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Abstract: 

Interlayer rotation and stacking were recently demonstrated as effective strategies for 

tuning physical properties of various two-dimensional materials. The latter strategy was 

mostly realized in hetero-structures with continuously varied stacking orders, which 

obscure the revelation of the intrinsic role of a certain stacking order in its physical 

properties. Here, we introduce inversion-domain-boundaries into molecular-beam-

epitaxy grown MoSe2 homo-bilayers, which induce uncommon fractional lattice 

translations to their surrounding domains, accounting for the observed diversity of 

large-area and uniform stacking sequences. Low-symmetry stacking orders were 

observed using scanning transmission electron microscopy and detailed geometries 

were identified by density functional theory. A linear relation was also revealed 

between interlayer distance and stacking energy. These stacking sequences yield 

various energy alignments between the valence states at the Γ and K points of the 

Brillouin zone, showing stacking dependent bandgaps and valence band tail states in 

the measured scanning tunneling spectroscopy. These results may benefit the design of 

two-dimensional multilayers with manipulable stacking orders. 

Keywords: transition metal dichalcogenides, inversion domain boundaries, stacking 

orders, van der Waals heterojunctions 

 

 

 



Van der Waals (vdW) epitaxy of two-dimensional (2D) layers has been demonstrated 

a marvelous route to build 2D nanostructures functionalized as transistors1-6, photo 

detectors7-11, light absorbers6, 12, memories13, 14, switchers15 and other electronic and 

optoelectronic devices16, 17. Interlayer interaction plays a dominant role in determining 

physical properties of these nanostructures. An exceptional interlayer coupling 

mechanism, namely covalent-like quasi-bonding, leads to strongly layer-dependent 

evolution of electronic and vibrational properties, e.g. electronic bandgap, in black 

phosphorus6, 18, 19 and PtX2 (X=S or Se)20-22. Interlayer stacking order was predicted 

another degree of freedom to modify electronic structures of layered materials and 

recently demonstrated in twisted homo-18, 23-25 and vdW hetero-bilayers26-28. Twisted 

homo-bilayers aside, hetero-bilayers involve electronic states from both different layers 

with a collective feature from diverse and continuously varied Moiré stacking orders, 

as a result of non-negligible lattice mismatch. It is, thus, of considerable importance to 

build a bilayer platform without interlayer lattice mismatch and rotation, e.g. a non-

twisted homo-bilayer, to depict a more simplified but substantial physical picture on 

the correlation of stacking order and physical properties, e.g. electronic structures. 

Molecular beam epitaxy (MBE) has recently been adopted to synthesize atomically 

thin transition metal dichalcogenides (TMDs)21, 29-33. With certain procedures, network-

like inversion domain boundaries (IDBs) were introduced into MoSe2 monolayers, 

behaving as metallic mid-gap states with signature for undergoing charge density wave 

transition at low temperature29, 34. In these monolayers, triangular domains are separated 

by IDBs forming domain-by-domain antiphases and fractional lattice translations. If 



two of these monolayers are stacked, randomly appeared IDBs in each layer should 

give rise to diverse stacking orders in a homo-bilayer; this provides a much improved 

platform for correlating stacking geometry with its electronic, optical or mechanical 

properties.  

Here, we successfully grew a MoSe2 homo-bilayer with randomly distributed IDBs 

through MBE, in which diverse unexpected low-symmetry stacking orders were 

discovered using aberration corrected transmission electron microscopy (AC-TEM)35. 

The details of these stacking orders were identified by comparing the experimental 

images with the simulated images based on the geometries revealed by density 

functional theory (DFT). In addition, DFT suggests stacking-dependent electronic 

structures, consistent with the domain-dependent spectra acquired using scanning 

tunneling spectroscopy (STS). Given the comparison of these results, we managed to 

build correlations between the observed geometries and measured electronic structures, 

and thus identified at least six low symmetric stacking orders that were not previously 

reported. A linear-scaling relation was established between interlayer distance and 

stacking stability, while exponential laws were found for the distance-dependent CQ-

VK or CQ-VΓ gaps between valence (V) and conduction (C) bands. Here, Q, K and Γ 

stand for three specific points in the Brillion zone, respectively. The competition of 

these two gaps leads to the band tail state observed in STS, as assessed to a stacking 

order with rather small interlayer distance. It is, to the best of our knowledge, the first 

time for the realization of large area, geometrically uniform and low symmetry stacking 

orders in vdW bilayers. Our work unveils the effects of ordered stacking on the 



electronic structures of TMD bilayers, which shed new light on tailoring the properties 

of 2D multilayers. 

 

Results 

Inversion domain boundaries in monolayer MoSe2. Figure 1a shows an atomically 

resolved annular dark field scanning transmission electron microscopy (ADF-STEM)35 

image of a MBE-grown MoSe2 monolayer. The fast Fourier transform (FFT, Figure 1a 

inset) of the image shows unusual lines connecting those diffraction spots. This line-

shaped feature is, most likely, a result of line defects in the monolayer, namely, 

inversion domain boundary (IDB), as denoted with blue ribbons in Figure 1b. These 

boundaries, densely embedded among adjacent MoSe2 domains, are highly symmetric, 

atomically sharp, tri-atom wide, and coherent with the hexagonal lattice. Geometric 

phase analysis (GPA) of Figure 1a, as shown in Fig S1a-e, suggests that the breaking 

of lattice periodic symmetry is highly concentrated at the boundaries of these triangular 

domains. In Figure 1b, blue stripes highlight the domain boundaries among gold-

colored continuous domains of monolayer MoSe2.  

