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Simultaneous Bayesian recognition of locomotion

and gait phases with wearable sensors
Uriel Martinez-Hernandez, Imran Mahmood and Abbas A. Dehghani-Sanij

Abstract—Recognition of movement is a crucial process to
assist humans in activities of daily living such as walking. In
this work, a high-level method for simultaneous recognition of
locomotion and gait phases using wearable sensors is presented.
A Bayesian formulation is employed to iteratively accumulate
evidence to reduce uncertainty, and to improve the recognition
accuracy. This process uses a sequential analysis method to
autonomously make decisions, whenever the recognition system
perceives that there is enough evidence accumulated. We use data
from three wearable sensors, attached to the thigh, shank and
foot of healthy humans. Level-ground walking, ramp ascent and
descent activities are used for data collection and recognition.

In addition, an approach for segmentation of the gait cycle for
recognition of stance and swing phases is presented. Validation
results show that the simultaneous Bayesian recognition method
is capable to recognise walking activities and gait phases with
mean accuracies of 99.87% and 99.20%. This process requires a
mean of 25 and 13 sensor samples to make a decision for locomo-
tion mode and gait phases respectively. The recognition process
is analysed using different levels of confidence to show that our
method is highly accurate, fast and adaptable to specific require-
ments of accuracy and speed. Overall, the simultaneous Bayesian
recognition method demonstrates its benefits for recognition using
wearable sensors, which can be employed to provide reliable
assistance to humans in their walking activities.

Index Terms—Locomotion mode recognition, gait phase
recognition, Bayesian perception, wearable sensors

I. INTRODUCTION

LOCOMOTION is the capability that not only distin-

guishes humans from animals, but also it provides hu-

mans with independence of mobility to perform activities of

daily living (ADLs) [1]. Although human locomotion activities

such as walking and running are normally taken as granted,

they require complex movements that are commonly affected

in people that have reached the old age [2]. Advances in sensor

technology have made it possible to develop wearable devices

to assist humans in locomotion activities [3], [4], [5], [6].

However, intelligent computational methods for perception of

human movements still represent a challenge to achieve robust

and reliable control of assistive devices.

In this work, we develop a high-level method for

simultaneous recognition of locomotion mode and gait phase

(stance and swing phases) for various walking activities.
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This recognition approach uses a Bayesian formulation that,

together with a sequential analysis method, integrates angular

velocity measurements from multiple wearable sensors. Our

probabilistic method permits to accumulate evidence while

dealing with uncertainty for reliable perception and decision-

making processes. The accuracy of our method has been

demonstrated in previous works, where perception and robot

control were investigated using various stimuli [7], [8].

Our high-level recognition method is integrated in a layered

architecture composed of physical and cognitive layers, which

interact between them and the human wearing the sensors.

This interaction in multi-layer architectures is required for the

development of reliable perception and intelligent systems [9],

[10]. These layers implement our method with three processes;

sensation, perception and decision. On the one hand, the

physical layer collects and prepares sensor data for cognitive

evaluations, e.g., recognition of locomotion mode. On the

other hand, accumulation of evidence, perception and decision

processes are performed in the cognitive layer.

Angular velocity measurements are obtained from three

inertial measurement units (IMU) attached to the thigh, shank

and foot of healthy participants. These IMU sensors are

synchronised with a workstation for a systematic data col-

lection in real-time from three locomotion activities; level-

ground walking, ramp ascent and ramp descent. The data from

these walking activities are grouped into datasets for training

and testing our method with experiments for recognition of

locomotion mode and gait phases. These experiments are

implemented to validate the performance of our probabilistic

method. First, recognition accuracy and decision time for

the three locomotion modes are analysed, where our method

demonstrates to be fast and accurate. Second, for recognition

of stance and swing phases, the gait cycle is divided into eight

periods (initial contact, loading response, mid stance, termi-

nal stance, pre-swing, initial swing, mid swing and terminal

swing), achieving fast and accurate recognition results for each

period. The results from experiments show that our approach

is accurate and fast for simultaneous recognition of locomotion

and gait phases, but also it permits to know the state of the

human body during the gait cycle.

Overall, our simultaneous Bayesian recognition approach

offers a framework for fast and accurate recognition of move-

ments, which can be used to reliably assist humans in ADLs.

This paper is organised as follows: a description of the re-

lated work is presented in Section II. Our proposed recognition

method is described in Section III. The experiments and results

are presented in Section IV. Section V presents the discussion

of our work. Finally, conclusions are presented in Section VI.
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II. RELATED WORK

Intent recognition is an important process to reliably assist

humans. Multiple approaches, from simple sets of rules to

complex learning algorithms, have been studied for recognition

of ADLs, which are presented in the following paragraphs.

Finite state machines (FSM) using electromyography

(EMG) and myoelectric signals from six muscles were able

to recognise level-ground walking, ramp ascent and ramp

descent locomotion modes [11]. Transition between states was

controlled by a set of fixed rules applied to muscular activity

signals. Information from floor reaction force, hip and knee

joint angles was evaluated by a FSM to identify movements

for sitting, standing and level-ground walking [12], [13]. These

hard-coded methods are highly susceptible to fail even for

slightly changes in the environment.

Machine learning offers sophisticated algorithms for percep-

tion and learning to develop robust and adaptable high-level

recognition systems. Entropy distance and image processing

techniques were used for recognition of human action and

detection of fall events using wearable cameras and inertial

sensors [14], [15]. An adaptive algorithm, based on deci-

sion trees and four sensors attached to the human body,

was implemented for recognition of daily activities such as

walking, standing and sitting with an accuracy of 99% [16].

