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Plasticity Model for Hybrid Fiber Reinforced Concrete under True 

Triaxial Compression 
1Yin Chi, 2Lihua Xu, 3Hai-Sui Yu 

Abstract: Based on the experimental background of 75 true triaxial compression tests conducted on 

cubic specimens, a plasticity constitutive model for hybrid steel-polypropylene fiber reinforced 

concrete (HFRC) is developed in this study, aiming to accurately predict the strength and deformation 

of HFRC under various loading scenarios. A five-parameter Willam-Warnke failure surface is modified 

to account for the presence of hybrid fibers. The evolution of the loading surface is characterized by 

uncoupled hardening and softening regimes determined by the accumulated equivalent plastic strain, 

and a Drucker-Prager non-associated plastic flow is used to describe the plastic deformation. Various 

model parameters are mainly calibrated on the basis of true triaxial compression test data. Subsequently, 

the responses of the constitutive model are verified by multiaxial compression test results of both plain 

concrete and fiber reinforced concrete reported by various researchers. It is observed that a good 

estimation of the strength and the deformation capacity of HFRC with varying fiber volume fractions 

and aspect ratios can be achieved by the proposed model.

CE Database subject headings: Plasticity; Constitutive modeling; Fiber reinforced; Concrete; 

Strength; Compression; 

Introduction 

Relatively recent advances in concrete technology have led to the development of fiber reinforced 

concrete (FRC), which is now recognized by engineers as a viable concrete reinforcement solution and 

has seen widespread application in the construction industry in recent decades. With the increasing use 



of FRC as a primary structural material in building complex structures such as reactor vessels, dams 

and offshore structures(ACI Committee 544, 1982; Swamy and Barr, 1989;Bentur and Mindess, 1990)., 

it has become necessary to develop a sophisticated analytical model capable of accurately describing 

FRC behavior when it is subjected to various loading scenarios.  

To date, considerable efforts have been geared towards advancing the development of constitutive 

models for plain concrete as well as high strength concrete(e.g., Chen and Han,1985; Belarbi and 

Hsu,1995; Ansari and Li, 1998; Attard and Setunge,1996; Hussein and Marzouk, 2000;Babu et al., 

2006;Grassl et al., 2002). Constitutive models with various theories, i.e, plasticity models, damage 

models, microplane models, discrete models, or models with coupling theories etc., have been 

extensively researched and well acknowledged, which are capable of effectively capturing the 

behavioral characteristics of concrete materials. Using existing traditional concrete models as a 

foundation, different methods and formulations for constitutive modeling of FRC materials have been 

proposed with SFRC in particular, and have been extensively researched in literature. However, it has 

been noted that some of the models are only suited to specific loading paths (e.g. Nataraja et al., 1999; 

Hsu and Hsu, 1994; Murugappan et al., 1993; Hu et al., 2003). Other models considered to have been 

obtained through phenomenological or empirical methods have no systematic expression formulated to 

fiber reinforcement index(FRI, which is calculated by 

multiplying fiber volume fraction and its aspect ratio) (e.g. Chern et al., 1992; Lu et al., 2006). 

Consequently, comparisons between test data and numerical simulations of complex problems often 

revealed poor predictive capability of the numerical models owing to inadequate theoretical description 

of the FRC materials. In such an instance, the proposed constitutive model may not degenerate back to 

the case of conventional concrete as the fiber vanishes. The simulation results by using such model 



may lead to a lack of confidence in computational analysis of structural responses for the cases where 

significant material nonlinearities are involved. 

A review of existing literature indicated that although previous FRC investigations appears to have 

been concentrated on the constitutive modeling of SFRC and HFRC, only the influence of different 

volume fraction (e.g.,Yin et al., 1989; Traina and Mansor, 1991;Yun et al., 2007; Di Prisco et al., 2009) 

was considered. Of the limited research available on the development of a constitutive model for 

HFRC with various fiber reinforcement indices, it is found that the performance of FRC is sensitive to 

changes in both the fiber volume fractions and aspect ratios. 

In view of the above mentioned, it is clear that significant advancement of knowledge is required 

to facilitate the behavioral characterization of HFRC subjected to multiaxial compressive loading 

situations. The subsequent focus of this study is therefore to develop a plasticity constitutive model to 

take into account the presence of various hybrid fibers of HFRC. True triaxial tests are carried out to 

calibrate various model parameters, and the developed model is implemented into general FE package 

ABAQUS by UMAT subroutine via an explicit integration algorithm, 

evaluated by available experimental data. 

