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Abstract: This paper firstly presents a non-associated plasticity-based constitutive model for 

hybrid steel-polypropylene fiber reinforced concrete (HFRC) materials in an attempt to 

characterize the stress-strain responses under multiaxial loading scenarios. Together with a 

five-parameter loading surface and uncoupled hardening and softening regimes, a nonlinear plastic 

potential function is particularly introduced into the constitutive model with the material constants 

experimentally determined, which allows a more accurate estimation of the volumetric dilatency 

of HFRC. Moreover, the influence of fiber parameters on the plastic flow direction is also 

addressed. The developed model is then implemented into ABAQUS finite element package 

through a user-defined material (UMAT) subroutine that can be applicable for the convenient use 

in numerical simulation of HFRC materials. A substepping scheme with error control for 

integrating elasto-plastic stress-strain rate equations is presented in detail. Subsequently, the 

proposed model is evaluated by available multiaxial compression test results of both plain 

concrete and FRC reported by other researchers. It is shown that the constitutive model can 

realistically capture the stress-strain responses as well as the volumetric deformation of HFRC 

having various fiber reinforcement indices. 

Keywords: Non-associated plasticity; Fiber reinforced concrete; Constitutive model; Multiaxial 
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compression; Implementation; ABAQUS; 

1 Introduction 

Over the past few decades, considerable research efforts have been invested in the 

development of elasto-plastic constitutive models for plain concrete (Imran and Pantazopoulou, 

2001; Grassl et al., 2002; Park and Kim, 2005; Papanikolaou and Kappos, 2007). Some of such 

models have been successfully incorporated into commercial finite element codes and extensively 

utilized for the numerical simulation of concrete structures. The achievements allow researchers to 

investigate the mechanical behavior of plain concrete conveniently by selecting the corresponding 

constitutive models.  

With the rapid development of fiber reinforced concrete (FRC) theory and its applications, 

FRC materials such as steel fiber reinforced concrete, polypropylene fiber reinforced concrete, or 

hybrid steel-polypropylene fiber reinforced concrete have gained wide recognition and have 

become firmly established within the arsenal of existing construction materials over recent years. 

FRC exhibits excellent tensile, bending and shearing strength as well as superb resistance to 

cracking, impact and fatigue. The substantial amount of research and development in fiber 

reinforcing technology has led to a wide range of practical engineering applications such as in 

pavement design, structural repair/maintenance, shot concrete mix design, deep beams and in 

offshore environments (offshore foundation, condeep platform floats, support structures and 

storage unit for nature oil or gas), etc. (ACI Committee 544., 1982; Swamy and Barr, 1989; Bentur 

and Mindess, 1990). Nowadays, owing to the rapid improvements in numerical simulation 

techniques and computational capabilities, engineers have begun to simulate the behavior of FRC 

structures in addition to traditional concrete structures using finite element modeling (FEM) to 
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analyze and solve various concrete problems as subjected to complicated loading conditions. The 

analysis of an engineering problem using FEM essentially involves solving equilibrium equations 

with prescribed boundary and initial conditions that are linked by the material�s constitutive 

relations (Babu et al., 2005), in which the constitutive model plays a significant role in the 

numerical simulation. It is a fact that many attempts concerning on constitutive modeling of FRC 

materials with steel fiber reinforced concrete (SFRC) in particular have achieved certain success 

(e.g. Chern et al., 1992; Murugappan et al., 1993; Song et al., 1996; Hu et al., 2003; Seow and 

Swaddiwudhipong, 2005; Lu and Hsu, 2006). It is acknowledged that FRC materials exhibit 

complex responses in terms of strain hardening/softening, volumetric dilatency, pressure 

sensitivity, etc., which change significantly with the varying fiber parameters. However, to the 

authors� knowledge, the majority of the published models depend to a large degree on their 

particular application, and with respect to HFRC materials, a unified constitutive model along with 

the incorporation into FE software package can barely be found in the literature. As HFRC 

materials are typically subjected to multiaxial loadings, a more sophisticated constitutive model is 

imperatively required for the accurate prediction of the stress state and the deformation.  

To this end, the subsequent focus of this study is to develop a constitutive model for HFRC 

material predicated on a non-associated plasticity which is a continuation of research (Chi et al., 

2013). Furthermore, the proposed constitutive model is implemented into FE software package 

ABAQUS by an explicit integration method using the UMAT subroutine. Finally, the response of 

the developed model is validated and verified with existing experimental results in terms of 

stress-strain behavior and volumetric deformation under various loadings. 

2 Constitutive modeling 
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2.1 Loading surface of HFRC 

The mathematical form of the loading surface proposed in present study is developed on the 

basis of the Willam-Warnke (1974) (W-W) five-parameter failure model, which is expressed using 

the Haigh-Westergaard coordinates as shown below: 

0),()(2),,( 2   hf

pKJf                 (1) 

where ( )pK   is the hardening/softening function that defines the increase of strength during 

hardening and the strength deterioration during softening, which is governed by the equivalent 

plastic strain, ranging from 
0K  to 1. The function ),(  hf

 defines the parabolic shape of 

meridians which binds the ultimate strength of HFRC (Eq.4). It is interpolated between the tensile 

meridian t (Eq.2) where Lode angle
0 , and the compressive meridian c (Eq.3) where 

Lode angle
60  as follows: 
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interpolated meridian function ),(  hf
 forms a cone-shaped failure envelope, as schematically 

illustrated in Fig.1. cuf  denotes the uniaxial compressive strength of plain concrete. The 

equations are expressed in terms of hydrostatic pressure  and deviatoric stress  , where 

3/1I  and 22J  ( 1 ( ) / 3iI tr   is the first invariant of stress tensor, 
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and 2

1

2
ij ijJ s s  is the second invariant of deviatoric stress tensor). )3,2,1( ii is the 

principal normal stress in the ith direction. The material constant a0,a1,a2,b0,b1,b2 are determined 

from a large variety of experimental data points, which relate to the uniaxial strength, uniaxial 

tensile strength, equal biaxial compressive strength and the triaxial strength with high confinement, 

the values are given in Chi et al 2013. Since the W-W model has shown its robustness in 

prediction of failure strengths of various concrete materials, and the model�s failure envelope also 

satisfies the requirements of smoothness, convexity with separate descriptions of the compressive 

and tensile meridian, these features allows flexible modification of a specific section to account 

for the presence of hybrid fibers.  