Fusion of a linear discriminant analysis (LDA) method and

a two-layered artificial neural network (ANN), was used for

identification of locomotion modes with twelve surface EMG

signals [17]. LDA and ANN methods have also been used

with time-domain and frequency-domain features from nine

EMG signals for intent recognition [18], [19]. Other works

have implemented ANN combined with heuristic methods for

identification of locomotion mode and detection of gait cycle.

These works used multiple accelerometer sensors and foot

ground contact data from walking, running, stair ascent and

descent [20], [21], [22]. Even though all these works achieved

a recognition accuracy between 90% and 95%, they required

a large number of sensors attached to the human body, which

makes the calibration, synchronisation and data collection

complicated processes that impact on the computational cost

and complexity of implementation.

Real-time recognition of ADLs has been investigated with

Fuzzy Logic (FL) methods, where information from joint

angles and pressure insole sensors was used for recognition

and assistance to the pelvis [23]. FL and combination of ANN

and EMG signals, were employed for human intent recognition

and prosthesis control achieving an accuracy of 95% [24],

[25]. Multiple human activities were recognised using EMG

and vision sensors with support vector machines (SVMs).

These methods achieved accuracies between 77.3% and 99%,

however, they need a large number of sensors that also limits

these works to indoor applications [26], [27]. SVM and k-

nearest neighbour algorithms, together with 9 accelerometers

distributed from the torso to the ankle, achieved an accuracy

of 97.6% for recognition of ADLs [28]. The combination of

plantar pressure sensors with multi-class SVMs allowed the

recognition of normal walking, stair ascent and stair descent

activities with accuracies between 91.9% and 95.2% [29]. In

general, ANN, SVM and FL provide accurate results, however,

they produce black box models which do not provide a mea-

sure of confidence, making their implementation in real-time

a complicated process. In contrast, probabilistic approaches

provide well-defined mathematical models to develop reliable

systems for perception and leaning in robotics [30], [31].

Bayesian formulations, have been successfully employed for

perception, decision-making and robot control with multiple

stimuli [32], [33]. Gaussian mixture models (GMM) allowed

to characterised the probabilities of ADLs such as sitting,

standing and walking with high accuracy [34]. Dynamic

Bayesian networks (DBN), trained with multiple information

sources, e.g., IMUs and EMG signals, were capable to identify

walking activities on different terrain conditions [35], [36].

Inspired by the benefits offered by probabilistic methods, in

this work we present a Bayesian formulation for simultaneous

recognition of locomotion modes and gait phases. This

recognition method, together with a sequential analysis method

that mimics the way in that humans accumulate evidence

and make decisions, is capable to make autonomous, fast

and accurate decisions. Furthermore, our recognition method

allows to adapt the confidence parameter for specific require-

ments in accuracy and speed. Interestingly, our probabilistic

approach permits to achieve high recognition accuracy with a

small number of wearable sensors suitable for indoor and out-

door applications. A detailed description of our simultaneous

Bayesian recognition method is presented in the next sections.

workstation

inertial measurement unitsintertial measurement units

(IMUs)

human locomotion

workstation

data processing

foot

shank

thigh

(A) Sensor attachment for data collection

(B) Level-ground walking (C) Ramp ascent/descent

Fig. 1. Walking activities and wearable sensors for systematic data collection.
(A) Diagram that depicts the data collection process using three IMU sensors
attached to the thigh, shank and foot of participants. The data received at the
workstation is smoothed and prepared in a proper format for their analysis by
the recognition system. (B) Level-ground walking on a flat cement surface.
(C) Ramp ascent and descent on a metallic ramp with a slope of 8.5 deg.
Participants were asked to repeat five times each locomotion mode.
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Fig. 2. Data collected from three locomotion modes; level-ground walking, ramp ascent and ramp descent represented by black, blue and magenta colour
curves. The data were collected using three inertial measurement units attached to (A) the thigh, (B) shank and (C) foot of healthy participants. Solid lines
show the mean angular velocities for each locomotion mode, while dashed-lines represent the standard deviation. Plot (D) shows an example of the gait cycle
segmented into eight periods; initial contact, loading response, mid stance, terminal stance, pre-swing, initial swing, mid swing and terminal swing. These
periods are processed by our probabilistic recognition method to know the state of the human body during the gait cycle.

III. METHODS

A. Participants and measurements

Eight healthy male subjects were recruited from the School

of Mechanical Engineering at the University of Leeds to

participate in this investigation. The subjects were free from

gait abnormalities, their ages ranged between 24 and 34 years

old, heights were between 1.74 m and 1.79 m, and weights

ranged between 77.6 kg and 85 kg.

Angular velocity signals were collected from three IMUs

attached to the thigh, shank and foot of participants using

velcro straps. We used six degrees of freedom IMUs, from

Shimmer Inc., composed of accelerometer and gyroscope.

Signals from all sensors were synchronised and sent to the

workstation using the Multi Shimmer Sync software. A foot

pressure insole, built with four piezoresistive sensors, was used

for detection of the beginning of the gait cycle in the training

phase. Figure 1A depicts the data collection process from the

wearable IMU sensors, which have shown to be robust and

suitable for assistive and rehabilitation robotic devices [37].

Participants were asked to walk at their self-selected speed

and complete five repetitions of three locomotions modes;

level-ground walking, ramp ascent and ramp descent. For

level-ground walking, we used a flat cement surface, while

ramp ascent and descent were performed on a metallic ramp

with an 8.5 deg slope (see Figures 1B,C). Angular velocity

signals were systematically collected, with a sampling rate of

1000 Hz, and prepared in an appropriate format for training

and testing with the proposed recognition method.