Experimental Program 

Materials and mix proportions 

The plain concrete mixtures were designed and specified at a 28-day compressive strength of 

60MPa. Ordinary Portland cement (P.O 42.5) was used as the binder for the mixtures. Crushed granitic 

rocks of sizes between 5~20mm were used as the coarse aggregates. Normal river sand including 5% of 

water (by weight) with fineness modulus of 2.7 was used as the fine aggregates. A highly efficient 

water reducing agent with a reducing rate of about 20% was used in the mix design. The mix design by 



weight of the plain concrete mixture was in the ratio 1:0.34:1.80:2.49 (cement:water:sand:coarse 

aggregate) and designed according to literature (GB/T50081-2002). 

For steel fiber, to make the full use of the advantage in strength improvement and toughness, the 

volume fraction of steel fiber is suggested between 0.5% and 2.0% and the aspect ratio is suggested 

between 30 and 80 according to literature (CECS 2004). Therefore, corrugated steel fibers produced by 

WuHan Hansen Steel Fiber Ltd (Fig.1) with the tensile strength over 600MPa were used in volume 

fractions of 0.5%, 1% and 1.5% in this study, and the fiber aspect ratios (length/diameter) of 30, 60 

with a fixed diameter of 0.5mm were employed.  

For polypropylene fiber, according to the product instruction, a low volume fraction from 0.05% 

to 0.2% is recommended considering the homogeneity to ensure the evenly distribution of 

polypropylene fibers. Hence, a monofilament type of polypropylene fibers provided by Beijing Zhong 

Fang Technology (CTA) Co. Ltd (Fig.2) with an elongation rate between 15% and 35% were used in 

volume fraction of 0.05%, 0.1% and 0.15% with a diameter of 0.048mm, the lengths of the fibers used 

in the study were selected to be 8mm and 19mm, corresponding to aspect ratios of 167 and 396 

respectively. 

True triaxial facilities 

The true triaxial testing system used was specially manufactured by the Science Academic 

Research Institute of Yangtze River in China. Fig.3 illustrates a schematic diagram of the apparatus. It 

accommodates a 150mmx150mmx150mm cubic specimen. Three directions of pressures were 

separately controlled by a servo-hydraulic system. It has a 1500tonne load capacity and is able to apply 

a lateral pressure of up to 20 MPa. Axial loads were applied to the specimen via actuators fitted at the 



reaction frame. All the pressures were measured by pressure transducers. Axial and lateral 

extensometers were used to measure the deformations caused by the imposed stresses. 

Loading scheme 

Under true triaxial compression, a displacement control with a 0.005mm/s loading velocity was 

applied in the axial direction ( 3  direction) until ultimate failure occurred. This was done so that the 

entire stress-strain curve would include both ascending and descending branches. The lateral pressures 

( 1 2 ) were designated as 5/10 MPa, 4/15 MPa and 3/20 MPa respectively in accordance to the 

loading capacity of the testing machine. From the plasticity point of view, different lateral pressures 

lead to varying Lode angles such that a failure envelope with respect to the deviatoric tracing can be 

obtained. A load control was employed for the lateral pressure. Take the loading case of 5/10 MPa for 

example: the lateral pressures 1 2,  were initially imposed at a relatively low level 

(i.e., 1 2 5 MPa) with a loading velocity of about 0.8Mpa/s. Afterwards, 1  remained 

unchanged but 2  was increased to 10MPa. Consequently, axial displacement loading was utilized 

until ultimate failure occurred. The same loading scheme was also employed for the other two 

predetermined lateral pressures (4/15MPa and 3/20MPa). 

Triaxial strength 

Table 1 summarizes test results showing the axial strengths of plain concrete as well as HFRC 

subjected to true triaxial compression with predetermined lateral pressures of 5/10MPa, 4/15MPa and 

3/20MPa. The listed triaxial strength for each loading scenario was the average value from three test 

specimens, of which the standard variation for each series was also given in the Table 1. The test results 

were then used to constru

section: Loading surface), and further detailed results with respect to the stress-strain behavior are 



elaborated in literature (Chi, 2012). As can be seen from Table 1 that by the inclusion of hybrid fibers, 

the triaxial strength increases up to 27.7% compared to the strength of plain concrete(C60). It is also 

observed that the enhancing effect of hybrid fiber is more significant rather than the effects caused by 

single steel and single polypropylene fiber. 

Basic elastoplastic formulation 

A basic assumption in the classical theory of incremental plasticity is that the total strain rate is 

divided into an elastic component el
ijd  and a plastic component pl

ijd  by simple superposition as 

shown here (Yu, 2006): 

tot el pl
ij ij ijd d d

At the beginning of loading, the behavior of FRC materials could be approximated as elastic, by 

virtue of all the deformations before initial yielding being recoverable after unloading. As a 

involves two material constants when isotropy is assumed, namely, the elastic modulus E and the 

v, as expressed by this equation: 

( )el el el tot pl
ij ijkl kl ijkl kl kld D d D d d

where  2 ( )
1 2

el
ijkl ik jl ij kl

vD G
v

 denotes the isotropic elastic tensor.  