 

Fig.1 Schematic diagram of failure envelop in Haigh-Westergaard coordinates 

    Consequently, it is noted from Eq.2 to Eq.4 that, in this study, two coefficients ( tc kk , ) are 

introduced into the meridional functions to account for the increase in stress state at failure along 

both meridians, which will also result in a change in the entire failure envelop that can reflect the 

fiber effect subject to other loading scenarios. These two coefficients are calibrated based on true 
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triaxial compression tests as described in following section. 

2.2 Experimental program 

Cubic specimens were prepared for true triaxial compression testing using 18 HFRC mixes 

(Table 1), containing 0%, 0.5%, 1.0% and 1.5% volume fraction of corrugated steel fibers with 

aspect ratio of 30 and 60, and 0%, 0.05%, 0.1% and 0.15% volume fraction of monofilament 

polypropylene fibers with aspect ratio of 167 and 396. For comparison, plain concrete as well as 

single fiber reinforced concrete were also tested (Table 2). Ordinary Portland cement (P.O 42.5) 

was used as the binder for the matrix mixtures. The mix proportion of cement:water:sand:coarse 

aggregate by weight was in the ratio of 1:0.34:1.80:2.49. The steel fibers with the trade name 

Hansen have a minimum tensile strength of 600MPa and density of 7800kg/m
3
. The 

polypropylene fibers with the trade name CTA have a minimum tensile strength of 400MPa and an 

elongation rate between 15-35%. Specimens of size 150×150×150mm were cast in cubic-shaped 

steel moulds and compacted on a vibration table. All the specimens were demolded after 24 hours 

and stored in a curing room at a temperature of 20±2
o
C and a relative humidity of 95% until 28 

days strength was achieved. The plain concrete matrix is specified with a 28-day compressive 

strength of 60MPa. All the specimens were then tested using a true triaxial testing set-up (see 

Fig.2) with lateral pressures ( 21   ) designated at 5/10MPa, 4/15MPa and 3/20 MPa 

respectively. A displacement control with a 0.05mm/s loading velocity was applied in the axial 

direction ( 3  direction) by actuators until ultimate failure occurred. All the specimens to be 

tested were covered in a plastic membrane and lubrication was applied between the contact 

interfaces of the specimen and rigid loading platens to eliminate the undesired end constraint 

induced by friction. All the pressures were measured by pressure transducers. Axial and lateral 
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extensometers were used to measure the deformations caused by the imposed stresses. The test 

results of all the specimens with respect to stresses and axial strains at failure under true triaxial 

compressions were summarized in Tables (3), (4) and (5), where the listed triaxial strength for 

each loading scenario was the average value from three test specimens. 

Table 1. Variables of HFRC for the triaxial compression test 

No. 
Specimen 

Number 

Volume 

fraction 

of 

SF/% 

Volume 

fraction 

of PF 

/% 

Aspect 

ratio of 

SF 

Aspect 

ratio of 

PF 

No. 
Specimen 

Number 

Volume 

fraction 

of 

SF/% 

Volume 

fraction 

of PF 

/% 

Aspect 

ratio of 

SF 

Aspect 

ratio of 

PF 

1 SA05PA05 0.5 0.05 30 167 10 SB10PA10 1.0 0.10 60 167 

2 SA05PB05 0.5 0.05 30 396 11 SB10PB10 1.0 0.10 60 396 

3 SB05PA05 0.5 0.05 60 167 12 SA10PA15 1.0 0.15 30 167 

4 SB05PB05 0.5 0.05 60 396 13 SA15PA05 1.5 0.05 30 167 

5 SA05PA10 0.5 0.10 30 167 14 SA15PA10 1.5 0.10 30 167 

6 SA05PA15 0.5 0.15 30 167 15 SA15PA15 1.5 0.15 30 167 

7 SA10PA05 1.0 0.05 30 167 16 SA15PB15 1.5 0.15 30 396 

8 SA10PA10 1.0 0.10 30 167 17 SB15PA15 1.5 0.15 60 167 

9 SA10PB10 1.0 0.10 30 396 18 SB15PB15 1.5 0.15 60 396 

 

Table 2. Variables of single fiber reinforced concrete  

No. 
Specimen 

Number 

Volume fraction 

of SF/% 

Volume fraction 

of PF /% 

Aspect ratio 

of SF 

Aspect ratio 

of PF 

19 SA05 0.5 - 30 - 

20 SA10 1.0 - 30 - 

21 SA15 1.5 - 30 - 

22 PA05 - 0.05 - 167 

23 PA10 - 0.10 - 167 

24 PA15 - 0.15 - 167 

25 C60 - - - - 
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Fig.2 True triaxial compression testing set-up 

 

Table 3. Peak stresses and strains at lateral pressure combination of 5/10MPa 

No. Specimen 
1 (MPa)