B. Signal processing and data preparation

Angular velocity signals were filtered by a second-order

Butterworth filter with a cut-off frequency of 10 Hz. For

detection of the beginning of the gait cycle, we used a

threshold-crossing approach with a foot pressure insole, which

has been tested in previous works [38]. Figure 2 shows the

measurements from the thigh, shank and foot for level-ground

walking, ramp ascent and ramp descent, represented by black,

blue and magenta colour curves respectively. Solid and dashed

lines represent mean angular velocities and standard deviations

respectively. The filtered data from the thigh, shank and foot

were concatenated to build training and testing datasets for

their subsequent analysis. Angular velocities from each gait

cycle, shown in Figures 2A,B and C, were used to construct the

histograms employed by our method for activity recognition.

For recognition of stance and swing phases, each gait cycle

was divided into initial contact, loading response, mid stance,

terminal stance, pre-swing, initial swing, mid swing and ter-

minal swing as shown in Figure 2D. An example of the his-

tograms from level-ground walking, employed for recognition

of locomotion and gait phases, is shown in Figure 3.

C. Simultaneous Bayesian recognition

Simultaneous recognition of locomotion and gait phases

uses a Bayesian formulation together with a sequential analysis

method. This probabilistic method iteratively accumulates sen-

sor data, reducing the uncertainty from sensors measurements.

The sequential analysis method, together with a belief thresh-

old parameter, allows the recognition system to decide whether

there is enough evidence accumulated to make a decision.
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Bayesian update: our Bayesian formulation iteratively up-

dates the posterior probability from the product of the prior

and likelihood distributions. Here, sensor measurements and

perceptual classes are represented by z and cn ∈ C respec-

tively. Each perceptual class cn is defined by a (uk, vl) pair,

where uk with k = 1, 2, . . . ,K and vl with l = 1, 2, . . . , L
are the locomotion and gait periods respectively. The Bayesian

update process is as follows:

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
(1)

where P (cn|zt) and P (zt|cn) are the posterior probability and

likelihood at time t. The prior probability at time t−1 is repre-

sented by P (cn|zt−1). The variable uk with K = 3 represents

the three locomotion modes employed for estimation in this

work (level-ground walking, ramp ascent and ramp descent),

while vl with L = 8 are the eight periods for estimation of

gait phases (stance and swing phases). The measurements z

represent the angular velocity signals from the IMU sensors

attached to the lower limbs of human participants.

Prior: for the initial time t = 0 we assume uniform prior

probabilities for all the locomotion modes and gait phases,

which is defined as follows:

P (cn) = P (cn|z0) =
1

N
(2)

where cn is the perceptual class to be estimated, z0 are the

sensor observations at time t = 0 and N is the number of pairs

(uk, vl) to be estimated. For time t > 0 the prior probability

is updated with the posterior from t− 1 as follows:

P (cn) = P (cn|zt−1) (3)

Measurement model and likelihood estimation: angular ve-

locity information from Ssensors is obtained at each time

step. We use three IMU sensors (Ssensors = 3) attached to

the thigh, shank and foot of participants. In this work, no

assumptions are made on the distribution of the data. For that

reason, a nonparametric approach, based on the histograms

from sensor information (see Figure 3), is used to construct

the measurement model for the Bayesian formulation. The

histograms are used to evaluate an observation zt at time

t, and estimate the likelihood of a perceptual class cn. The

measurement model is represented as follows:

Ps(b|cn) =
hs,n(b)∑Nbins

b=1
h(b)

(4)

where hs,n(b) is the sample count in bin b for sensor s

over all training data in class cn. The histograms were uni-

formly constructed by binning angular velocity information

into Nbins = 100 intervals. The values are normalised by∑Nbins

b=1
h(b) to have probabilities that sum to 1. The likelihood

of the observation zt, at time t, by evaluating Equation (4) over

all the sensors is obtained as follows:

logP (zt|cn) =

Ssensors∑

s=1

logPs(ws|cn)

Ssensors

(5)

where ws is the signal sample from sensor s and P (zt|cn)
is the likelihood of the observation zt, given a perceptual

class cn. Normalised values are ensured with the marginal

probabilities conditioned from previous sensor observations as

follows:

P (zt|zt−1) =
N∑

n=1

P (zt|cn)P (cn|zt−1) (6)

Marginal locomotion and gait period posteriors: the poste-

riors for the perceptual class cn, that corresponds to a (uk, vl)
pair, are the joint distributions over the locomotion modes

uk and gait periods vl joint classes. Then, the beliefs over

individual locomotion and gait periods perceptual classes are

given by the marginal posteriors as follows:

P (uk|zt) =

L∑

l=1

P (uk, vl|zt) (7)
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Fig. 3. Histograms from level-ground walking employed by our method for simultaneous Bayesian recognition of locomotion modes and gait phases. This is
an example of the histograms from the sensors attached to the thigh, shank and foot of participants, represented by red, green and purple colours. The plots
also represent the eight gait periods that composed the stance (period 1 to period 5) and swing (period 6 to period 8) phases of the gait cycle (see Figure 2D).
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P (vl|zt) =

K∑

k=1

P (uk, vl|zt) (8)

with locomotion classes summed over all gait period classes,

and gait period classes summed over all locomotion classes.