The elastic modulus generally rises with increasing steel fiber volume fraction and aspect ratio 

owing to the higher modulus of steel fiber. Likewise, it decreases as the polypropylene fiber volume 

fraction and aspect ratio increases because of polypropylene fiber as a 

relatively low polypropylene fiber content is investigated in the research, and experimental 

observations (Zhang, 2010) indicate that it does not significantly influence elastic modulus E with 

various polypropylene fiber volume fractions ranging from 0% to 0.15%, its impact on the elastic 



stiffness of concrete thereof can be regarded as negligible. It is therefore assumed that the value of 

elastic modulus E has the following relationship with steel fiber volume fraction suggested by Huang 

(2004): 

510
2.2 34.74 / fc

E
f

where fcf  represents the uniaxial compressive strength of SFRC, which can be calculated as: 

fc c cuf k f

in which cuf  denotes the uniaxial compressive strength of plain concrete; the value of ck  will be 

addressed later. 

In regards to the 

range 0.2 to 0.25(ACI Committee 544,1996; Hu et al., 2003; Yin et al., 1989; Zhang et al., 2010). 

H v remained practically unchanged 

regardless of the fiber type (Yin et al., 1989; Zhang, 2010) in the concrete, and according to the 

literature (ACI Committee 544), which referred that when the volume percentage of fibers is less than 

2% s of FRC are generally taken as equal to those of a similar non fibrous concrete. 

Consequently, a constant value of 0.2 is assumed for modeling of FRC in this study. 

Moving forward, the plastic component pl
ijd  is determined using plastic flow rule. Generally, a 

non-associated flow is assumed, which implies that the direction of the incremental plastic strain is 

normal to a plastic potential surface which differs from the loading surface and is given by: 

pl
ij

ij

gd d ( )g f

where d  is the plastic multiplier determined in accordance to the consistency condition to ensure 

that the stress state after yielding satisfies the yield criteria at the end of each increment step. 



Generally, the loading surface can be formulated in terms of either a combination of the three 

principal stress invariants or the coordinates in Haigh-Westergaard stress space (Fig.4) as expressed 

below: 

1 2 3( ) ( , , ) ( , , ) 0ijf f I J J f

In this study, the loading surface comprises the three unified coordinates , , , which are 

computed as follows: 

1 / 3I 1I tr

1

cf
2 ( : ) / 2J s s

1 3
3
2

1 3 3cos
3 2

J
J

3 det( )J s

Loading surface 

In this study, the mathematical form of the loading surface, involving the Willam-Warnke (W-W) 

five-parameter failure model is described using Haigh-Westergaard coordinates as follows: 

2( , , ) 2 ( ) ( , ) 0hf
pf J K

where 0 ( ) 1pK K  is the hardening/softening parameter that defines the increase of strength 

during hardening and the strength deterioration during softening. Before any plastic deformation occurs, 

the hardening parameter keeps a constant value of 0K , defining the initial yield surface that bounds 

the elastic region. The function ( , )hf  defines the parabolic shape of meridians which bounds 

the ultimate strength of HFRC (Eq.13). It is interpolated between the tensile meridian t (Eq.11) 

where Lode angle 0 , and the compressive meridian c (Eq.12) where Lode angle 60  as 

follows: 

2

2 1 0
t t t t

cu cu cu

k ka a a
f f f



2

2 1 0
c c c c

cu cu cu

k kb b b
f f f

2 2

2 2 2 2

2 2 2 2 1/2

2 2 2 2

2 [( ) ( ) cos ],
4[( ) ( ) ]cos ( 2 )

(2 ){4[( ) ( ) ]cos 5( ) 4 }
4[( ) ( ) ]cos ( 2 )

hf hf hf
hf c c t

hf hf hf hf
c t c t

hf hf hf hf hf hf hf hf
c t c c t t t c

hf hf hf hf
c t c t

in which ,hf hf
t t t c c ck k . 0 1 2 0 1 2, , , , ,a a a b b b are material constants sourced from a large 

number of typical experimental data points lying on the two meridians of conventional concrete. 

Because the tensile and compressive meridians intersect with the hydrostatic axis, they are subjected to 

equal triaxial tension which results in the parameter 0 0a b , thereby reducing the number of 

parameters to five, as shown below (Willam and Warnke, 1974): 

0 0

1 2

1 2

0.1775
1.4554, 0.1576

0.7806, 0.1763

a b
a a
b b

It is also noted from Eq.10 to Eq.13 that apart from the concrete compressive strength ( cuf )

which is a variable parameter, another two coefficients ( ,c tk k ) are introduced into the meridian 

functions to account for the presence of hybrid fibers. These two coefficients can be calibrated from 

experimental results by considering the ultimate state of the failure surface, at which the value of 

hardening/softening function ( ) 1pK .