 2 (MPa) 3 (MPa)
1  2  3  tan׋

1 SA05PA05 5.02 9.95 106.63 -0.01201 0.00563  0.01681  3.83 

2 SA05PB05 5.15 9.92 109.09 -0.01121 0.00491  0.01756  3.44 

3 SB05PA05 5.05 9.93 115.20 -0.01627 0.00539  0.02261  4.60 

4 SB05PB05 5.05 9.92 118.69 -0.01515 0.00382  0.02103  5.42 

5 SA05PA10 5.11 9.87 107.18 -0.01491 0.00463  0.01585  10.17 

6 SA05PA15 5.02 9.91 109.09 -0.01369 0.00694  0.01628  4.63 

7 SA10PA05 5.10 9.98 111.29 -0.01235 0.00533  0.01591  4.67 

8 SA10PA10 5.06 9.81 109.19 -0.01316 0.00458  0.01486  7.60 

9 SA10PB10 5.09 9.91 109.67 -0.01411 0.00631  0.01319  9.96 

10 SB10PA10 5.06 9.98 113.45 -0.01399 0.00511  0.01526  7.96 

11 SB10PB10 5.10 9.92 115.19 -0.01745 0.00592  0.01631  15.82 

12 SA10PA15 5.09 9.90 115.74 -0.00840 0.00109  0.01349  5.74 

13 SA15PA05 5.03 9.85 115.25 -0.01271 0.00840  0.00873  13.32 

14 SA15PA10 5.05 9.94 116.20 -0.01933 0.00670  0.01094  9.06 

15 SA15PA15 5.08 9.83 115.73 -0.01970 0.00373  0.01197  5.72 

16 SA15PB15 5.17 9.97 120.83 -0.01759 0.00383  0.01209  8.09 

17 SB15PA15 4.99 9.84 119.37 -0.01880 0.00232  0.01422  7.79 

18 SB15PB15 5.14 9.79 118.47 -0.01945 0.00223  0.01683  14.30 

19 SA05 5.13 9.95 107.61 -0.01003 0.00295  0.01129  11.21 

20 SA10 5.06 9.82 118.94 -0.01149 0.00230  0.01358  13.24 

21 SA15 5.14 9.81 124.23 -0.01309 0.00105  0.01252  12.98 

22 PA05 5.15 9.92 107.54 -0.01221 0.00308  0.02262  3.38 

23 PA10 5.09 9.91 99.24 -0.01349 0.00230  0.02512  3.64 

24 PA15 5.22 9.87 93.80 -0.01546 0.00151  0.02623  4.58 

25 C60 4.94 9.88 85.02 -0.01250 0.00069  0.00998  6.71 
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Table 4 Peak stresses and strains at lateral pressure combination of 4/15MPa 

No. Specimen 
1 (MPa)

 2 (MPa) 3 (MPa)
1  2  3  tan׋

1 SA05PA05 3.85  15.58  110.76  -0.01715 0.00125  0.01266  5.82 

2 SA05PB05 3.95  15.55  107.43  -0.00572 0.00042  0.01490  2.88 

3 SB05PA05 3.94  15.44  125.28  -0.02443 0.00060  0.01226  2.91 

4 SB05PB05 4.05  15.55  113.19  -0.00774 0.00079  0.01621  3.59 

5 SA05PA10 3.92  15.65  109.52  -0.00801 0.00069  0.01666  3.67 

6 SA05PA15 3.98  15.40  112.15  -0.00470 0.00080  0.01517  2.24 

7 SA10PA05 3.68  15.57  113.27  -0.00339 0.00173  0.00929  2.04 

8 SA10PA10 3.82  15.76  108.85  -0.00360 0.00110  0.01625  1.78 

9 SA10PB10 3.97  15.58  102.53  -0.01525 0.00099  0.00967  3.99 

10 SB10PA10 3.89  15.59  132.73  -0.01223 0.00526  0.01229  10.26 

11 SB10PB10 3.88  15.43  116.52  -0.01095 0.00491  0.01379  4.97 

12 SA10PA15 3.97  15.61  115.67  -0.00705 0.00192  0.02286  2.11 

13 SA15PA05 3.86  15.29  122.39  -0.01105 0.00626  0.01645  3.23 

14 SA15PA10 4.04  15.40  126.38  -0.01332 0.00344  0.01612  8.64 

15 SA15PA15 3.86  15.41  118.88  -0.01404 0.00212  0.01655  15.27 

16 SA15PB15 3.93  15.24  113.86  -0.01607 0.00248  0.00984  4.66 

17 SB15PA15 3.78  15.33  124.90  -0.01209 0.00299  0.00938  9.73 

18 SB15PB15 3.87  15.40  108.34  -0.01093 0.00297  0.00901  16.85 

19 SA05 3.93  15.83  111.38  -0.00928 0.00034  0.00758  4.38 

20 SA10 3.93  15.42  116.02  -0.01248 0.00155  0.00738  3.49 

21 SA15 3.90  15.35  121.29  -0.01221 0.00114  0.00734  3.21 

22 PA05 3.91  15.82  110.83  -0.01181 0.00308  0.00738  5.68 

23 PA10 3.82  15.26  101.66  -0.01547 0.00570  0.00841  8.20 

24 PA15 3.82  15.43  97.38  -0.01963 0.00174  0.01593  9.83 

25 C60 3.74  15.53  86.75  -0.01109 0.00088  0.00795  4.85 

 

Table 5 Peak stresses and strains at lateral pressure combination of 3/20MPa 

No. Specimen 1 (MPa)
 2 (MPa) 3 (MPa)