A zoomed-in ADF-STEM image of the IDB was shown in the upper panel of Figure 

1c. Brighter spots indicate Se2 columns and darker ones for Mo atoms. An associated 

atomic model, illustrated with a 7×7 diamond-shape supercell (see Figure S2), was 

proposed for the boundary, as shown in Figure 1d. Both experiment and theory suggest 

that these triangular domains are terminated with Se2 zigzag edges, in others words, 

two adjacent domains share the same line of Se2 columns. The ADF image was 

simulated by QSTEM36 (lower panel of Figure 1c) based on the fully relaxed atomic 



structure from DFT. Figure 1e shows the comparison of the ADF intensity line profiles 

along the long sides of the red and green rectangular stripes (marked in Figure 1c) of 

the experimental and simulated images. Both profiles slightly lack mirror symmetry at 

the boundary, which is a result of the unintentional residual aberration37 

(Supplementary Figure S3) of the STEM. This asymmetry was also observed by 

previous reports30, 37 and does not obscure the structural determination of the IDBs. The 

good agreement of the comparison, together with the results from Lehtinen’s work30, 

convincingly supports the present atomic model of the Se2-core boundary.  

 

Figure 1.Inversion domain boundaries in MBE-grown monolayer MoSe2. (a) High-

resolution ADF-STEM image of monolayer MoSe2. The inset FFT shows the quasi-

periodicity of the ultra-narrow and long nanostructures. Scale bar: 2nm. (b) False 

colored domains and boundaries. These dense inversion domain boundaries connect 

with each other like wagon wheel. Scale bar: 2nm. (c) Experimental and simulated ADF 

images of the boundary. Scale bar: 0.5nm. (d) DFT relaxed atomic model of the 



boundary where orange balls represent Se atoms and cyan ones for Mo atoms. (e) ADF 

intensity profiles along the long sides of the rectangular stripes marked in c. (f) DFT 

calculated DOS and experimental STS spectra from the domain center and the boundary. 

The DOS data were acquired from the two Mo atoms marked in blue (boundary) and 

red (domain) balls shown in d. Here we focus on Mo atoms since S atoms only show 

negligible DOS around the pristine bandgap. 

Our model was further verified by comparing measured scanning tunneling spectra 

(STS) (upper panel of Figure 1f) with theoretical density of states (DOS) (lower panel 

of Figure 1f) acquired at the boundary edge (blue curves) and domain center (red 

curves). The boundary-edge spectrum yields a mid-gap state at around -0.41 V and 

another two peaks at -1.8 V and 0.6 V. Our theory indicates the mid-bandgap state at -

0.36 eV and other two peaks at -1.3 eV and 0.3 eV, highly consistent with those STS 

values. The domain-center spectrum shows a large bandgap slightly over 2.0 eV around 

the Fermi Level and the calculation unveils a bandgap of 1.5 eV, in accordance with 

the experiment in spite of the slightly underestimated bandgap by DFT. 

Diverse stacking orders in bilayer MoSe2. The IDB induces a mirror image domain 

at its other side. In addition, Figure 1d shows significant changes of Mo-Se bond lengths 

near the boundary, namely bond r2 shortens from 2.54 ± 0.01 Å of the r0 or r1 value to 

2.47 Å and bond r3 elongates to 2.63 Å. These changes, together with newly formed 

Mo-Mo bonds, enlarges the horizontal Se-Se distance from 5.67 Å (d0) to 6.16 Å (d1). 

As a result, the boundary induces a lateral shift of 0.49 Å to the horizontal Se-Se period 

of 5.67 Å. This uncommon lateral translation, together with the mirror-image domains 



separated by the boundaries, inevitably bring about diverse stacking configurations38, 

especially some low symmetric stacking orders, in a grown bilayer (as elucidated in the 

Supplementary word file). A key advance of this MBE MoSe2 homo-bilayers lies in 

that the same stacking order could be, ideally, kept in a relative large domain area, 

different from the lattice-mismatch-induced Moiré stacking orders as very recently 

revealed in hetero-bilayers, e.g. MoS2/WSe2 bilayer27.  

 

 

Figure 2. Schematic models and energetics of various stacking orders after in-plane 

translation. (a-f) Translational derivatives of the high-symmetry AA-0 and AB-0 

stacking orders where the position of the bottom layer is fixed for better visualization. 

(g) Vectors �⃗�𝑎 and 𝑏𝑏�⃗  is defined as the period of the upper layer’s horizontal/vertical 

sliding relative to the fixed bottom layer. The red points mark the intermediate positions 

of the relative sliding from the initial AA-0/AB-0. (h-i) Calculated total energy (red) 



and interlayer distance d (blue) as a function of horizontal or vertical sliding vectors, 

respectively, where the intermediate stacking orders are labeled.  

The lattice sliding caused by the network-like IDBs should, in principle, lead to 

infinite numbers of stacking orders assuming ridge MoSe2 layers. The actual number 

is, however, limited by the competition between the energy used to wrinkle the layer 

and the interlayer attraction between two laterally ‘shifted’ layers. To cover the 

possibility of stacking orders as complete as possible, we chose two high symmetry 

stacking orders, i.e. AB-0 and AA-0, as initial configurations. Structure AB-0 (Figure 

2a) is the normal 2H stacking order found in natural MoSe2 crystals where the two 

layers have inversion symmetry. Structure AA-0 (Figure 2f) is, however, the most 

unstable one among all considered stacking orders, in which both MoSe2 layers have 

exact mirror symmetry to a mirror plane between them. Sixteen stacking orders were 

thus constructed by sliding the top layer along four pathways initialized from AB-0 and 

AA-0 as illustrated in Figure 2a-f. Figure 2g indicates all exact positions of the initial, 

final and intermediate configurations in red dots for both horizontal (�⃗�𝑎) and vertical (𝑏𝑏�⃗ ) 
paths. Some of these configurations cannot stably hold their initial stacking positions 

and transform into other stacking orders. We, therefore, kept their relatively lateral 

positons and obtained their optimized interlayer distances and total energies.  