Stop rule and decision making: the iterative accumulation

of evidence, performed by the Bayesian update process, stops

once a belief threshold βthreshold is exceeded. This action

enables the decision making process to estimate the perceptual

class for locomotion mode and gait phase, using the maximum

a posteriori (MAP) estimate as follows:

if any P (uk|zt) > βthreshold then

ûk = argmax
uk

P (uk|zt)
(9)

if any P (vl|zt) > βthreshold then

v̂l = argmax
vl

P (vl|zt)
(10)

where the pair (ûk, v̂l), that represents the estimated class ĉn,

provides the estimated locomotion mode and gait phase at

time t. The belief threshold βthreshold permits to adjust the

confidence level of the probabilistic recognition method to

achieve a desired accuracy for the decision making process.

Here, we defined βthreshold = [0.0, 0.5, . . . , 0.99] to observe

its effects on the performance in accuracy and decision time

for recognition of locomotion mode and gait phases.

The simultaneous Bayesian recognition process is imple-

mented with a layered architecture, composed of physical

and cognitive layers, as shown in Figure 4. The physical

layer contains the sensation process, while the cognitive layer

contains perception and decision processes. The data from

the IMU sensors, worn by humans, are sent to the sensation

process. Its output is received by the perception process which

implements the Bayesian formulation. The decision process

allows the recognition system to decide whether there is

enough evidence to make a decision about the current walking

activity, or more measurements are needed from the sensors.

The cognitive layer outputs the recognised locomotion mode

and gait period, which can be used to monitor the state of the

human body and control of wearable assistive devices.

IV. RESULTS

Multiple experiments were performed to validate our

recognition method using real data and the locomotion ac-

tivities described in Section III. The experiments were per-

formed by training our method and randomly selecting sensor

samples from the testing dataset with 10,000 iterations. The

experiments and results are presented in the following sections.

A. Recognition of locomotion mode

First, we validated the accuracy for recognition of loco-

motion mode. For this process, we used three locomotion

modes; level-ground walking, ramp ascent and ramp descent.

The data from these locomotion modes measured from the

thigh, shank and foot are shown in Figure 2. The data

sensor measurements
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Fig. 4. Layered architecture composed of physical and cognitive layers
to implement our method for recognition of locomotion mode and gait
phases. The physical layer interacts directly with the environment through the
sensation process, which receives data from wearable sensors. The cognitive
layer is responsible for perception and decision making processes. They
implement our Bayesian formulation to estimate the posterior probability
and make a decision about locomotion mode and gait period once the belief
threshold is exceeded. The locomotion is recognised as level-ground walking,
ramp ascent or ramp descent, while recognition gait periods permits to know
whether the participant is in stance or swing phase.

collected were grouped into multiple datasets, as described in

Sections III-A and III-B, to build training and testing datasets

for the proposed recognition method.

We configured the probabilistic recognition method with

24 perceptual classes c (3 locomotion modes × 8 gait pe-

riods). The performance, in recognition accuracy and decision

time is evaluated using the belief threshold βthreshold =
[0.0, 0.05, . . . , 0.99]. This parameter also permits to observe

and control the confidence level needed by the recognition

system to achieve a specific accuracy. Accuracy recognition

results of locomotion mode against belief threshold are shown

in Figure 5A. The accuracy for recognition of locomotion

mode is gradually improved from a mean error of 21%

(accuracy of 79%) with βthreshold = 0.0, to a mean error

of 0.13% (accuracy of 99.87%) with βthreshold = 0.99. This

shows how our method is capable to reduce uncertainty and

achieve better confidence for the decision making process. Our

approach also permits to analyse the performance in decision

time against belief threshold (see Figure 5B). Analysis of

decision time is important given that recognition systems are

required to make accurate decisions but also to respond in the

appropriate time. Decision times gradually increased from a

mean of 1 (for βthreshold = 0.0) to 25 (for βthreshold = 0.99)

sensor samples. This behaviour was expected as more evidence

is needed to achieve higher levels of confidence. The data from

the IMU sensors were collected at a sampling rate of 1000 Hz

(1 ms per sample), and thus, the Bayesian recognition method

required a mean of 1 ms and 25 ms to achieve the recognition

accuracies of 79% and 99.87% respectively.
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Fig. 6. Recognition results of gait period and phases. (A) Mean errors for recognition of gait phases gradually decrease for increasing belief thresholds. The
lowest error of 0.8% (accuracy of 99.20%) was achieved for recognition of gait phases. (B) Gradual increments in the confidence level of our recognition
system showed a gradual increment in the mean time to make a decision, where 13 samples (13 ms) were required to achieve the highest gait phase recognition
accuracy. (C) Confusion matrix with accuracy of each gait period; 92.83%, 100%, 99.60%, 100%, 99.98%, 97.94%, 87.66% and 97.50% accuracy for periods
1 to 8 respectively. Stance and swing phases accuracies are 98.48% and 94.36% using periods 1 to 5 and periods 6 to 8 respectively.

The confusion matrix in Figure 5C shows the recognition

accuracy for each individual locomotion mode. Black and

white colours represent 0% and 100% accuracy respectively.

These results show that level ground-walking, ramp ascent and

ramp descent locomotion activities were successfully recog-

nised with a 100%, 99.84% and 99.78% accuracy respectively.

The analysis from these experiments shows that our method

is capable to perform both, accurate and fast recognition

processes, using a small number of wearable sensors.

B. Recognition of gait cycle phases

Recognition accuracy of gait phases and periods is also

validated, which provides important information to know the

state of the human body during the gait cycle for each

locomotion activity. This experiment used the information

from the eight gait periods in which the gait cycle was divided,

where stance and swing phases are composed of gait periods

1 to 5 (initial contact, loading response, mid stance, terminal

stance, pre-swing) and gait periods 6 to 8 (initial swing, mid

swing, terminal swing) respectively (see Figure 2D).