1  2  3  tan׋
1 SA05PA05 3.12  19.89  115.52  -0.00413 0.00151  0.02243  1.67 

2 SA05PB05 2.94  20.43  115.50  -0.00102 -0.00167  0.01715  1.75 

3 SB05PA05 2.94  19.64  127.31  -0.00582 -0.00037  0.01535  3.26 

4 SB05PB05 2.90  19.45  109.78  -0.00686 -0.00079  0.01455  4.87 

5 SA05PA10 2.95  19.70  112.35  -0.00791 -0.00027  0.01613  4.53 

6 SA05PA15 2.92  20.04  120.84  -0.00487 0.00056  0.01145  3.27 

7 SA10PA05 2.92  19.55  118.07  -0.00175 -0.00175  0.01912  1.84 

8 SA10PA10 2.99  20.16  118.12  -0.00167 -0.00026  0.00728  2.24 

9 SA10PB10 2.96  19.93  112.88  -0.00867 0.00007  0.02251  2.99 

10 SB10PA10 2.81  19.94  106.17  -0.01103 0.00003  0.02095  4.59 

11 SB10PB10 2.91  20.06  133.95  -0.01088 0.00050  0.01943  5.06 

12 SA10PA15 3.01  19.96  128.48  -0.00336 -0.00003  0.01155  2.43 

13 SA15PA05 2.90  19.89  121.83  -0.00572 0.00061  0.01021  5.73 

14 SA15PA10 3.01  20.28  129.12  -0.00989 -0.00030  0.00969  5.69 

15 SA15PA15 2.83  19.98  134.00  -0.00788 -0.00030  0.00840  5.43 

16 SA15PB15 2.85  19.86  123.29  -0.00542 -0.00033  0.01523  3.01 

17 SB15PA15 3.02  19.74  133.43  -0.00642 -0.00027  0.01359  4.65 

18 SB15PB15 3.04  19.81  125.38  -0.00741 -0.00025  0.01476  4.96 

19 SA05 3.03  20.43  114.66  -0.00380 -0.00080  0.01415  2.58 

20 SA10 2.97  20.17  119.72  -0.00350 -0.00084  0.01052  3.52 

21 SA15 2.98  20.00  130.65  -0.00465 -0.00059  0.00983  6.76 

22 PA05 3.00  20.10  114.94  -0.00293 -0.00080  0.02263  1.79 

23 PA10 2.94  20.30  111.66  -0.00230 -0.00070  0.01483  1.92 

24 PA15 3.11  19.85  112.92  -0.00351 -0.00067  0.01939  1.99 

25 C60 3.16  20.34  86.45  -0.00429 -0.00060  0.01274  3.08 
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The values of tc kk ,  were then respectively accessed and calibrated to the following 

equations according to the uniaxial compression test results of the literature (Zhang, 2010) and the 

true triaxial compression test results in present study (Tables (3), (4) and (5)), relating to the 

volume fraction and aspect ratio of both steel and polypropylene fiber, given by Eqs.(5) and (6), 

the detailed calibration approach was reported in literature (Chi et al, 2013): 

sfck 056.01                              (5) 

pfsftk  132.008.01                          (6) 

where 
sf  denotes the fiber reinforcement index (FRI) of steel fiber calculated as 

sf

sf

sfsf
d

l
V (

sfV  is the volume fraction of steel fiber and 

sf

sf

d

l
is the aspect ratio of steel fiber).

 

pf  denotes the FRI of polypropylene fiber calculated as 

pf

pf

pfpf
d

l
V (

pfV  is the volume 

fraction of polypropylene fiber and 

pf

pf

d

l
is the aspect ratio of polypropylene fiber). 

It can be inferred from Eqs.(5) and (6) that as the FRI of steel fiber increases, both the 

predicted compressive and tensile meridians are expanded. However, the FRI of polypropylene 

fiber has shown certain improvement for the tensile meridian rather than compressive meridian. 

This observation concurs with many other experimental evidences (Bayasi and Zeng,1993; 

Tavakoli, 1994; Qian and Stroeven, 2000; Xu et al, 2007), that polypropylene fiber has 

insignificant impact on the uniaxial compressive strength, of which the stress state is lying on the 

compressive meridian (Lode angle
60 ). Fig.3 shows the variation of failure envelope with the 

change of kc and kt values in ʌ plane. As can be seen that, the deviatoric tracings approach the 

triangular shape as the kc value increases, and the shape gradually becomes circular for increasing 

kt values. 
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Fig.3 Variation of failure envelope with the change of kt (a) and kc (b) values 

2.3 Hardening and softening law 

The hardening/softening rule define the shape and location of the loading surface as well as the 

material�s response after initial yielding, wherein the hardening describes the pre-peak behavior as the 

elastic region terminates and softening corresponds to the post-peak behavior during plastic flow. In the 

present formulation, the HFRC is assumed to remain isotropic during the whole loading process. The 

loading surfaces can be explicitly generated corresponding to the individual hardening/softening 

parameter 
p  (i.e the equivalent plastic strain). The mathematical description of the hardening and 

softening function were derived from Guo (1997) parabola. For its numerical implementation, they 

were generalized and differentiated as a rate form, given by: 

For hardening regime, c  : 

    ppp

ccccc

p dskHdaaadK 








 




























 ),(

1
23

1
232

1
)(

2

   (7) 

For softening regime, c  : 
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ppp

cc

ccccccc

p dskHd

b

bb

dK 




















 



































































 ),(

1

11
121

1

)(
2

2

2

     (8) 

where ( , )pH k s  is the hardening/softening modulus, and  denotes the total equivalent strain at 

current increment step, calculated with respect to three-dimensional stress state (Yu, 2006): 

         2

1
222222

32
3

1
zxyzxyzzxxzzyyyyxx         (9) 

It is noted in Eq.(7) that the coefficient a  is a parameter related to the FRI of hybrid fibers which 

controls the slope of hardening curve to enable the hardening rule to account for the presence of hybrid 

fibers. It was determined according to literature (Zhang, 2010) through a uniaxial compression test, and 

regressed as: 

pfsffcfa  4917.04772.02771.232283.28
0374.0                 (10) 