Calibration of ck

The coefficient ck  in Eq.12 for the compressive meridian of HFRC is determined by fitting the 

failure envelope to uniaxial compression test data to ensure that the compressive meridian passes 

has to be noted that because of the varying uniaxial compressive strength of HFRC, from the theory of 

plasticity point of view, the stress state 1 2 3( , , ) (0,0, )fcf (compression is designated as 



negative) lying on the compressive meridian may lead to different hydrostatic stresses. The 

corresponding values of deviatoric stress hf
c and hydrostatic stress  can be calculated as: 

2 221 22 0 0 0 0
6 3

hf
c fc fc fcf f f

/ 3fcf

By substituting the value of  into the W-W model, the deviatoric stress c  on compressive 

meridian of plain concrete can then be determined as follows: 

2
1 1 2 0

2

14 ( )
3

2

fc

cu
c cu

f
b b b b

f
f

b

the coefficient ck  is consequently determined by /hf
c c ck .

It is observed from the literature (Zhang, 2010) that the steel fiber has major influence on the 

compressive strength, whilst polypropylene fiber is reported to have no discernible effect on the 

compressive strength with relative low volume fractions ranging from 0.05% to 0.3% (Bayasi and Zeng, 

1993) ,written as: 

1c cu sfk

where cu  denotes the influence factor of steel fiber, it is fitted to 0.056 according to the 

experimental results reported in literature (Zhang, 2010). sf  denotes the FRI of steel fiber calculated 

as sf
sf sf

sf

l
V

d
, sfV  is the volume fraction of steel fiber and sf

sf

l
d

is the aspect ratio of steel fiber. 

The calibrated values of ck  from the available experimental data reported in (Yin et al., 1989; 

Traina and Mansor, 1991; Chern et al., 1992; Lim and Navy, 2005; Jiao et al., 2007) which were not 

used in the calibration are also compared to Equation.18 as shown in Fig.5. It is clear that the value of 

ck  can be predicted for varying FRI by the approximate equation, and the predictions are in general 



agree with the test results reasonably well.  

Calibration of tk

As the points lying on the compressive meridians are first examined, the coefficient tk  in Eq.11 

for the tensile meridian of HFRC is then calibrated by rotating the tensile meridian of plain concrete 

t  and ensuring that the interpolated meridians as well as the deviatoric tracings coincide with all the 

test points under true triaxial compressions in this study as illustrated in Fig.6.  

Subsequently, the value of tk is determined according to the true triaxial test results calculated by 

/hf
t t tk , it is then regressed to the following equation by relating to FRI of both steel and 

polypropylene fiber: 

1 0.08 0.132t sf pfk

where, pf  denotes the polypropylene fiber reinforcements index calculated as pf
pf pf

pf

l
V

d
, pfV

is the volume fraction of polypropylene fiber and pf

pf

l
d

is the aspect ratio of polypropylene fiber. 

By using Eq.18 and Eq.19, the predicted values of deviatoric stresses ( , )hf  are compared 

to the experimental results under all the lateral pressure combinations, as illustrated in Fig.7. It is seen 

that the proposed model is validated and provides fairly close estimation to the experimental values. 

Hardening and softening functions 

The hardening and softening rule define the shape and location of the loading surface as well as 

the hardening rule describes the pre-peak 

behavior as the elastic region terminates and the softening rule corresponds to the post-peak behavior 

during plastic flow. Generally, the evolution of subsequent surfaces is governed by a 

hardening/softening parameter which is usually related to the length of an accumulated plastic strain 



vector or an accumulated equivalent plastic strain (Chen, 1982). For the model in this study, the 

accumulated equivalent plastic strain is used as the hardening/softening parameter. 

Isotropic hardening 

Numerous experimental investigations carried out indicated that the loading envelope of concrete 

materials is similar to the shape of its failure envelope with the exception of the slight difference in the 

tension-tension zone (Tasuji et al, 1978). Therefore, an isotropic hardening (Chen 1988) is assumed in 

this study for simplicity, which indicates a uniform expansion of the loading surface, as shown in Fig.8. 

The hardening parameter is scaled by: 

pdk d

where k  the hardening parameter is governed by the accumulated equivalent plastic strain p , of 

which the value is given as (Chen 1982): 

2
3

p p
p ij ijd d d d M

where M denotes the gradient of the plastic potential such that
ij

gM .