In this experiment, recognition accuracy and decision time

for different levels of confidence were analysed using the be-

lief thresholds βthreshold = [0.0, 0.05, . . . , 0.99]. Recognition

accuracy from gait periods and phases against belief thresholds

are shown in Figure 6A. Our Bayesian approach was able

to gradually improve the accuracy from a mean error of 7%

(accuracy of 93%) with βthreshold = 0.0, to 0.8% (accuracy of

99.20%) with βthreshold = 0.99. This shows that high levels

of confidence allow to achieve high accurate recognition of

gait periods, as well as stance and swing phases. Results from

decision time against belief threshold in Figure 6B show a

gradual increment in decision time, requiring from 1 to 13

sensor samples to make a decision with βthreshold = 0.0 and

βthreshold = 0.99 respectively. This means that our recognition

method needs a mean of 1 ms and 13 ms to identify in which

phase of the gait cycle the human body is, with an accuracy

of 93% and 99.20% respectively.

The confusion matrix in Figure 6C presents the recognition

accuracy for each gait period. Black and white colours rep-

resent 0% and 100% recognition accuracy. This result shows

that the eight gait periods were identified with accuracies of

92.83%, 100%, 99.60%, 100%, 99.98%, 97.94%, 87.66% and

97.50% for periods 1 to 8 respectively. With these results, our

approach was able to successfully recognise stance and swing

phases with a 98.48% (gait periods 1 to 5) and 94.36% (periods

6 to 8) accuracy. Mean recognition of individual gait periods

for level-ground walking, ramp ascent and ramp descent is

shown in Figure 7A. Recognition accuracy for all gait periods

in level-ground walking was highly accurate, successfully

identifying stance and swing phases (see Figure 7B). Slightly

less accuracy was observed in periods 1 and 7 for ramp

ascent and ramp descent respectively, however, these results

are compensated by the rest of gait periods to achieve accurate

recognition of stance and swing phases (see Figure 7B).

Overall, all these experiments demonstrate the benefits of-

fered by the simultaneous Bayesian recognition method. First,

it allows to simultaneously recognise locomotion mode and

gait phases. Second, this method responds fast, without highly

compromising the recognition accuracy. Third, the accurate

identification of periods permits to know the state of the human

body during the gait cycle. Finally, all this information is

essential to assist humans in walking activities, using wearable

sensors and robots that respond fast and reliably.
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Fig. 7. (A) Representation of mean recognition errors for gait periods
and phases from three locomotion activities. Stance and swing phases are
composed of periods 1 to 5 (initial contact, loading response, mid stance,
terminal stance, pre-swing) and periods 6 to 8 (initial swing, mid swing,
terminal swing) respectively. (B) Recognition accuracy of the eight periods
for each locomotion mode. All locomotion modes achieved high accuracy
for all the periods, with a slightly decay in periods 1 and 7 for ramp ascent
and descent respectively. This slightly decay is compensated with the high
accuracy achieved by rest of the gait periods.

V. DISCUSSION

High-level recognition methods play a key role to recognise

movement intent and assist humans in ADLs. In this work, we

presented a Bayesian formulation for simultaneous recognition

of locomotion mode and gait phases. First, our probabilistic

formulation successfully recognised multiple human locomo-

tion modes with high accuracy. Second, stance and swing

phases were recognised to identify the state of the human

body for each walking activity. Third, the performance in

accuracy and decision time was analysed for different levels

of confidence employed by the recognition method.

The simultaneous recognition method was implemented us-

ing a Bayesian formulation together with a sequential analysis

method. We found that our approach was able to deal with

uncertainty from the wearable IMU sensors attached to the

human body. Dealing with uncertainty is crucial in intelligent

systems to make accurate decisions, provide assistance and act

accordingly in the face of sensor noise and dynamics of the

environment [30]. Our recognition method is capable to adapt

to various sensor types and stimuli, which is extremely useful

for implementation in assistive devices composed of different

sensor technologies [7], [8], [39].

The performance of the simultaneous Bayesian method was

analysed with the recognition of locomotion mode and gait

phases. Level-ground walking, ramp ascent and ramp descent

locomotion modes were successfully recognised with a mean

accuracy of 99.87%. For recognition of gait phases, the gait

cycle was segmented into eight periods to identify stance and

swing phases [36]. Gait periods were recognised with a mean

accuracy of 99.20%, while stance and swing phases achieved

a mean accuracy of 98.48% (gait periods 1 to 5) and 94.36%

(gait periods 6 to 8) respectively. Key events during the gait

cycle, such as heel contact and toe off, were also recognised

with small error from all locomotion activities. In general,

identification of gait periods was successful with slightly less

accuracy in periods 1 and 7 for ramp ascent and ramp descent.

This small decrease in accuracy was compensated by the rest

of gait periods that form the gait cycle, and still achieve

high recognition accuracy. Previous works, using a variety of

machine learning methods and sensor technologies, have been

able to achieve accuracies of 65.8%, 73.83%, 95.2%, 99%

and 100% for recognition of walking activities [5], [20], [29],

[40]. However, they present limitations such as fixed sampling

window size, large number of sensors, lack of analysis for

decision time, gait phases and gait periods. Other works have

addressed the recognition of gait phases, but they still use

a fixed sampling window size [27], [36]. In contrast, our

method achieved high accuracy for simultaneous recognition

of locomotion and gait phases, while dealing with uncertainty

and using only three inertial measurement units. These are

important factors in sensor networks for recognition systems,

–for instance, lightweight systems, reduction of energy con-

sumption and computational complexity.