In addition, the notation c  represents the amount of equivalent strain when the stress state 

reaches the failure surface. Once the equivalent strain  in current increment step is calculated to be 

equal to the specified c (i.e 
c  ), resulting a zero hardening modulus, which means that the 

stress state has reached to the peak and the softening will take place. Here, for derivation of the c  of 

HFRC under multiaxial stresses, a linear relationship between a confinement level ( cf/)( 21   ) 

and the strain amplification ( qc  / ) is developed based on the true triaxial test results according to 

reference (Papanikolaou and Kappos, 2007), where q  the corresponding equivalent strain of HFRC 

at its uniaxial compressive strength is calculated as: 

 13
3

2  q
                                (11) 

The recommended value of q  is given by: 
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610)388.0206.01(3.263  pfsfcuq f                 (12) 

and the predictive equation for c  relating to the confinement level is then developed based on the 

true triaxial test results shown as the following equation: 








 


cu

qc
f

21201


                              (13) 

where 
21,  represent the applied lateral pressure respectively, which reduces to qc    when 

subjected to uniaxial compression. 

Moreover, the coefficient b  in Eq.(8) is also a parameter relating to the FRI of hybrid fibers, 

which controls the slope of the softening function that can be calibrated with the true triaxial 

experimental results to enable the softening rule to simulate the varying softening behavior as the fiber 

reinforcement index changes. The b  value was developed and computed using the following 

equation: 

pfsffcfb  2335.002372.0037.001.0
2846.0                (14) 

Consequently, at the end of each finite time interval ttt nn 1 , the value of 

hardening/softening function is updated as: 

)(1 pnnn dKKK                              (15) 

Fig.4 shows the evolution of the compressive and tensile meridians for different values of 

hardening/softening function during the plastic flow, and Fig.5 illustrates the evolution of both the 

hardening and softening regimes with respect to changing a and b values. It is worth noting that the 

proposed model is able to describe the various stress-strain behaviors that are usually arise as a result of 

varying fiber content. 
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     Fig.4 Evolution of meridians           Fig.5 Evolution of hardening and softening 

2.4 Non-associated flow rule 

After ascribing a failure criterion and hardening/softening law to the initial and the 

subsequent surfaces, it remains to determine the plastic strain once the current yield surface is 

reached. According to the theory of plasticity, the loading surface function and the stress-strain 

relation are connected by a plastic flow rule which defines both the magnitude and direction of the 

plastic strain increment, the evolution of the plastic strain rate is expressed by: 

ij

p

ij

g
dd






                                 (16)

 

In present study, we assumed a non-associated plastic flow for HFRC materials, namely,
 

fg  . The plastic potential function has the following expression in Haigh-Westergaard stress 

space, which was developed based on Grassal et al.(2002) model for plain concrete, given by: 

02  constg                            (17) 

where the coefficients ,  are material constants calibrated according to the true triaxial 

compression test results in terms of peak stresses and peak strains. It has to be noted that, for a 

more convenient calibration of these two coefficients, we also assumed that the plastic flow of 

HFRC is Lode angle independent, meaning that the plastic flow directions are all identical on a 

deviatoric plane within the same hydrostatic stress (See Fig.6). In addition, another basic 
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hypothesis is that the inclination of the total plastic strain is always equal to the inclination of the 

plastic strain increment, as indicated in Fig.7. Consequently, the inclination can be calculated by 

the derivation of plastic potential function (Imran and Pantazopoulou, 2001): 







d

d





 tan                           (18) 

After substituting Eq.(18) into Eq.(17), we get: 



 2

d

d
                          (19) 

Based on the true triaxial test results t̍he coefficients ,  were then calibrated through two 

kinds of loading combinations. Here, we specify 11,  and 22 ,  respectively correspond to 

the plastic inclination and deviatoric stress of the selected two boundary conditions, written as:  

11 2                                     (20) 

22 2                                     (21) 

by solving the above equation, coefficients ,  can be obtained as follows: 

1

21

21

1 



 



                                 (22) 

 21

21

2 






                                   (23) 

In addition, the deviatoric stresses for different lateral pressure combinations of the true triaxial 

compression can be calculated by:  

      2

31

2

32

2

212
3

1
2   J             (24) 

and the plastic inclination
 21,  were computed according to (Papanikolaou and Kappos, 2007)˖ 

      

3

3

1

321

2

32

2

31

2

21

plplpl

plplplplplpl
















              (25) 
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where the plastic strain in each principle stress direction can be solved according to Hooke�s law, 

expressed by the following equations:  

  
  
   














Ev

Ev

Ev

pl

pl

pl

21333

31222

32111







                    (26) 

 

Fig.6 Consistency of plastic flow directions within the same hydrostatic stress 

 

 

Fig.7 Inclination of plastic strain increment 

By using the experimental results of peak stresses and strains, the plastic flow inclinations 

were thus obtained, which are listed in the Tables (3), (4) and (5). Fig.8 shows the relationship 

plİ

pl

vİ

 

 







 

Plast ic potent ial 

g 

f 

pl

qİ

Loading surface 

Deviatoric part   

Volum etr ic part   

Plast ic st rain 

increm ent  
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between the plastic flow inclination and the FRI under the three lateral pressure combinations. It is 

interestingly found that the inclination rises with the increasing volume fraction of steel fiber 

(Fig.8a). Since the increase of the inclination indicates a decrease of plastic volumetric expansion 

rate, decaying the accumulation of plastic volumetric expansion. The steel fiber can effectively 

restrain the dilation. However, the polypropylene fiber has a less impact on restricting the dilation, 

particularly for the 3/20MPa combination (Fig.8b). The inclination tends to decrease with an 

increase of reinforcement index. This phenomenon is mainly attributed to that, at an early loading 

stage when micro crack prevails, the polypropylene fiber has certain effect on delaying the crack 

opening and propagation. However, once the formation of macro crack is triggered by the 

increasing loading, the polypropylene fiber can be easily ruptured owing to the stress 

concentration at the crack tip where the steel fiber plays a significant role in bridging the gap and 

carrying the tensile forces. It is therefore summarized that the polypropylene fiber to an extent 

reduces expansion during early periods thereby bridging the internal micro cracks and delaying the 

onset of dilation. However in the latter stage of loading, when macro cracks prevail, the 

contribution of polypropylene fiber on macro-crack resistance is less than steel fiber.  