The mathematical description of the hardening function involves an ascending part of Guo (1997) 

parabola: 

2 3

( ) ( ) 3 2 2p
cu c c c

K k K a a a
f

For its numerical implementation, the hardening function is generalized as a rate form, given by: 

2
1 1 1( ) 2 3 2 3 2 ( , )p p p p

c c c c c

dK a a a d H k s d c

where denotes the total equivalent strain at the current increment step, calculated with respect to a 



three-dimensional stress state (Yu, 2006): 

1
2 2 22 2 2 21 2 3

3 xx yy yy zz xx zz xy yz zx

Coefficient a  is a parameter related to the FRI of hybrid fibers which controls the slope of 

hardening curve to enable the hardening rule account for the presence of hybrid fibers. It was 

determined by Zhang (2010) through a uniaxial compression test as: 

0.037428.2283 23.2771 0.4772 0.4917fc sf pfa f

c  represents the amount of equivalent strain when the stress state reaches the failure surface. Here, 

for derivation of the c  of HFRC under true triaxial stresses, a linear relationship between a 

confinement level ( 1 2( ) / cf ) and the strain amplification ( /c q ) under the true triaxial 

compression is developed, as shown in literature (Papanikolaou and Kappos, 2007), where q  the 

corresponding equivalent strain of HFRC at its uniaxial compressive strength is calculated as: 

3 1
2
3q

the recommended value of q  is given according to literature (Zhang, 2010): 

6263.3 (1 0.206 0.388 ) 10q cu sf pff

and the predictive equation for c  relating to the confinement level is then developed based on the 

true triaxial test results as: 

1 21 20c q
cuf

where 1 2,  represent the applied lateral pressure respectively, which reduces to c q  as 

subjected to the uniaxial compression. Fig.9 compares the predicted and experimental values of 

equivalent strain for HFRC for both the uniaxial ( q ) and true triaxial compression loading cases ( c ).



It was found during the testing that the strain of FRC material with various hybrid fiber combinations 

deviated significantly under different loadings, which is mainly attributed to the inherent discreteness 

of concrete material. Even though the approximations cannot always be mathematically consistent with 

the scattered experimental results, the proposed equations, as a reference, were still able to effectively 

characterize the peak strain of HFRC having different volume fractions and aspect ratios. 

For equalbiaxial compression, the expression initially proposed by Darwin and Pecknold (1977) 

for plain concrete can be adopted and modified by using biaxial strength ( fccf )and uniaxial strength 

( fcf ) of FRC instead, written as: 

(3 2)fcc
c q

fc

f
f

Note that the softening contribution remains inactive during hardening process of numerical 

implementation. 

Isotropic softening 

For further plastic flow in post-peak regime, the value of hardening function is maintained as 

( ) 1K k , at which point softening takes place and the material behavior is controlled by the 

softening function ( )K s . This function governs the post-peak behavior of the loading surface i.e. 

when it contracts. A softening function, described in terms of the accumulated equivalent plastic strain 

and derived from the uniaxial compressive stress-strain relation was adopted. As the mathematical 

description of the softening function considered utilizes the descending part of the stress-strain 

equation proposed by Guo (1997): 

2( ) ( )

1

c
p

cu

c c

K s K
f

b



where 1 ( ) 0K s .

For numerical implementation, the rate form of the softening function was generalized and 

differentiated as follows: 

2

22

1 1 11 2 1

( ) ( , )

1

c c c c c c c

p p p p

c c

b b

dK d H k s d

b
c

where c  is defined the same as with hardening regime(see Eq.28) and coefficient b , a parameter 

relating to the FRI of hybrid fibers, which controls the slope of the softening function was calibrated 

against the true triaxial experimental results to enable the softening rule simulate the varying softening 

behavior as the FRI changed. The b  value was developed and computed using the following 

equation: 

0.28460.01 0.037 0.02372 0.2335fc sf pfb f

Consequently, at the end of each finite time interval 1n nt t t , the value of 

hardening/softening function is updated as: 

1 ( )n n n pK K dK

Fig.10 shows the evolution of both hardening and softening regimes with respect to changing a

and b values.  It is worth noting that the proposed model is able to describe the various stress-strain 

behaviors that are usually arise as a result of varying fiber content. 

Plastic potential  

The plastic potential function plays a significant role in the correct estimation of the deformation 

capacity. It is the connection between the loading surface function and the stress-strain relation for a 



hardening material which determines the direction of plastic flow in terms of the gradient M (Eq.21). It 

is recognized from many literatures that associated flow assuming the direction of plastic strain 

increment normal to the loading surface restricts the inelastic volume dilatation or contraction behavior 

of concrete materials (Chen and Han, 1985), which results in a most conservative estimation of 

volumetric expansion. Hence in this study, a linear plastic potential of the Drucker-Prager model with a 

varying slope is adopted due to its simplicity: 

( , ) 0ijg c

where c= constant.  Parameter  in above equation is the slope of the plastic potential function 

defined by the ratio:  

'/ 'd d

where 'd denotes the first invariant of hydrostatic length and 'd represents the second invariant 

of deviatoic length of plastic strain increment (see Imran, 1994). In this study, the Parameter  is 

assumed to be a constant during the loading for simplicity, calculated by '/ ' , e.g. the 

hydrostatic part/deviatoric part of total plastic strain at peak stress. 