In these experiments we have made some assumptions such

as the number of gait periods and the location of the wearable

sensors. The segmentation of sensor signals from the gait

cycle was based on studies from biomechanics, but a different

number of segments could also be employed to perform the

analysis. However, the larger the number of segments the

less the data available for recognition, which could affect the

accuracy. In this work, the wearable sensors were attached in

the external side of the lower limbs based on previous studies

on intent recognition, however, rearranging the location of

sensors could also affect the performance of the recognition

process. All these aspects can be analysed in future works to

extend the present investigation.

Decision time to respond to an action or event is an

important feature for recognition systems. Results showed

that recognition of locomotion mode required a mean of 25

measurement samples (25 ms) to make a decision with the

highest accuracy (Figure 5B), while for stance and swing

phases a mean of 13 measurement samples (13 ms) were

required for the highest recognition accuracy (Figure 6B).

Interestingly, these decision times are below the average

time required for intent recognition with imperceptible delay

and without compromising the accuracy [27]. Other works

have also achieved fast recognition processes, but using large

number of sensors which affects the accuracy [36], [41].

Conversely, our method was able to react fast and with

high accuracy to multiple walking activities, by adjusting

the parameter βthreshold without a significant impact on the

recognition accuracy. For instance, for a belief threshold from

βthreshold = 0.9 to βthreshold = 0.99 it is required to have

between 16 ms to 25 ms and 10 ms to 13 ms to make a decision

for locomotion and gait phase respectively. With these param-
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eters, it would be possible to achieve an accuracy from 99.10%

to 99.87% for locomotion, and 99% to 99.20% for gait phases.

This demonstrates the capability of the simultaneous Bayesian

recognition to maximise the trade-off between accuracy and

speed, taking the best from both worlds.

Interestingly, our high-level recognition system is able to

autonomously determine when the evidence accumulated from

sensor measurements is enough to make accurate decisions.

This aspect is an improvement over previous works, which

normally restrict the decision-making and recognition pro-

cesses with a fixed and predefined number of sensor sam-

ples [27], [34], [42]. We consider that our work offers the

potential to develop intelligent wearable robots, capable to

recognise human movements and adapt their performance to

provide fast and safe assistance in activities of daily living.

Even though this investigation focused on the processes that

take place in the high-level layer, e.g., perception and decision-

making, our recognition system offers the potential to interact

with middle- and low-level layers for the control of assistive

robots. This capability was illustrated in Figure 4 with a multi-

layer architecture that could be extended to include middle-

and low-level processes for robot control and assistance in

real-time. This type of architecture is recognised to be essential

for intelligent systems to perform robust data processing,

perception, decision making and action at different levels of

abstraction [10], [31]. There are important aspects that we plan

to investigate in our future work: a) We plan to increase the

sample size and variation of measurements including data from

female and senior people. This aspect is important to achieve

robust methods suitable to assist a large variety of people;

b) Research on different approaches for segmentation of the

gait cycle; c) Methods for prediction of gait periods and gait

events; d) Rearrangement of wearable sensors; e) Integration

of a larger number of ADLs. We also plan to investigate on

middle- and low-level methods for control of assistive devices,

which can be benefited by the functionalities offered by our

high-level recognition method.

Intelligent systems, capable to assist humans, involve com-

plex processes at different levels of control. Here, we presented

a high-level method to simultaneously recognise walking ac-

tivities and gait phases. This method has also the potential

to perform cognitive capabilities such as interaction, percep-

tion and decision making, which are important for safe and

adaptable systems that intelligently recognise human motions

to provide reliable assistance in activities of daily living.

VI. CONCLUSION

In this work, a high-level method for simultaneous

recognition of locomotion mode and gait phases was pre-

sented. Our approach was based on a probabilistic Bayesian

formulation with a sequential analysis method. Angular ve-

locity data, from three IMUs attached to the lower limbs

of participants, were employed for recognition. Recursive

accumulation of evidence allowed our method to achieve a

mean accuracy of 99.87% and 99.20% for recognition of

locomotion mode and gait phases. Our approach also showed

to be fast without compromising its performance in accuracy.

Furthermore, adaptability of performance, based on confidence

levels and autonomous decisions, make our method suitable

for intelligent recognition systems. Overall, the simultaneous

Bayesian recognition method has the potential to perform

fast and accurate recognition of walking activities, which is

essential for intelligent systems capable to understand human

movements and safely assist in activities of daily living.
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[3] I. H. López-Nava and A. Muñoz-Meléndez, “Wearable inertial sensors
for human motion analysis: A review,” IEEE Sensors Journal, vol. 16,
no. 22, pp. 7821–7834, 2016.

[4] U. Martinez-Hernandez, L. W. Boorman, and T. J. Prescott, “Multisen-
sory wearable interface for immersion and telepresence in robotics,”
IEEE Sensors Journal, vol. 17, no. 8, pp. 2534–2541, 2017.

[5] P. Pierleoni, A. Belli, L. Palma, M. Pellegrini, L. Pernini, and S. Valenti,
“A high reliability wearable device for elderly fall detection,” IEEE

Sensors Journal, vol. 15, no. 8, pp. 4544–4553, 2015.

[6] A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh,
“Stronger, smarter, softer: Next-generation wearable robots,” Robotics

& Automation Magazine, IEEE, vol. 21, no. 4, pp. 22–33, 2014.

[7] U. Martinez-Hernandez, T. J. Dodd, M. H. Evans, T. J. Prescott, and N. F.
Lepora, “Active sensorimotor control for tactile exploration,” Robotics

and Autonomous Systems, vol. 87, pp. 15–27, 2017.