 

Fig.8 Relationship between the inclination and FRI: (a) steel fiber (b) polypropylene fiber 

3 Constitutive equations 
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    After ascribing the loading surface, hardening/softening law and plastic potential function, 

the elastoplastic formulations and the stiffness matrices were derived as following: 

In the elastic range, Hooke�s elastic stiffness matrix (
el

ijklD ) associates the stress strain 

increment with the strain increment as follows: 

)dİ(dİDdİDdı pl

kl

tot

kl

el

ijkl

el

kl

el

ijklij                        (27) 

where the plastic strain increment vector (
pldİ ) is evaluated via the plastic flow rule, it may be 

ascribed to either associate plastic potential or non-associated plastic potential, written as shown: 

ij

pl

ij

f
dd






                               (28) 

wherein the plastic multiplier ( ) is determined using the consistency condition, implying that: 

0










 pl

ijpl

ij

ij

ij

d
K

K

f
d

f
df 




                       (29) 

where the hardening parameter K is a function of accumulated plastic strain in this study. d is 

then solved as: 

ij

pl

ijpq

el

mnpq

mn

tot

kl

el

ijklij

gK

K

fg
D

f

dDf
d

























)/(

                     (30) 

By substituting Eq.28 and Eq.30 into Eq.27 and solving for ijdı , we obtain: 

tot

kl

ij

pl

ijtu

el

rstu

T

rs

el

pqkl

T

pqmn

el

ijmn

el

ijklij d
gK

K

fg
D

f

D
fg

D

Dd 






































































             (31) 

for which the elastic stiffness matrix 
el

ijklD  can be expressed as: 

)
21

(2 klijjlik

el

ijkl
v

v
GD 


                        (32) 
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In addition, the derivatives for the loading surface function ( df ) are given in appendix I. 

4 Integration methods 

The numerical implementation of the constitutive model is specifically carried out by using a 

User-defined Material (UMAT) subroutine through ABAQUS, and is performed by using the 

explicit substepping integration algorithm with error controls. This iteration algorithm which was 

originally proposed by Sloan (1987) is further developed by the author for the numerical 

integration of elasto-plastic stress-strain rate equations of HFRC. The Newton-Raphson iteration 

algorithm is used to solve the non-linear finite element equations in the ABAQUS main program. 

Given an increment passed down from the ABAQUS main program, the intersection of initial 

yielding is firstly determined, and then the constitutive equations are integrated by modified Euler 

Scheme with user defined error tolerance. According to this scheme, the constitutive equations are 

first integrated by using Euler scheme which is of first order accuracy, followed by using the 

modified Euler scheme which is of second order accuracy. The integration error is determined by 

the difference between the integration results of these two schemes. If the integration error is 

smaller than the prescribed error tolerance, the size of the next subincrement is determined by 

extrapolation according to the current error compared with the error tolerance. If the integration 

error is larger than the error tolerance, the size of the current subincrement is reduced based on the 

ratio of the current error with the error tolerance. Thus, this scheme can automatically divide the 

imposed strain increment according to the prescribed integration error tolerance. Subsequently, a 

correction of stress-state is applied according to Abbo (1997). Finally, the elasto-plastic stiffness 

matrix is updated and sent back to ABAQUS to obtain the stress-strain relation for current 

increment. 
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The algorithm for each integration point for a given strain rate 
tot

klİ in a finite time 

step kk ttt  1  is briefly summarized in the following steps: 

1) Evaluate yield condition 

tot

kl

el

ijkl

e

ij İDı                                                        (33) 

If 0),( 0 Kf k

ij  and 0),( 0  Kf e

ij

k

ij   go to 2)   

Else 
e

ij

k

ij

k

ij  1
                                                     (34) 

el

ijkl

ep

ijkl DD                                                             (35) 

2) Intersection scheme that find a factor   to determine the onset of initial yield as: 

0),( 0  Kf e

ij

k

ij                               (36) 

and factor   is set to 0 if the increment causes purely plastic deformation. It is noted that the 

yield condition control from Eq.36 can be approximated as (see Fig.9): 

TOLKf e

ij

k

ij  ),( 0                           (37) 

Applying the above Eq.37 can lead to an efficient convergence of the calculation with 

relative effective precision. Here, TOL indicates a small positive tolerance with a 

recommended interval of ranging from 10
-9

 to 10
-6

. 

(2.1) Set ),( 000 Kff e

ij

k

ij   and ),( 011 Kff e

ij

k

ij   . Initial values for 10 , can 

be assigned as 00   and 11  . 

(2.2) Calculate  by using Newton-Raphson iterative scheme: 

)( 01

01

1
1  




ff

f
 ( 0 =0 and 

1 =1)                 (38) 

(2.3) Set ),( 0Kff e

ij

k

ijnew    and specify tolerance TOL. 

If TOLfnew   then go to step 3). 

else If 00  ffnew  then  1
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else If 00  ffnew  then  0  

Repeat step (2.1)-(2.3). 