Figures 2h and 2i plot the distance-energy relation of these 16 considered 

configurations. Detailed geometries and exact values of the distances and energies are 

available in Supplementary Figure S4 and Table S1. Interlayer distance d varies from 

3.15 Å to 3.76 Å and the energy differs by up to 79 meV with a nearly linear dependence 



on the interlayer distance (See Supplementary Figure S5). This dependence, more 

comprehensive than the qualitative relation found in twisted MoS2
23, is a result of the 

subtle balance between interlayer vdW attractions and Pauli/Coulomb repulsions, 

especially the repulsion between interlayer Se pz orbitals. For example, Mo and Se 

atoms of the top layer are exactly over those corresponding atoms of the bottom layer 

in configuration AA-0 (Figure 2f), leading to the strongest repulsion between the 

orbitals of interlayer Se atoms and thus the largest interlayer distance d and the highest 

total energy (Figure 2h upper panel). For AB-0 bilayers (Figure 2a), Se atoms of the 

top layer sit over the hollow sites of Se triangles of the bottom layer, giving rise to a 

substantially shortened distance and much lowered total energy (Figure 2h lower panel). 

An exception was found for AA-V1 (Figure 2i) that its energy is roughly 25 meV higher 

than AB-V1 but they share nearly identical interlayer distances. These differences of 

interlayer distance were believed observable as various apparent heights in STM 

measurements being discussed in Supplementary Figure S8. All these results also imply 

that different stacking orders may affect electronic structures as we elucidated later. 



 

Figure 3. Diverse atomic structure of bilayer domains. (a) Experimental ADF image 

of a typically continuous and uniform bilayer MoSe2. The triangles in the same color 

indicate these domains are in the same stacking order. Scale bar: 2nm. (b) Atomic 

model of diverse bilayer domains with stacking orders induced by the intrinsic IDBs in 

monolayer. (c-r) Simulated ADF images from different bilayer stacking orders. The 

atomic structures of each domain in a are assigned by the comparison of experimental 

and simulated ADF images. Eight stacking orders (marked with symbol *) were 

observable in the experimental ADF images, and six of them can be found in a. 

 

Figure 3a shows an atomically resolved ADF image of bilayer MBE-MoSe2, in which 

different triangular domains are observable, with diverse topographies resulted from 

the vast IDBs. As previously reported38, IDBs exist in both MoSe2 layers. We show a 



sketch in Figure 3b to illustrate the origin of the diversity, which is comprised of two 

MoSe2 layers with IDBs in each of them, yielding naturally diverse ordered stacking 

domains. More details are available in the Supplementary word file. The FFT pattern 

(Figure 3a inset) shows no rotation angle between the upper and bottom layers. This 

result, together with the non-uniform and non-periodic domains, rules out the 

possibility of these patterns being Moiré pattern, but supports the fact that they are 

relevant with various stacking orders. Simulated ADF images of 16 stacking orders and 

their corresponding atomic structures are shown in Figure 3c to 3r. By comparing them 

with the experimental images, eight models (marked with symbol *) among the total 16 

were assessed experimentally observable, while six of them (shown in Figure 3c, 3i, 3k, 

3p, 3q and 3r) were available in the area shown in Figure 3a and the other two were 

shown in Supplementary Figure S6. 

The most stable stacking order AB-0 (Figure 3c) was found the most common triangle 

domain in our ADF images. The second most stable one, AA-V3 (Figure 3r), is also 

frequently found, which is consistent with the order of thermal stability of these 

stacking orders. These two most stable stacking orders correspond to those bilayer 

configurations in the well-known 2H and 3R phases, respectively. As we discussed 

earlier, AA-V1 (Fig. 3p) is a fairly less stable, low symmetrical and fractional 

translation induced stacking structure. It was, however, also found in our experimental 

images (Figure 3a), owing to the confinement of the IDBs. In addition to AA-V1, other 

four configurations, shown in Fig. 3d, 3i, 3k and 3q, were theoretically found unstable 

in pristine bilayers but were experimentally observed in STEM images. It is, to the best 



of our knowledge, the first time that uniform, low symmetrical and fractional translation 

induced stacking orders are prepared in a large domain of homogeneous bilayer TMDs, 

essentially different from the various stacking orders recently observed in Moiré 

patterns of hetero-bilayer TMDs26, 27. 

 

 

Figure 4. Distinctive electronic structures of the diverse bilayer domains. (a) DFT 

calculated LDOS of several typical bilayer stacking structures. The valence band edge 

is dependent on the stacking order. (b) Experimental STS spectra measured at different 

domains. The different band tail states should arise from the diverse stacking orders of 

bilayer domains. The inset is a STM image of the corresponding domains taken at a 

sample bias voltage of -0.59 V and set point current of 96 pA. (c-d) The band structures 

of pristine bilayer in stacking orders AB-V4 and AA-V3. (e) Calculated CQ-VK (black) 

and CQ-VΓ (red) gaps as a function of interlayer distance for different stacking orders. 

(f) Side- and top views of the partial charge densities (wavefunction distributions) of 

the states at VK and VΓ of AA-0. The choice of AA-0 is for clarity only and the shapes 

of wavefunction for both states are essentially the same for all stacking configurations. 