Constitutive equations 

( elD ) associates the stress strain increments as 

follows: 

( )el el el tot pld d d d                     

where the plastic strain increment vector( pld ) is evaluated via the plastic flow rule, it may be 

ascribed to either the associate plastic potential or the non-associated plastic potential, written as 

shown: 

pl fd d or
pl gd d                     

wherein the plastic multiplier( ) is determined using the consistency condition, implying that: 



0pl
pl

f f Kdf d d
K                   

and where the hardening parameter K is a function of accumulated plastic strain in this study. d is

then solved as: 

( / ) el tot

el
pl

f dd f g f K g
K

D                   

By substituting of Eq.39 and Eq.37 into Eq.36 and solving for d , we obtain: 

T
el el

el tot

el
pl

g f

d df g f K g
K

D D

D
             

The elastoplastic matrix epD  may then be expressed as: 

ep el plD D D                          

where plD  denotes the plastic stiffness matrix representing stiffness degradation as a results of the 

plastic flow. 

Validations 

An iteration algorithm, which was originally proposed by Sloan (1987), is developed for the 

numerical integration of elastoplastic stress-strain relations of HFRC (Chi, 2012). This scheme was 

then specifically incorporated into ABAQUS through a User-defined Material subroutine (UMAT).

Apart from the proposed constitutive model, the development of an appropriate and separate finite 

element model was undertaken in this study. In view of the loading situation in true triaxial 

compression with no bending moment and bending deformation of the specimen observed, 

element, which is an iso-parametric, eight-noded solid element, was selected for the numerical 

simulation, and Fig.11 illustrates the finite element mesh. The size of the finite element model used 



exactly matched that of the tested specimen, and the lateral pressure applied was the same as in the true 

triaxial test. Additionally, the FE model used strain control for vertical loading to capture the post peak 

behavior of the FRC.

mparing its outputs with results from the true 

triaxial test. Fig 12 shows a representative comparison of the analytical and the experimental results of 

HFRC under true triaxial compression with a lateral pressure combination of 4/15MPa. The input 

parameters were calibrated using respective equations described in previous sections. It is observed that 

the proposed model provides a fairly good estimate of ultimate stresses, whereas the strains in lateral 

direction showed a moderate deviation. The discrepancies observed between the analytical and 

experimental results assessed were largely stemming from the difference between the scattered 

experimental results and developed equations (see Fig.9). 

Verifications 
failure envelope 

The failure model was compared to the strengths of FRC as determined by earlier existing 

multiaxial tests. In the -  plane, the experimental results of Chern et al.(1992) were compared to the 

.13. For the triaxial strength of SFRC, the data points falling 

on the compressive and tensile meridians were compared to the proposed model, in which the volume 

fractions of steel fiber ranged from 0% to 2% for a fixed aspect ratio of 44. Good correlation was 

observed for relatively low hydrostatic pressures ( fc <5), while the predicted strengths appear to be 

slightly underestimated for higher hydrostatic pressures ( fc >5). 

Fig.14 envelope and the experimental data 

of SFRC as provided by Song et al. (1994) in the deviatoric plane. Song et al., (1994) conducted their 



tests under true triaxial loading for different Lode angles, shown lying on the interpolated meridians in 

Fig.14. Typical data points representing to different Lode angles and hydrostatic pressures were 

selected for the comparison, wherein the steel fiber volume fraction was fixed at 1%, having an aspect 

envelope gives a close approximation of the 

experimental data point for the various Lode angles and hydrostatic pressures considered. 

envelope was verified using experimentally 

derived data points of SFRC under varying biaxial loading ratio as illustrated in Figs.15 and 16. In 

Fig.15, the data points determined by Traina et al.(1991) were compared to the proposed mod

biaxial envelopes, wherein the steel fiber volume fraction ranges from 0% to 1.5%, having a fixed 

steel fibers aspect ratios of 45 and 59, as shown in Fig.16. 

It is seen from the above figures that although the predicted strengths may not always coincide 

envelope is still be able to 

predict with reasonable accuracy the ultimate strengths of fiber reinforced concrete having different 

volume fractions and aspect ratios, and subjected to multiaxial loading. 

stress-strain curves

The numerical performance of the developed constitutive model was evaluated by comparing its 

outputs against multiaxial stress-strain relations. Prior to comparing the experimental results, it must be 

noted that all the relevant input parameters in each experimental study were calibrated before 

numerical analysis commenced, where the parameters kc, kt , a, b and c  are calibrated using Eqs.18, 

19, 25, 32 and 28, 29 respectively.  