3) Modified Euler integration algorithm with error control 

(3.1)Initialize parameter 0T  and 1T  for current increment, if T<1, then cycle step 

(3.2)-(3.6). 

(3.2)Calculate the first estimate of stress increment 
1ı  using Euler scheme: 

1

11 )1(
ı

ı




g

DT el

ijkl

e

ij                   (39) 

and the first hardening increment 1K  according to Eq.7: 

1

11 ),(
ı



g

skHK p                         (40) 

Where   


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
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g
skH
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f
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f

p

el

ijkl

T

e

ij

T


  

(3.3)Calculate the second estimate of stress increment 2ı  using modified Euler scheme: 

2

22 )1(
ı

ı




g

DT el

ijkl

e

ij                   (41) 

 and the second hardening increment 2K : 

2

22 ),(
ı



g

skHK p                         (42) 

where 
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112 ııı  , 
1' KKK                     (43) 
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(3.4)Update the more accurate estimate stress increment as well as hardening parameter 

increment as: 

2
� 21 ııı 
 , 

2
� 21 KK

K


                (44) 

(3.5)Determine the local truncation error for the substep from 




















K

KK
Error

�2
,

�2
max

1212




                  (45) 

If the Error<TOL, then 

KKK ��                                   (46) 

ııı ��
1                                   (47) 

TTT                                   (48) 

and the T  for the next substep is extrapolated as: 

TqT                                      (49) 

 1.1,)/(9.0min 2/1ErrorTOLq                          (50) 

If the Error>TOL, this substep fails, a smaller time step is decreased, and the above 

computations are carried out again by using a reduced subincrement as:  

TqT  '                                    (51) 

An estimate value for 'q can be defined as: 

 1.0,)/(8.0max' 2/1ErrorTOLq                         (52) 

(3.6)The sub increment is finished and exits with the updated accumulated stresses as: 

ıı � TT
 , KK TT �

                          (53) 

4) Correction of stress state (Abbo,1997) 
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TT

el

ijkl
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ıı                     (54) 
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        (55) 

 
TTpcorrect

g
skHK 



ı

),(                        (56) 

If |),(||),(| TTTT

correctcorrect KfKf  ıı  then 

correct

k

ij ıı 1 , 
correct

k KK 1
                       (57) 

else 
TTk

ij

  ıı1 , TTk KK  1                        (58) 

5) Update the elasto-plastic stiffness matrix as: 
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This stiffness matrix determined by the integration subroutine is then given to the 

ABAQUS main program to obtain the stress-strain relation for the current increment. 

 

Fig.9 Determination of yield surface intersection 

5 Validations 

In the first place, the coefficients ,  which control the direction of plastic flow were 

calibrated in accordance to the approach described in previous section 2.4 and determined 

using the test results from lateral pressure combinations of 5/10MPa and 3/20MPa. The 
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responses of the constitutive model were then compared to the results of 4/15MPa to check 

its validity. Figs.10 to 13 compare the analytical and experimental volumetric-axial strain 

behaviors of HFRC under a 4/15MPa lateral pressure combination, wherein both associate 

and non-associate flow rule were applied to show the difference in volumetric dilation. For 

non-associated flow rule, the calibration factors of plastic potential function were determined 

as 038.0,86.2    for SA05PA05 ˈ 135.0,1.16   for SA10PA10, 

12.0,26.12   for SA15PA10ˈand 01.0,84.3    for SA15PA15. As shown 

in the plots, HFRC exhibits significant non-associate plasticity, the constitutive model with 

non-associate flow provides a more precise prediction of the volumetric strain-axial strain 

behavior. On the other hand, the associate flow rule excessively overestimates the plastic 

dilatancy. 

 

Fig.10 v 3  curve (SA05PA05)         Fig.11 v 3  curve (SA10PA10) 
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Fig.12 v 3  curve (SA15PA10)         Fig.13 v 3  curve (SA15PA15) 

 

Fig.14 shows the corresponding directions of plastic strain vectors for SA05PA05, 

SA10PA10, SA15PA10 and SA15PA15 at failure surface. It is observed that the direction of 

plastic flow invariably approaches the deviatoric stress axis when various hybrid fiber volume 

fractions are introduced, resulting in a decrease of volumetric growth rate (dilation rate). The 

plastic strain direction approaching the deviatoric stress axis causes a slower accumulation of the 

volumetric plastic strain component, thereby delaying ultimate failure consequently improving 

capacity in both axial and lateral directions.  

 

Fig.14 Plastic flow direction of HFRC at failure surface 

6 Verifications 

The constitutive relations were specifically incorporated into the proposed constitutive model 

via the UMAT subroutine by running an ABAQUS command �ABAQUS JOB=name.INP 

USER=name INT�. Apart from the proposed constitutive model, the development of an 

appropriate and separate finite element model was undertaken in this study. In view of the loading 
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situation in true triaxial compression with no bending moment and bending deformation of the 

specimen observed,  a �C3D8� element, which is an iso-parametric, eight-noded solid element, 

was selected for the numerical simulation, with the finite element mesh and boundary conditions 

as shown in Fig.15. 

             

Fig.15 Finite element mesh with C3D8 elements   

During the multiaxial compression simulation, displacement loading control is used and an 

initial value of hardening function K0=0.4 is applied to determine the elastic range. All the relevant 

model input parameters under consideration (i.e. ctc bakk ,,,,  values and plastic potential 

parameters , values) were firstly calibrated to enable comparisons between the selected 

experimental investigations using the developed equations in the previous section. 