 



Electronic structures of the diverse bilayer domains. Various low-symmetry 

stacking orders in large domains, a unique feature of this work, may induce novel 

electronic structures that could be feasibly used in multilayer or heterostructure devices 

for potential applications. Visualized wavefunctions indicate that most of the valence 

and conduction states are comprised of Mo d-states and a small portion of them is 

contributed from Se p-states. We thus plot the theoretically local density of states 

(LDOS) of Mo d- and Se p-states of three representative stacking orders, namely AB-

0, AB-V4 and AA-V3 in Figure 4a. Here, AA-V3 and AB-0 are the most stable and 

experimentally observable AA and AB stacking configurations, respectively, while 

AB-V4 is unstable in pristine bilayers but could be stabilized by IDBs in MBE-grown 

bilayers. The intensity of LDOSs of Mo d-states is substantially larger than that of Se 

p-states. The energetic position of the conduction band edge of either Mo d- or Se p-

states is nearly unchanged regardless of stacking orders except slight shifts within 70 

meV, however, that of the valence band edge varies by at least 110 meV, as noted by 

the arrow in Figure 4a. There are two categories of Mo valence band edges, namely a 

normal-appearance one (red curve and black curve in Figure 4a) and the other one with 

obvious band tail state (olive curves). The LDOS of configuration AB-V4 is a 

representative normal-appearance one. It has a bandgap of roughly 1.21 eV and the 

pronounced peak of valence band splits into two peaks with a 90 meV separation. We 

thus denote this category as ``Double-Peak (DP)”. For AA-V3 (olive), a band tail is 

explicitly observable, which reduces the band gap from 1.21 eV to 1.03 eV. ``Band-

Tail (BT)” is the tag of this category. In terms of the LDOSs of Se p-states, their valence 



band edges are even energetically lower than those of Mo d-states, leading to an 

“apparent” gap of 1.25 eV. The low intensity of this category gives rise to smaller 

conductance in STS measurements. We thus call this category ``Low-Conductance 

(LC)”.  

All these features found in those LDOS plots were well obtained in STS 

experiments, as shown in Figure 4b. Those STS spectra are highly reproducible and 

exhibit consistent features within one domain, as show in Supplementary Figure S7. 

The measured bandgaps are 1.49 eV, 1.40 eV and 1.57 eV, respectively, comparable to 

those theoretical values. It is fairly challenging to identify the local stacking 

configuration of each domain solely based on STM images, as we illustrated in 

Supplementary Figure S9. It also remains difficult even with the inputs of STS spectra 

since a few stacking configurations share the same feature of STS spectra. However, 

we do be able to classify them into the three categories found in the LDOS calculations. 

The olive spectra showing a band tail feature in Fig. 4b was assigned to category BT, 

in which AA-V3 is a representative configuration, consistent with the fact that the 

theoretically stable stacking AA-V3 was frequently obtained in experimental ADF 

images. Spectra DP1 and DP2 showing double-peak features were thus assigned into 

category DP and spectra LC1 and LC2 correspond to category LC.  

The appearance of LDOSs depends on stacking orders. We, therefore, plot the 

band structures of AB-V4 and AA-V3, two novel stacking configurations, in Figure 4c 

and 4d, respectively. It shows that the double-peak feature of the valence band of AB-

V4 is originated from the VBM at K and the 130-meV-lower valence state at Γ. In AA-



V3, the VBM was, however, found at Γ. This flatter band is nearly degenerated with 

the 59-meV-lower valence state at K. This band alignment results in the band tail state. 

It would be interesting to unveil the correlation between the VBM location and stacking 

order. Figure 4e shows the K-Q (blue) and Γ-Q (red) gaps as a function of the interlayer 

distance for all considered stacking orders. Both gaps increase in a nearly exponential 

manner with respect to interlayer distance d while the Γ-Q gap goes faster than the K-

Q gap. The VB is primarily comprised of Mo dz2 and Se-pz orbitals at the Γ point while 

it is mainly confined in the Mo plane at the K point (Figure 4f). The energy level of VB 

at Γ, therefore, changes more speedily than that at K when the interlayer distance varies. 

The competition of VB states at Γ and K results in the VBM locating at the Γ point for 

stacking orders with smaller interlayer distances, e.g. AB-0 and AA-V3. In stacking 

orders with the smallest interlayer distance, i.e. AA-V3, the most strongly overlapped 

Se pz orbitals from both layers give rise to higher energy levels owing to Coulomb 

repulsion; this is thus observed as the band tail state, a fingerprint for smaller-interlayer-

distance stacking orders, in STS measurements. 

 

Discussion  

One of the key advances of this work lies in the prediction and assessment of the 

homogeneous bilayer domains with diverse certain stacking orders, which is essentially 

resulted from the network-like IDBs. The derivative lattice sliding caused by IDBs, 

therefore, participates in the competition between the layer-layer attraction (over 200 

meV) and orbital-orbital repulsion induced by deviation from the most favored 



configuration (up to 80 meV). In light of this, apart from the stable AB-0 and AA-V3 

where interlayer attraction dominates, those configurations predicted not even meta-

stable in pristine bilayer, e.g. AB-V4 and AA-V2 are likely accessible in our bilayer. 

We managed to observe eight stacking orders in our AC-TEM images. All of them were 

identified to be among the totally 16 DFT predicted ones. We thus expect that the rest 

configuration could be, most likely, obtained by finely tuning the density of IDBs as 

we infer the length of the lattice sliding is modifiable by the density of IDBs. The 

established linear relation between the interlayer distance and the difference of stacking 

energy suggests a fitted slope of 0.12 eV/Å. It was also found that different stacking 

orders do not appreciably change the conduction band, but gives rise to a competitive 

energy alignment of valence states at both the Γ and K points of the Brillouin Zone. 

These observed stacking orders yield a plenty of relative positions in energy for the 

valence states at Γ and K, showing stacking dependent bandgaps and valence band tail 

states in the measured STS. This work illustrates a successful demonstration for 

investigating of the stacking-bandgap diversity in 2D layered materials. In addition, it 

extends the family of uniform large-area novel stacking orders in bilayer TMDs and 

develops the knowledge of stacking order in modifying their electronic structures. All 

of these facts may benefit in band engineering of 2D electronics.  



