However from a safety point of view, the proposed model is

reliable and mostly yields conservative estimations.

In general, Figs.17 to 22 have shown that, the proposed constitutive model covers a wide range of

experimental data with its output reproducing the majority of the experimental stress-strain curves

evaluated within reasonable accuracy. The model has also been shown to be capable of describing the

important characteristics of FRC behavior. It is believed from the comparisons made that the proposed

constitutive model is adequate to be applied in the numerical simulation of fiber reinforced concrete

materials.

Conclusion

A plasticity theory based constitutive model for HFRC material under true triaxial compression

was developed in this study. It incorporates a five-parameter Willam-Warnke type failure surface as

well as the uncoupled isotropic hardening and softening regimes determined using accumulated

equivalent plastic strain and the non-associated flow rule in conjunction with a linear Drucker-Prager

type plastic potential function.

Two coefficients relating to the FRI and introduced into the meridian functions to account for the

presence of hybrid fibers were calibrated using experimental results of this study. It was demonstrated

that the prediction of deviatoric stresses provides a close estimation of the experimental values with

small discrepancy. In addition, it was shown that the proposed failure envelope could also be recovered

and applied in the prediction of the multiaxial strength of conventional concrete without fiber

reinforcement.

The proposed hardening and softening rules were found to be the source of the stiffness changes in

the pre-peak region as well as the different ductile performances induced by hybrid fiber in the
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post-peak region. A linear relationship between confinement level and strain amplification under
multiaxial loading was also proposed in the hardening and softening function, for which the
approximation derived correlated reasonably well with the scattered experimental results.

The response of the proposed constitutive model was verified against existing experimental results
reported by various researchers. It was deduced from the results that the developed model would revert
back to a model of plain concrete with the removal of the fiber component. It was also determined that
the proposed model’s failure envelope provides accurate approximations of ultimate strength for both
plain concrete and fiber reinforced concrete under various loading situations.
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595 Table 1.Strengths of HFRC under true triaxial compressions
e o RE e Age For SV Xhe S For v
o. Number of SF of PF ratio ratio 5/10 5/10 4/15 4/15 3/20 3/20
% 1% of SF of PF (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
1 SAO5PAOS 0.5 0.05 30 167 106.6 24 110.8 6.3 115.5 7.2
2 SA05PBO5 0.5 0.05 30 396 109.1 3.5 111.4 2.5 115.5 8.4
3 SBO5PAOS 0.5 0.05 60 167 115.2 2.5 115.3 8.1 117.3 6.9
4 SBO5PBO0S 0.5 0.05 60 396 108.7 5.8 113.2 0.5 119.8 7.4
5 SAO5PA10 0.5 0.10 30 167 107.2 39 109.5 29 112.3 7.1
6 SAOSPALS 0.5 0.15 30 167 109.1 0.9 112.1 1.5 120.8 2.1
7 SA10PAOS 1.0 0.05 30 167 111.3 4.9 113.3 1.4 118.0 3.5
8 SA10PA10 1.0 0.10 30 167 109.2 22 108.9 4.5 118.1 3.7
9 SA10PB10 1.0 0.10 30 396 109.7 1.6 112.5 7.1 112.9 0.4
10 SB10PA10 1.0 0.10 60 167 113.5 0.6 123.7 6.4 126.2 7.9
11 SB10PB10 1.0 0.10 60 396 115.2 24 116.5 0.7 125.0 6.2
12 SA10PALS 1.0 0.15 30 167 115.7 5.8 115.7 22 128.5 1.2
13 SA15PAOS 1.5 0.05 30 167 115.3 0.1 122.4 3.1 121.8 1.4
14 SAI5PA10 1.5 0.10 30 167 118.7 2.3 126.4 5.5 129.1 33
15 SAI5PALS 1.5 0.15 30 167 115.7 0.6 126.7 6 134.0 4
16 SA15PBI15 1.5 0.15 30 396 120.8 1.2 123.7 7.1 123.3 1.7
17 SB15PAIS 1.5 0.15 60 167 119.4 2 124.9 14 133.4 9.1
18 SB15PB15 1.5 0.15 60 396 118.5 0.2 118.3 8.1 125.4 3.9
19 SA05 0.5 - 30 - 107.6 5.6 111.4 7.1 114.7 3.8
20 SA10 1.0 - 30 - 108.9 7.6 116.0 5 119.7 2.5
21 SAIlS 1.5 - 30 - 124.2 2.3 121.3 3.9 130.6 4.5
22 PAO5 - 0.05 - 167 101.5 4.4 110.8 7.6 114.9 3.2
23 PA10 - 0.10 - 167 106.2 3.7 106.7 4.1 111.7 3.3
24 PAI1S5 - 0.15 - 167 103.8 6.5 104.4 5 112.9 5.1
25 C60 - - - - 102.0 2.9 101.7 2.5 104.5 2.5
—\2
596 Remarks: SV denotes the standard variation, which is calculated by Z(xn_—xl) where n=3

597 represents the number of specimens tested for each loading scenario. X represents the average value
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Fig.1 Steel fiber
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Fig.2 CTA Polypropylene fiber
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Fig.11 Finite element mesh with C3D8 elements
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Fig.12 Comparison between analytical and the experimental stress-strain relations under a lateral

pressure combination of 4/15MPa
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Fig.19 Comparison of uniaxial stress-strain relation of HFRC between analytical and experimental
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Fig.22Typical experimental results of SFRC under lateral confined triaxial compression are compared

with the model prediction