[8] U. Martinez-Hernandez, T. J. Dodd, and T. J. Prescott, “Feeling the
shape: Active exploration behaviors for object recognition with a robotic
hand,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2017.

[9] A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of
physical human–robot interaction,” Mechanism and Machine Theory,
vol. 43, no. 3, pp. 253–270, 2008.

[10] R. A. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[11] L. Peeraer, B. Aeyels, and G. Van der Perre, “Development of emg-based
mode and intent recognition algorithms for a computer-controlled above-
knee prosthesis,” Journal of biomedical engineering, vol. 12, no. 3, pp.
178–182, 1990.

[12] H. Kawamoto and Y. Sankai, “Comfortable power assist control method
for walking aid by hal-3,” in Systems, Man and Cybernetics, 2002 IEEE

International Conference on, vol. 4. IEEE, 2002, pp. 6–pp.

[13] H. Kawamoto, S. Kanbe, and Y. Sankai, “Power assist method for hal-3
estimating operator’s intention based on motion information,” in Robot

and human interactive communication, 2003. proceedings. ROMAN

2003. The 12th IEEE international workshop on. IEEE, 2003, pp.
67–72.

[14] K. Ozcan, S. Velipasalar, and P. K. Varshney, “Autonomous fall detection
with wearable cameras by using relative entropy distance measure,”
IEEE Transactions on Human-Machine Systems, 2016.

[15] C. Chen, R. Jafari, and N. Kehtarnavaz, “Improving human action
recognition using fusion of depth camera and inertial sensors,” IEEE

Transactions on Human-Machine Systems, vol. 45, no. 1, pp. 51–61,
2015.

[16] H. Rezaie and M. Ghassemian, “An adaptive algorithm to improve en-
ergy efficiency in wearable activity recognition systems,” IEEE Sensors

Journal, vol. 17, no. 16, pp. 5315–5323, 2017.

[17] H. Huang, T. A. Kuiken, and R. D. Lipschutz, “A strategy for identi-
fying locomotion modes using surface electromyography,” Biomedical

Engineering, IEEE Transactions on, vol. 56, no. 1, pp. 65–73, 2009.

[18] L. J. Hargrove, A. M. Simon, R. Lipschutz, S. B. Finucane, and T. A.
Kuiken, “Non-weight-bearing neural control of a powered transfemoral
prosthesis,” Journal of neuroengineering and rehabilitation, vol. 10,
no. 1, p. 1, 2013.

[19] D. Peleg, E. Braiman, E. Yom-Tov, and G. F. Inbar, “Classification of
finger activation for use in a robotic prosthesis arm,” Neural Systems

and Rehabilitation Engineering, IEEE Transactions on, vol. 10, no. 4,
pp. 290–293, 2002.



U. MARTINEZ-HERNANDEZ et al.: RECOGNITION OF LOCOMOTION AND GAIT PHASES WITH WEARABLE SENSORS 9

[20] K. Zhang, M. Sun, D. K. Lester, F. X. Pi-Sunyer, C. N. Boozer,
and R. W. Longman, “Assessment of human locomotion by using an
insole measurement system and artificial neural networks,” Journal of

Biomechanics, vol. 38, no. 11, pp. 2276–2287, 2005.
[21] J. Staudenmayer, D. Pober, S. Crouter, D. Bassett, and P. Freedson, “An

artificial neural network to estimate physical activity energy expenditure
and identify physical activity type from an accelerometer,” Journal of

Applied Physiology, vol. 107, no. 4, pp. 1300–1307, 2009.
[22] A. M. Khan, Y.-K. Lee, and T.-S. Kim, “Accelerometer signal-based

human activity recognition using augmented autoregressive model coef-
ficients and artificial neural nets,” in Engineering in Medicine and Biol-

ogy Society, 2008. EMBS 2008. 30th Annual International Conference

of the IEEE. IEEE, 2008, pp. 5172–5175.
[23] K. Yuan, A. Parri, T. Yan, L. Wang, M. Munih, N. Vitiello, and Q. Wang,

“Fuzzy-logic-based hybrid locomotion mode classification for an active
pelvis orthosis: Preliminary results,” in Engineering in Medicine and

Biology Society (EMBC), 2015 37th Annual International Conference

of the IEEE. IEEE, 2015, pp. 3893–3896.
[24] S. E. Hussein and M. H. Granat, “Intention detection using a neuro-

fuzzy emg classifier,” Engineering in Medicine and Biology Magazine,

IEEE, vol. 21, no. 6, pp. 123–129, 2002.
[25] F. H. Chan, Y.-S. Yang, F. Lam, Y.-T. Zhang, and P. A. Parker, “Fuzzy

emg classification for prosthesis control,” Rehabilitation Engineering,

IEEE Transactions on, vol. 8, no. 3, pp. 305–311, 2000.
[26] S. Gaglio, G. L. Re, and M. Morana, “Human activity recognition

process using 3-d posture data,” IEEE Transactions on Human-Machine

Systems, vol. 45, no. 5, pp. 586–597, 2015.
[27] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and K. B. En-

glehart, “Continuous locomotion-mode identification for prosthetic legs
based on neuromuscular–mechanical fusion,” Biomedical Engineering,

IEEE Transactions on, vol. 58, no. 10, pp. 2867–2875, 2011.
[28] E. Fullerton, B. Heller, and M. Munoz-Organero, “Recognising human

activity in free-living using multiple body-worn accelerometers,” IEEE

Sensors Journal, vol. 17, no. 16, pp. 5290–5297, 2017.
[29] G.-M. Jeong, P. H. Truong, and S.-I. Choi, “Classification of three types

of walking activities regarding stairs using plantar pressure sensors,”
IEEE Sensors Journal, vol. 17, no. 9, pp. 2638–2639, 2017.