Methods 

Sample preparation and STM/STS. Monolayer and bilayer MoSe2 samples were 

prepared through molecular beam epitaxy on HOPG substrate at 450 ℃ in an Omicron 

UHV system. The fluxes of Mo and Se were generated from an e-beam evaporator and 

a Knudsen cell respectively and the film deposition was carried out under a Se-rich 

environment with a flux ratio as high as 15 between Se and Mo. Freshly cleaved 

substrate was degassed overnight at 550 ℃  in vacuum before sample growth. 

Reflection high-energy electron diffraction (RHEED) was employed for in situ surface 

analysis. STM measurements were carried out at 77 K using the constant current mode 

in a separated low-temperature Unisoku STM system. Before being taken out from the 

vacuum system, the sample surface was capped by an amorphous Se layer deposited at 

the room temperature, which was desorbed by annealing prior to the STM experiments. 

The latter was reflected by both the recovery of the streaky RHEED pattern and the 

clean and flat surface morphology revealed by STM examinations. Differential 

conductance spectra were taken at 77 K using a lock-in amplifier with a modulation 

voltage 15 mV and frequency 985 Hz. Each STS curve shown represented an average 

of 50 measurements at the same positions. 

 

TEM characterization and image simulation. Atomically resolved ADF-STEM 

imaging was conducted inside an aberration corrected TEM (FEI Titan ChemiSTEM) 

at 200kV. A probe current 60 pA was used for the ADF imaging (with a detector 

acceptance angle β~50-200 mrad) to avoid beam irradiation damage. The convergence 

angle (α) of the incident electron beam was set to 21 mrad. The probe corrector help 

lower down the aberration Cs to 2 μm and atomic resolution ADF -STEM imaging is 

accessible under such experimental conditions. ADF-STEM image simulations were 

done with computer package QSTEM36 under the same parameter settings as the 

experimental conditions such as Cs , α, β besides the probe size ~1.0Å, and residual 

astigmatism A2 was set to 100 nm to match the experimental imaging of the inversion 

domain boundaries.  

 



DFT calculations.  

Density functional theory calculations were performed using the generalized gradient 

approximation39 for the exchange-correlation potential, the projector augmented wave 

method40, 41 and a plane-wave basis set as implemented in the Vienna ab-initio 

simulation package (VASP) 42. Van der Waals interactions were considered at the vdW-

DF level43, 44 with the optB86b45 exchange functional, which achieves accurate results 

in calculating structural properties of two dimensional materials19, 20, 22, 46, 47. A 7×7 

supercell was adopted to model the IDBs and the domain areas among IDBs in MoSe2 

monolayer. Sixteen kinds of bilayer stacking configurations, modeled by 1×1 unit cell, 

were investigated to find out the variant properties deduced by the structure 

discontinuity. Kinetic energy cut-offs of 400 eV and 700 eV were adopted for the 

calculations of MoSe2 monolayer with IDBs and the variant stacking orders in bilayer 

MoSe2, respectively. Two k-meshes of 4 × 4 × 1 and 13 × 13 × 1 were used to calculate 

the first Brillouin zone of the 7×7 supercell and the 1×1 unit cell, respectively. The 

lattice parameters and cell volumes of all the configurations were fully optimized and 

all atoms were allowed to relax until the residual force per atom was less than 0.001 eV 

Å−1. 

 

ASSOCIATED CONTENT 

Supporting Information Available: Figures S1-9. Structure and strain analysis of 
inversion domain boundaries. Quantitative ADF image simulation of monolayer MoSe2 
and bilayer stacking configurations. Different STS spectra from within one domain in 
bilayer MoSe2. This information is available free of charge via the Internet at 
http://pubs.acs.org 

 

AUTHOR INFORMATION 

Corresponding Authors 

* Correspondence and request for materials should be addressed to W.J. (wji@ruc.edu.cn), C.J. 

(chhjin@zju.edu.cn) or M.X. (mhxie@hku.hk). 

Author contributions 

J.H., C.W and H.L. contributed equally to this work. C.J., M.X. and W.J. conceived this 
research. J.H. and C.J. performed AC-TEM measurement and image simulation; H.L., 



J.C. and M.X. grown the sample and measured the STS data with help from G. W. and 
J.J.; C.W. and W.J. did all theoretical calculations. C.W., J.H, H.L., M.X., C.J. and W.J. 
wrote the manuscript and all authors comment on it. 
Notes  
The authors declare no competing financial interests.  

 

ACKNOWLEDGEMENTS 

This work was financially supported by the National Science Foundation of China 

under grant Nos. 51772265, 11274380, 91433103, 51472215, 11622437, 61674171 , 

61721005 and 51222202, the National Basic Research Program of China under grant 

Nos. 2014CB932500 and No. 2015CB921004, the 111 project (No. B16042), the 

Fundamental Research Funds for the Central Universities under grant Nos. 

16XNLQ01 (RUC) and the State Key Laboratory of Clean Energy Utilization. M.X. 

acknowledges the support by a Collaborative Research Fund (HKU9/CRF/13G) of the 

Research Grant Council, Hong Kong Special Administrative Region. J.Y. 

acknowledges the EPSRC (UK) funding EP/G070474/1 and supports from Pao Yu-

Kong International Foundation for a Chair Professorship in ZJU. This work made use 

of the resources of the Center of Electron Microscopy of Zhejiang University. 

Calculations were performed at the Physics Laboratory for High-Performance 

Computing of Renmin University of China and at the Shanghai Supercomputer 

Center. 

 



Author ORCID information：J. H.: 0000-0002-6406-1780, C.W.: 0000-0002-5297-

9586, H.L.：0000-0002-6656-2669, M.X.: 0000-0002-5017-3810, C. J.: 0000-0001-

8845-5664, W.J.: 0000-0001-5249-6624. 