To verify the developed constitutive model and the aforementioned integration scheme, the 

stress-strain response is evaluated for both conventional concrete and fiber reinforced concrete. 
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Fig.16 Principal stress-volumetric strain behavior of samples subjected to both uniaxial and biaxial 

compression as reported by Kupfer et al., (1969) 

Fig.16 compares the analytical results of principal stress-volumetric strain relations to the 

experimental results of Kupfer et al., (1969) for plain concrete under both uniaxial and equibiaxial 

compressions. For 1.32cuf MPa, 49.2 eE  MPa, as in Kupfer et al., (1969), apart from the 

values of kc, and kt, which are kept constant (kc=kt=1) calculated using Eqs.(5) and (6), the other 

model parameters were respectively calibrated to 727.1a , 109.0b  and 00149.0c  for 

uniaxial compression, 00172.0c  for equibiaxial compression, and the plastic potential 

parameter were set to 064.0,75.7    which were calibrated by the peak stresses and strains 

of two boundary conditions, i.e. the peak stresses and strains in uniaxial compression and biaxial 

compression. The comparison shown in the plots proves that the proposed model has the 

capability to accurately describe the stress-strain behavior as well as the volumetric deformation of 

plain concrete. 

In addition, the results of laterally confined triaxial compression tests conducted on plain 

concrete were compared to the model�s prediction. The experimental curves derived by Candappa 

et al., (2000) for high strength concrete subjected to relative low lateral confining pressures were 

compared with the analytical results, as illustrated in Fig.17, where 6.60cuf MPa, 

48.3 eE  MPa, and confining pressures of 0MPa, 4MPa, 8MPa were individually considered. 

The model parameters were calibrated to 129.0,089.1  ba , and 00205.0c  for uniaxial 

compression(ı1=ı2=0), 00746.0c  and 01287.0c  for laterally confined triaxial 

compression (ı1=ı2=-4MPa) and (ı1=ı2=-8MPa) respectively. In addition, the plastic potential 

coefficients were calibrated by means of peak stresses and strains in uniaxial compression and 

multiaxial compression with a lateral confinement of ı1=ı2=-4MPa, which were determined to 
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092.0,25.11   . 

 

Fig.17 Comparison of stress-strain curves of experimental results for high strength concrete as 

reported by Candappa et al., (2000) and the constitutive model�s prediction under low confining 

pressures 

It is clear that although the proposed model slightly overestimates the triaxial strength (i.e. 

within +10% of the experimental values), it still reflects the concrete�s expected behavior, in that 

the strength and ductility are significantly improved owing to the lateral confinement. 

Furthermore, for HFRC materials, Fig.18 shows the comparison between the predicted curves 

and experimental results of HFRC (with steel fiber volume fraction ranging from 0.5% to 1.5% 

and aspect ratio of 30, and polypropylene fiber at 0.1% fixed volume fraction and aspect ratio of 

167) under uniaxial compression as reported by Zhang (2010). Based on Zhang�s test with 

6.28cuf MPa and 49.2 eE  MPa, the model parameters were calibrated as shown below:  

a=1.83, b=0.064, kc=1.0084, kt=1.034, 00147.0c  (for SA05PA10), a=1.902, b=0.06, kc=1.0168, 

00149.0c  (for SA10PA10), a=1.974, b=0.056, kc=1.0252, kt=1.058 00151.0c  (for 

SA15PA10). The plastic potential coefficients were input according to the value calibrated from 

present true triaxial compression results as: 165.0,94.16    for (for SA05PA10), 

135.0,1.16    (for SA10PA10) 12.0,26.12    for (for SA15PA10). 
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Fig.18 Comparison of HFRC uniaxial stress-strain relationships of constitutive model analytical results 

and experimental results reported by Zhang (2010) 

 

As illustrated in Fig.18, very good conformance exists between the experimental and 

analytical curves of HFRC where both strength and axial deformation are concerned, with the 

exception of a moderate underestimation of the strain in lateral direction. From the comparisons 

shown above, it is found that the proposed constitutive model gives good prediction of the 

evaluated experimental stress-strain curves for HFRC materials. It is believed, having conducted 

relevant comparisons that the proposed model can be applied to other subsequent numerical 

simulations of fiber reinforced concrete.
 

6 Conclusions 

A plasticity-based constitutive model for HFRC was developed, which comprises a 

five-parameter failure criterion in addition to uncoupled isotropic hardening and softening regimes 

determined by accumulated equivalent plastic strain and a nonlinear non-associated plastic 

potential. The fiber reinforcement indices of HFRC are introduced into the constitutive model to 

take the fiber effect into account.  
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The proposed constitutive model was implemented into the FE package ABAQUS through 

the UMAT subroutine based on an explicit integration algorithm. The subroutine utilizes a 

Modified Newton-Raphson technique to determine the initial yield point, a modified Euler 

integration algorithm with error control to calculate the unknown stress state after yielding, and a 

substepping scheme for stress state correction. The algorithm is applicable to the numerical 

simulation of fiber reinforced concrete materials by simply incorporating the corresponding yield 

criterion, hardening law and plastic potential function.  

The responses of the developed model were verified using multiaxial compression 

experimental results for both plain and fiber reinforced concrete. It has been shown that the 

proposed constitutive model agrees with the evaluated experimental stress-strain curves in 

reasonable accuracy. 

With respect to HFRC material, it exhibits significant non-associate plasticity. The 

constitutive model with non-associate flow provides a more precise prediction of the volumetric 

strain-axial strain behavior. It is observed that the direction of plastic flow invariably approaches 

the deviatoric stress axis when various hybrid fiber volume fractions are introduced, resulting in a 

decrease of dilation rate. 
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Appendix I: Derivatives of the loading surface function 

For a convenient description of the derivatives of loading surface function, the failure surface 

(Eq.4) is alternatively expressed as: 
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Besides, 
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