[30] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[31] U. Martinez-Hernandez, A. Damianou, D. Camilleri, L. Boorman,
N. Lawrence, and A. Prescott, “An integrated probabilistic framework
for robot perception, learning and memory,” in 2016 IEEE International

Conference on Robotics and Biomimetics (ROBIO). IEEE, 2016.
[32] U. Martinez-Hernandez, T. Dodd, T. J. Prescott, and N. F. Lepora,

“Active bayesian perception for angle and position discrimination with
a biomimetic fingertip,” in Intelligent Robots and Systems (IROS), 2013

IEEE/RSJ International Conference on. IEEE, 2013, pp. 5968–5973.
[33] U. Martinez-Hernandez, A. Rubio-Solis, and T. J. Prescott, “Bayesian

perception of touch for control of robot emotion,” in Neural Networks

(IJCNN), 2016 International Joint Conference on. IEEE, 2016, pp.
4927–4933.

[34] H. A. Varol, F. Sup, and M. Goldfarb, “Multiclass real-time intent
recognition of a powered lower limb prosthesis,” Biomedical Engineer-

ing, IEEE Transactions on, vol. 57, no. 3, pp. 542–551, 2010.
[35] M. T. Farrell, “Pattern classification of terrain during amputee walking,”

Ph.D. dissertation, Massachusetts Institute of Technology, 2013.
[36] A. J. Young, A. M. Simon, N. P. Fey, and L. J. Hargrove, “Intent

recognition in a powered lower limb prosthesis using time history
information,” Annals of biomedical engineering, vol. 42, no. 3, pp. 631–
641, 2014.

[37] Y.-L. Park, B.-r. Chen, D. Young, L. Stirling, R. J. Wood, E. C.
Goldfield, R. Nagpal et al., “Design and control of a bio-inspired soft
wearable robotic device for ankle-foot rehabilitation,” Bioinspiration &

biomimetics, vol. 9, no. 1, p. 016007, 2014.
[38] H. F. Maqbool, M. Husman, M. Awad, A. Abouhossein, and

A. Dehghani-Sanij, “Real-time gait event detection for transfemoral
amputees during ramp ascending and descending,” in Engineering in

medicine and biology society (EMBC), 2015, pp. 4785–4788.
[39] U. Martinez-Hernandez, T. J. Dodd, L. Natale, G. Metta, T. J. Prescott,

and N. F. Lepora, “Active contour following to explore object shape
with robot touch,” in World Haptics Conference (WHC), 2013. IEEE,
2013, pp. 341–346.

[40] A. Wang, G. Chen, J. Yang, S. Zhao, and C.-Y. Chang, “A comparative
study on human activity recognition using inertial sensors in a smart-
phone,” IEEE Sensors Journal, vol. 16, no. 11, pp. 4566–4578, 2016.

[41] F. Zhang, M. Liu, and H. Huang, “Preliminary study of the effect of user
intent recognition errors on volitional control of powered lower limb

prostheses,” in Engineering in medicine and biology society (EMBC),

2012 annual international conference of the IEEE. IEEE, 2012, pp.
2768–2771.

[42] A. Young, T. Kuiken, and L. Hargrove, “Analysis of using emg and
mechanical sensors to enhance intent recognition in powered lower limb
prostheses,” Journal of neural engineering, vol. 11, no. 5, p. 056021,
2014.

Uriel Martinez-Hernandez received the BEng de-
gree in Communications and Electronics from the
National Polytechnic Institute, Mexico City, Mexico,
in 2005 and the MSc degree in Computer Sciences
from the Centre for Research and Advanced Studies,
Mexico City, Mexico, in 2008. He obtained the PhD
degree from the Department of Automatic Control
and Systems Engineering, University of Sheffield,
Sheffield, U.K., in 2014.

He was previously a Research Associate at
Sheffield Robotics, University of Sheffield, U.K. He

is currently a Research Fellow at the Institute of Design, Robotics and
Optimisation (iDRO), the School of Mechanical Engineering, University of
Leeds, U.K. His research interests include haptics, touch sensing, active
perception for robot control, machine learning and wearable robotics.

Imran Mahmood received the BSc and MSc de-
grees in Mechatronics and Control Engineering from
the University of Engineering and Technology La-
hore, Lahore, Pakistan in 2008 and 2013 respec-
tively. He was also involved in academic activities
as a lab engineer in the Department of Mechatronics
and Control Engineering. He is currently working on
his PhD in Mechanical Engineering at the University
of Leeds, Leeds, U.K. His main research interests are
rehabilitation robotics and wearable soft robots.

Abbas A. Dehghani-Sanij received the BEng
degree in Electronics Engineering from Leeds
Metropolitan University, Leeds, U.K., the Masters
degree in Digital Systems Engineering from the
University of Manchester, Institute of Technology,
Manchester, U.K., and the PhD degree from the
University of Leeds, Leeds, U.K.

He is currently Professor of Bio-Mechatronics
and Medical Robotics in the School of Mechani-
cal Engineering at the University of Leeds, Leeds,
U.K. His research interests include: robotics, bio-

mechatronics, intelligent control, sensors and actuators for the development
of intelligent systems/devices. His current research include design and devel-
opment of intelligent artificial limbs, robotic exoskeletons and soft robotics.
He has published more than 90 journal and conference papers and has also
authored book chapters