List of abbreviations: Van der Waals (vdW), two-dimensional (2D), Molecular beam 

epitaxy (MBE), transition metal dichalcogenides (TMDs), inversion domain boundaries 

(IDBs), aberration corrected transmission electron microscopy (AC-TEM), density 

functional theory (DFT), scanning tunneling spectroscopy (STS), atomically resolved 

annular dark field scanning transmission electron microscopy (ADF-STEM), fast 

Fourier transform (FFT), Geometric phase analysis (GPA), Reflection high-energy 

electron diffraction (RHEED), Quantitative TEM/STEM Simulations (QSTEM), local 

density of states (LDOS), ‘band-tail’ (BT), ‘double-peak’ (DP),  ‘relative low 

conductance’ (LC); (UHV) ultra-high vacuum; (HOPG) highly oriented pyrolytic 

graphite. 

REFERENCES 

 

1. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; 

Katsnelson, M. I.; Eaves, L.; Morozov, S. V., et al. Science 2012, 335, (6071), 947. 

2. Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. Science 2014, 344, (6191), 1489. 

3. Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Nat. Nanotechnol. 2014, 

9, (5), 372-377. 

4. Withers, F.; Del Pozo-Zamudio, O.; Schwarz, S.; Dufferwiel, S.; Walker, P. M.; Godde, T.; Rooney, A. 

P.; Gholinia, A.; Woods, C. R.; Blake, P., et al. Nano Lett. 2015, 15, (12), 8223-8228. 

5. RadisavljevicB; RadenovicA; BrivioJ; GiacomettiV; KisA. Nat. Nanotechnol. 2011, 6, (3), 147-150. 

6. Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W. Nat. Commun. 2014, 5, 4475. 

7. Hu, P.; Wang, L.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.; Wen, Z.; Idrobo, J. C.; Miyamoto, Y.; 

Geohegan, D. B., et al. Nano Lett. 2013, 13, (4), 1649-1654. 

8. Tamalampudi, S. R.; Lu, Y.-Y.; Kumar U, R.; Sankar, R.; Liao, C.-D.; Moorthy B, K.; Cheng, C.-H.; Chou, 

F. C.; Chen, Y.-T. Nano Lett. 2014, 14, (5), 2800-2806. 



9. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-

Gomez, A. Nano Lett. 2014, 14, (6), 3347-3352. 

10. Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Nat. Photon. 2014, 8, (12), 899-907. 

11. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Nat. Nanotechnol. 

2014, 9, (10), 780-793. 

12. Chen, Y.; Jiang, G.; Chen, S.; Guo, Z.; Yu, X.; Zhao, C.; Zhang, H.; Bao, Q.; Wen, S.; Tang, D., et al. Opt. 

Express 2015, 23, (10), 12823-12833. 

13. Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Nat. 

Nanotechnol. 2013, 8, (11), 826-830. 

14. Sup Choi, M.; Lee, G.-H.; Yu, Y.-J.; Lee, D.-Y.; Hwan Lee, S.; Kim, P.; Hone, J.; Jong Yoo, W. Nat. 

Commun. 2013, 4, 1624. 

15. Tsai, D.-S.; Liu, K.-K.; Lien, D.-H.; Tsai, M.-L.; Kang, C.-F.; Lin, C.-A.; Li, L.-J.; He, J.-H. ACS Nano 2013, 

7, (5), 3905-3911. 

16. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. ACS Nano 2014, 8, (2), 1102-

1120. 

17. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phy. Rev. Lett. 2010, 105, (13), 136805. 

18. Jia, Q.; Kong, X.; Qiao, J.; Ji, W. Sci. China Ser. G. 2016, 59, (9), 696811. 

19. Hu, Z.-X.; Kong, X.; Qiao, J.; Normand, B.; Ji, W. Nanoscale 2016, 8, (5), 2740-2750. 

20. Zhao, Y.; Qiao, J.; Yu, P.; Hu, Z.; Lin, Z.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Adv Mater 2016, 28, (12), 

2399-2407. 

21. Wang, Y.; Li, L.; Yao, W.; Song, S.; Sun, J. T.; Pan, J.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y.-Q., et al. 

Nano Lett. 2015, 15, (6), 4013-4018. 

22. Zhao, Y.; Qiao, J.; Yu, Z.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X.; Ji, W. Adv. Mater. 2017, 

29, (5), 1604230. 

23. Liu, K.; Zhang, L.; Cao, T.; Jin, C.; Qiu, D.; Zhou, Q.; Zettl, A.; Yang, P.; Louie, S. G.; Wang, F. Nat. 

Commun. 2014, 5, 4966. 

24. Wu, J.-B.; Hu, Z.-X.; Zhang, X.; Han, W.-P.; Lu, Y.; Shi, W.; Qiao, X.-F.; Ijiäs, M.; Milana, S.; Ji, W., et al. 

ACS Nano 2015, 9, (7), 7440-7449. 

25. Yeh, P.-C.; Jin, W.; Zaki, N.; Kunstmann, J.; Chenet, D.; Arefe, G.; Sadowski, J. T.; Dadap, J. I.; Sutter, 

P.; Hone, J., et al. Nano Lett. 2016, 16, (2), 953-959. 

26. Komsa, H.-P.; Krasheninnikov, A. V. Phys. Rev. B 2013, 88, (8), 085318. 

27. Zhang, C.; Chuu, C.-P.; Ren, X.; Li, M.-Y.; Li, L.-J.; Jin, C.; Chou, M.-Y.; Shih, C.-K. Sci. Adv. 2017, 3, (1), 

1601459. 

28. He, J.; Hummer, K.; Franchini, C. Phys. Rev. B 2014, 89, (7), 075409. 

29. Liu, H.; Jiao, L.; Yang, F.; Cai, Y.; Wu, X.; Ho, W.; Gao, C.; Jia, J.; Wang, N.; Fan, H., et al. Phy. Rev. Lett. 

2014, 113, (6), 066105. 