Figs.17 and 18 compare the analytical results to the experimental results of plain concrete under 



uniaxial compression as determined by Kupfer et al., (1969) and plain concrete under laterally confined 

triaxial compression provided by Kotsovos et al., (1978) in both axial and lateral directions. In Kupfer 

et al., (1969), 32.1cuf MPa, 42.9E e MPa, and model parameters were calibrated to a=1.727, 

b=0.109, kc=kt=1, 0.00149c . In Kotsovos et al., (1978), 31.7cuf MPa, 43E e MPa 

and the model parameters were set to 1.739, 0.109, 1c ta b k k , and 0.03702c  for 

laterally confined triaxial compression 1= 2=-19MPa), 0.04638c  and 0.08379c  for 

-2 -44MPa) respectively. It is seen that the stress-strain behaviors of plain 

concrete are well predicted by the constitutive model. It can therefore be inferred that the developed 

model will revert back to the behavior of plain concrete with the removal of the fibers. 

Fig.19 shows the comparison between the predicted curves and experimental results of HFRC 

(with steel fiber volume fraction ranging from 0.5% to 1.5% and aspect ratio of 30, and polypropylene 

fiber at 0.1% fixed volume fraction and aspect ratio of 167) under uniaxial compression as reported by 

Zhang (2010). 28.6cuf MPa and 42.9E e MPa, the model 

parameters were calibrated as shown below:  a=1.83, b=0.064, kc=1.0084, kt=1.034, 0.00147c

(for SA05PA10), a=1.902, b=0.06, kc=1.0168, kt=1.046, 0.00149c  (for SA10PA10), a=1.974, 

b=0.056, kc=1.0252, kt=1.058, 0.00151c  (for SA15PA10). As shown in Fig.19, very good 

conformance exists between the experimental and analytical curves of HFRC where both strength and 

deformation is concerned, with the exception of a slight underestimation of strength loss at the latter 

stages of the softening period. 

Moving forward, the constitutive models description of equal biaxial stress-strain behavior of 

SFRC was experimentally derived from results (Traina et al., 1991) that utilized SFRC (with steel fiber 

volume fraction of 0.5% and aspect ratio of 33) as shown in Fig.20



were compared to the m tput for steel fiber volume fraction of 1% with aspect ratio of 45 as 

shown in Fig.21. In Traina et al. (1991), 40cuf MPa, 43.2E e MPa and the model parameters 

are calibrated to 1.586, 0.112, 1.0092, 1.013, 0.00196c t ca b k k . In Yin et al. 

(1989), 37.6cuf MPa, 43.2E e MPa, and the model parameters are set 

as 1.784, 0.103, 1.0252, 1.036, 0.00195c t ca b k k .

It is noted from Figs.20 and 21 that the analytical results yield a slightly conservative estimation 

of the biaxial strength of SFRC, whilst both the axial and lateral strains are in good concurrence with 

the experimental values. Moreover, due to the absence of softening curves in Traina et al., (1991) and 

Yin et al., (1989), the predicted curve in post-peak region may prove useful as a reference for further 

comparison. 

Finally, typical experimental results of SFRC obtained by Chern et al. (1992) under triaxial 

.22 shows the triaxial stress-strain behavior 

of SFRC with 2% steel fiber volume fraction and aspect ratio of 44 in both axial and lateral directions. 

The concrete specimens were subjected to lateral confining pressures ranging from 10MPa up to 

70MPa. In this comparison, 20.65cuf MPa, 42.6E e MPa, the model parameters are set 

to 2.85, 0.077, 1.0493, 1.07c ta b k k , and 0.02649c  for 10MPa confining 

pressure, 0.05168c  for 20MPa, 0.10206c  for 40MPa and 0.17763c  for 70MPa 

respectively.

 As shown in Fig.22, the proposed model provides a good estimation of triaxial strength for 

relative low confinement (<40MPa), however, the predicted ductility performance due to the lateral 

confinement is underestimated. In addition, the axial strength appears to be underestimated for 

increasing confinement levels, in that it deviates by about 10% from the experimental value as the 



lateral confining pressure reaches 70MPa. However from a safety point of view, the proposed model is 

reliable and mostly yields conservative estimations. 

In general, Figs.17 to 22 have shown that, the proposed constitutive model covers a wide range of 

experimental data with its output reproducing the majority of the experimental stress-strain curves 

evaluated within reasonable accuracy. The model has also been shown to be capable of describing the 

important characteristics of FRC behavior. It is believed from the comparisons made that the proposed 

constitutive model is adequate to be applied in the numerical simulation of fiber reinforced concrete 

materials. 

Conclusion

A plasticity theory based constitutive model for HFRC material under true triaxial compression 

was developed in this study. It incorporates a five-parameter Willam-Warnke type failure surface as 

well as the uncoupled isotropic hardening and softening regimes determined using accumulated 

equivalent plastic strain and the non-associated flow rule in conjunction with a linear Drucker-Prager 

type plastic potential function.  