30. Lehtinen, O.; Komsa, H.-P.; Pulkin, A.; Whitwick, M. B.; Chen, M.-W.; Lehnert, T.; Mohn, M. J.; Yazyev, 

O. V.; Kis, A.; Kaiser, U., et al. ACS Nano 2015, 9, (3), 3274-3283. 

31. Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; 

Besenbacher, F. Phy. Rev. Lett. 2000, 84, (5), 951-954. 

32. Lin, J.; Pantelides, S. T.; Zhou, W. ACS Nano 2015, 9, (5), 5189-5197. 

33. Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Nat. Chem, 

2016, 8, (6), 563-568. 



34. Barja, S.; Wickenburg, S.; Liu, Z.-F.; Zhang, Y.; Ryu, H.; Ugeda, M. M.; Hussain, Z.; Shen, Z.-X.; Mo, 

S.-K.; Wong, E., et al. Nat. Phys. 2016, 12, (8), 751-756. 

35. Pennycook, S. J. et al. Scanning Transmission Electron Microscopy-Imaging and Analysis (Springer, 

2011) 

36. Koch, C. T., Determination of core structure periodicity and point defect density along dislocations. 

PhD thesis (Arizona State Univ., 2002). 

37. Lehtinen, O.; Geiger, D.; Lee, Z.; Whitwick, M. B.; Chen, M. W.; Kis, A.; Kaiser, U. Ultramicroscopy 

2015, 151, (7), 130-135. 

38. Liu, H.; Zheng, H.; Yang, F.; Jiao, L.; Chen, J.; Ho, W.; Gao, C.; Jia, J.; Xie, M. ACS Nano 2015, 9, (6), 

6619-25. 

39. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phy. Rev. Lett. 1996, 77, (18), 3865-3868. 

40. Blöchl, P. E. Phys. Rev. B 1994, 50, (24), 17953-17979. 

41. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, (3), 1758-1775. 

42. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, (16), 11169-11186. 

43. Lee, K.; Murray, É. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Phys. Rev. B 2010, 82, (8), 081101. 

44. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Phy. Rev. Lett. 2004, 92, (24), 

246401. 

45. Klimeš, J.; Bowler, D. R.; Michaelides, A. Phys. Rev. B 2011, 83, (19), 195131. 

46. Hong, J.; Hu, Z.; Probert, M.; Li, K.; Lv, D.; Yang, X.; Gu, L.; Mao, N.; Feng, Q.; Xie, L., et al. Nat. 

Commun. 2015, 6, 6293. 

47. Jingsi, Q.; Linwei, Z.; Wei, J. Chinese Physics B 2017, 26, (3), 036803. 

 

 

  



Inversion Domain Boundary Induced Stacking 

and Bandstructure Diversity in Bilayer MoSe2 

Jinhua Hong
†, ‡, §, Cong Wang

†, §, Hongjun Liu
‖, #, §, Xibiao Ren

‡
, Jinglei Chen

‖
, 

Guanyong Wang
††
, Jinfeng Jia

††
, Maohai Xie

‖, *, Chuanhong Jin
‡, *, Wei Ji

†, *,  

Jun Yuan
‡,⊥, Ze Zhang

‡
 

†Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano 

Devices, Department of Physics, Renmin University of China, Beijing 100872, China 

‡State Key Laboratory of Silicon Materials, School of Materials Science and 

Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China. 

‖Physics Department, The University of Hong Kong, Pokfulam Road, Hong Kong,  

††Key Laboratory of Artificial Structures and Quantum Control (Ministry of 

Education), Department of Physics and Astronomy, Shanghai Jiaotong University, 

800 Dongchuan Road, Shanghai 200240, China 

 ⊥Department of Physics, University of York, Heslington, York, YO10 5DD, United 

Kingdom 

#Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, 

China. 

§ These authors contributed equally to this work. 

Correspondence and request for materials should be addressed to W.J. 

(wji@ruc.edu.cn), C.J. (chhjin@zju.edu.cn) or M.X. (mhxie@hku.hk). 

 

 



 
 
Supplementary Figure S1. Inversion domain boundaries in MBE monolayer 

MoSe2. (a)High-resolution ADF-STEM image of monolayer MoSe2. Scale bar: 2 nm. 
The x and y directions were defined by the white axes, representing the zigzag and 
armchair directions of the MoSe2. (b-e) GPA analysis of the lattice strain εxx, εxy , εyy and 
lattice rotation-xy to reveal the lattice deformation or discontinuity. The breaking of 
lattice periodic symmetry is found to be highly concentrated within the boundaries of 
the triangular domains. 
  



 
 
Supplementary Figure S2. Top view of monolayer MoSe2 with domain boundaries 

as modeled in a 7×7 diamond-shape supercell. As model with same kind of 
boundaries is unachievable without threefold rotational symmetry in the MoSe2 
hexagonal lattice, the ribbon model is not suitable. To confirm the atomic structure of 
inversion domain boundaries in monolayer MoSe2, a 7×7 diamond-shape supercell 
model was proposed. Further simulation and theoretically calculated density of states 
was based on this model. 
  



 

 

Supplementary Figure S3. ADF-STEM imaging simulation of monolayer MoSe2. 

(a) The spatial distribution of the intensity of the focused electron probe in STEM 
imaging with aberrations such as 3-fold astigmatism A2, 4-fold astigmatism A3 and 
three lobe aberration D4. These aberrations in the electron probe will make the beam 
deviate from the standard Gaussian intensity distribution, and turn into extended 
distribution with symmetric ‘tails’. The color bar shows the scale of the intensity of the 
beam. (b) Simulated ADF-STEM images under residual aberrations. The ADF-STEM 
imaging intensity follows IADF=Iprobe(χ)⊗Ulattice, which is a convolution of the electron 
probe Iprobe (aberration function χ is caused by unintentional residual aberration A2, A3, 
and relative phase angle φ) and the periodic lattice potential field Ulattice (object function) 
of the crystal sample. For A2-aberrated beam with different phase angles, the atomic 
model of MoSe2 monolayer is fixed to show the effect of aberrations on the ADF 
imaging. The asymmetric ADF intensity at both sides of the boundary in Figure1 is, as 
revealed by detailed ADF-STEM imaging simulations, a result of the unintentional 
residual aberration.  



 

Supplementary Figure S4. Top view structure and ADF-STEM simulation images 

of the calculated stacking orders of bilayer MoSe2. Stacking orders were constructed 
by sliding the top layer along four pathways initialized from the two configurations 
AA-0 and AB-0. The stacking orders with their names highlighted in red were 
theoretically found unstable in pristine MoSe2 bilayers. They cannot hold their initial 
stacking positions and transform into other stacking orders after relaxation in pristine 
bilayers. Those stacking orders, marked with symbol *, were observable in 
experimental ADF-STEM images, including several unstable stacking orders in pristine 
bilayers, such as AA-V1 and AB-V4. In MBE-grown bilayers, they were stabilized by 
the confinement of the IDBs and thus can be experimentally observed.   

  



 
Supplementary Figure S5. The calculated relative energy as a function of the 

interlayer distance d for different stacking orders. A linear relation was revealed 
between interlayer distance and stacking energy, which suggests a fitted slope of 0.12 
eV/Å. The only exception is stacking configuration AA-V1. Its interlayer distance is 
close to that of AB-V1, however, its energy is 25 meV higher than that of AB-V1. We 
attribute the higher energy to the stronger repulsion between interlayer Se-pz orbitals in 
AA-V1. As for AB-V1, top-layer Se atoms reside at the bridge site of two bottom-layer 
Se atoms, substantially lowering the repulsion energy. Stacking order AB-V4 is a 
typical unstable configuration with large interlayer distance, high relative energy and 
low symmetry. With the existence of IDBs, AB-V4 can be formed in MBE bilayer 
MoSe2, whose statistical count of 7 is only less than that of most stable AB-0. 
 
  



   

 
 

Supplementary Figure S6. Experimental ADF images associated with their 

assigned atomic models of a typical continuous and uniform bilayer MoSe2. The 
triangles in the same color indicate the same stacking orders. Scale bars: 2nm. Eight 
stacking orders can be identified by comparing the simulated images with experimental 
observations. Configuration AB-0, the most stable stacking order theoretically revealed, 
corresponds to the most commonly observed domains in experimental statistics, as 
labeled with red triangles. Two configurations not available in Fig. 3a were shown in 
(b) marked with cyan (AA-H2) and light yellow (AB-H1) triangles.  

 



 
Supplementary Figure S7. Experimental STS spectra of defect-free area inside 

triangular domain. The experimental spectra are highly reproducible and show little 
change within one triangular domain, hence the stacking orders are responsible for the 
diversity of spectra. 
 

  



 

 

Supplementary Figure S8. Apparent heights at the centers of the triangle 

domains in the STM image measured by line profiling. The height is offset with 
respect to that of the very left domain marked by ‘0’. We measured the relative 
height of each domain (reference zero) and labeled their values in the figure. In 
certain cases, we even found apparent height difference larger than that enumerated 
in table S1. We noticed a tendency that the smaller the triangular domain size, the 
brighter the contrast. Thus, we infer the high intensities of the IDB defects in the 
image may have affected the contrast of the enclosed domains, which partially 
reduces the quantitative accuracy of height measurements.  
 

  



 

 

Supplementary Figure S9. Simulated STM images of different stacking orders. 

(a) AB-0. (b) AB-V4. (c)AB-V3. The bias voltage for imaging the valence band 
was chosen in the simulation. The images show that different configurations do not 
generate significant change in STM topology images, which is, most likely, because 
the states of top surface Se atoms dominate the appearance of topographic images. 
These results confirm the difficulty of distinguishing domains with different 
stacking orders in STM measurements. These IDB defects, showing strong metallic 
feature, significantly affect the contrast of STM images, making it difficult for one 
to pick up the minor variations (if any) of STM contrasts for different defect-free 
stacking domains..  

 
  



Supplementary Table S1 

The relative total energy ∆𝐸𝐸0 (meV, with respect to the most stable stacking order AB-
0), relaxation stability (whether the stacking order can stably hold their initial stacking 
position after relaxation), statistic number of stacking orders found in experimental 
ADF images by the comparison of experiments and simulations, the position of VBM 
(Γ or K), interband transitions CQ-VK and CQ-𝑉𝑉Γ (eV), the interlayer distance d-Se1-
Se2 (Å). Figure 2g-h and 4f are based on the data below. 
 

Stacking ∆𝐸𝐸0 Stability Statistics VBM CQ-VK CQ-𝑉𝑉Γ d-Se1-Se2 

AB-0 0 y 11 G 1.28  1.24  3.20 

AB-H1 44 n 2 K 1.32  1.40  3.48 

AB-H2 54 n 0 K 1.34  1.47  3.62 

AB-V1 28 y 0 K 1.31  1.33  3.34 

AB-V2 26 y 0 G 1.32 1.31 3.30 

AB-V3 22 y 0 G 1.32  1.31  3.27 

AB-V4 54 n 7 K 1.34  1.42  3.52 

AB-V5 75 y 0 K 1.35  1.51  3.76 

AB-V6 65 n 1 K 1.34  1.47  3.64 

AB-V7 25 n 0 K 1.30  1.33  3.34 

AA-0 79 y 0 K 1.32  1.50  3.76 

AA-H1 37 n 0 K 1.32  1.37  3.41 

AA-H2 20 y 4 K 1.31  1.32  3.29 

AA-V1 53 n 2 K 1.33  1.47  3.34 

AA-V2 33 n 5 K 1.32  1.35  3.35 
AA-V3 3 y 4 G 1.27  1.21  3.15 
 

 