Two coefficients relating to the FRI and introduced into the meridian functions to account for the 

presence of hybrid fibers were calibrated using experimental results of this study. It was demonstrated 

that the prediction of deviatoric stresses provides a close estimation of the experimental values with 

small discrepancy. In addition, it was shown that the proposed failure envelope could also be recovered 

and applied in the prediction of the multiaxial strength of conventional concrete without fiber 

reinforcement. 

The proposed hardening and softening rules were found to be the source of the stiffness changes in 

the pre-peak region as well as the different ductile performances induced by hybrid fiber in the 



post-peak region. A linear relationship between confinement level and strain amplification under 

multiaxial loading was also proposed in the hardening and softening function, for which the 

approximation derived correlated reasonably well with the scattered experimental results. 

The response of the proposed constitutive model was verified against existing experimental results 

reported by various researchers. It was deduced from the results that the developed model would revert 

back to a model of plain concrete with the removal of the fiber component. It was also determined that 

envelope provides accurate approximations of ultimate strength for both 

plain concrete and fiber reinforced concrete under various loading situations.  
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Table 1.Strengths of HFRC under true triaxial compressions 

No. Specimen 
Number 

Volume 
fraction 
of SF 

/% 

Volume 
fraction 
of PF 

/% 

Aspect 
ratio 
of SF 

Aspect 
ratio 
of PF 

x for 
5/10 

(MPa) 

SV 
5/10 

(MPa) 

x for 
4/15 

(MPa) 

SV 
4/15 

(MPa) 

x for 
3/20 

(MPa) 

SV 
3/20 

(MPa) 

1 SA05PA05 0.5 0.05 30 167 106.6 2.4 110.8 6.3 115.5 7.2 

2 SA05PB05 0.5 0.05 30 396 109.1 3.5 111.4 2.5 115.5 8.4 

3 SB05PA05 0.5 0.05 60 167 115.2 2.5 115.3 8.1 117.3 6.9 

4 SB05PB05 0.5 0.05 60 396 108.7 5.8 113.2 0.5 119.8 7.4 

5 SA05PA10 0.5 0.10 30 167 107.2 3.9 109.5 2.9 112.3 7.1 

6 SA05PA15 0.5 0.15 30 167 109.1 0.9 112.1 1.5 120.8 2.1 

7 SA10PA05 1.0 0.05 30 167 111.3 4.9 113.3 1.4 118.0 3.5 

8 SA10PA10 1.0 0.10 30 167 109.2 2.2 108.9 4.5 118.1 3.7 

9 SA10PB10 1.0 0.10 30 396 109.7 1.6 112.5 7.1 112.9 0.4 

10 SB10PA10 1.0 0.10 60 167 113.5 0.6 123.7 6.4 126.2 7.9 

11 SB10PB10 1.0 0.10 60 396 115.2 2.4 116.5 0.7 125.0 6.2 

12 SA10PA15 1.0 0.15 30 167 115.7 5.8 115.7 2.2 128.5 1.2 

13 SA15PA05 1.5 0.05 30 167 115.3 0.1 122.4 3.1 121.8 1.4 

14 SA15PA10 1.5 0.10 30 167 118.7 2.3 126.4 5.5 129.1 3.3 

15 SA15PA15 1.5 0.15 30 167 115.7 0.6 126.7 6 134.0 4

16 SA15PB15 1.5 0.15 30 396 120.8 1.2 123.7 7.1 123.3 1.7 

17 SB15PA15 1.5 0.15 60 167 119.4 2 124.9 14 133.4 9.1 

18 SB15PB15 1.5 0.15 60 396 118.5 0.2 118.3 8.1 125.4 3.9 

19 SA05 0.5 - 30 - 107.6 5.6 111.4 7.1 114.7 3.8 

20 SA10 1.0 - 30 - 108.9 7.6 116.0 5 119.7 2.5 

21 SA15 1.5 - 30 - 124.2 2.3 121.3 3.9 130.6 4.5 

22 PA05 - 0.05 - 167 101.5 4.4 110.8 7.6 114.9 3.2 

23 PA10 - 0.10 - 167 106.2 3.7 106.7 4.1 111.7 3.3 

24 PA15 - 0.15 - 167 103.8 6.5 104.4 5 112.9 5.1 

25 C60 - - - - 102.0 2.9 101.7 2.5 104.5 2.5 

Remarks:  SV denotes the standard variation, which is calculated by 
2

1
x x
n , where n=3 

represents the number of specimens tested for each loading scenario. x  represents the average value 



of the  tested triaxial strengths. 













Fig.6 Approach to examine the value of coefficient tk
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