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Abstract:7

Given rapidly changing environments, it is important for us to understand how the evolution of8

host defence responds to fluctuating environments. Here we present the first theoretical study9

of evolution of host resistance to parasitism in a classic epidemiological model where the host10

birth rate varies seasonally. We show that this form of seasonality has clear qualitative and11

quantitative impacts on the evolution of resistance. When the host can recover from infection,12

it evolves a lower level of defence when the amplitude is high. However, when recovery is absent,13

the host increases its defence for higher amplitudes. Between these different behaviours we find14

a region of parameter space that allows evolutionary bistability. When this occurs, the level15

of defence the host evolves depends on initial conditions, and in some cases a switch between16

attractors can lead to different periods in the population dynamics at each of the evolutionary17

stable strategies. Crucially, we find that evolutionary behaviour found in a constant environment18

for this model doesn’t always hold for hosts with highly variable birth rates. Hence we argue19

that seasonality must be taken into account if we want to make predictions about evolutionary20

trends in real-world host-parasite systems.21



1. Introduction22

Given the ubiquity of infectious diseases in natural systems there is strong selection pressure23

on host organisms to evolve costly defence mechanisms. A wide range of theoretical work has24

been developed to understand the evolution of host defence against parasitism, with much of25

this work focused on the ecological/epidemiological feedbacks that drive selection of quantitative26

host defence (van Baalen, 1998; Boots & Haraguchi, 1999; Boots & Bowers, 1999, 2004; Restif27

& Koella, 2003; Miller et al., 2005, 2007; Bonds, 2006; Best et al., 2008, 2009; Carval &28

Ferriere, 2010). These studies have explored how long-term, stable investment in host defence29

varies with ecological/epidemiological parameters, as well as determining the conditions that30

can lead to coexistence of strains through evolutionary branching. However, the vast majority31

of these studies assume that the populations live in a temporally static environment. In reality,32

almost all natural systems are subject to some degree of temporal environmental heterogeneity,33

in particular fluctuations caused by seasonality. For example, many natural species exhibit34

seasonal reproductive strategies driven by regular environmental fluctuations (Rowan, 1938;35

Stawski et al., 2014; Ketterson et al., 2015; Furness, 2016). It is therefore essential that we36

consider the impact of fluctuating environmental conditions on the evolution of host defences.37

It is well established that variable climates affect ecological systems (Ewing et al., 2016), in-38

cluding the spread and impact of diseases (Fine & Clarkson, 1982; Finkenstädt & Grenfell,39

2000; Altizer et al., 2006). Many theoretical studies have considered the effects of seasonality40

in purely epidemiological models (i.e., non-evolutionary), often through a periodic transmission41

rate (Schwartz & Smith, 1983; Aron & Schwartz, 1984; Olsen & Schaffer, 1990). Increasing the42

amplitude of the transmission rate can generate sub-harmonic oscillations or cause the popula-43

tion dynamics to move through a series of period-doubling bifurcations, eventually leading to44

chaotic dynamics (Grossman, 1980; Schwartz & Smith, 1983; Greenman et al., 2004; Grassly45

& Fraser, 2006; Childs & Boots, 2010). Small perturbations in these seasonal models can also46

trigger the system to switch between distinct attractors, often due to resonance, potentially47

leading to significant changes in the population dynamics and different patterns of outbreaks48

(Smith, 1983; Schwartz, 1985; Keeling et al., 2001; Kamo & Sasaki, 2002; Greenman et al.,49

2004). These complex dynamics have been found to exist less frequently when seasonality is50

assumed to occur in the host birth rate rather than transmission (White et al., 1996; Begon et51

al., 2009; Duke-Sylvester et al., 2011; Dorélien et al., 2013; Peel et al., 2014). Predictions about52
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the impact of a disease are likely to be more accurate when either of these types of seasonality53

are included in the model (White et al., 1996; Kamo & Sasaki, 2002).54

There is an increasing appreciation of the importance of temporal heterogeneity in host-enemy55

interactions within the experimental evolution literature (Blanford et al., 2003; Friman & Laakso,56

2011; Hiltunen et al., 2012; Harrison et al., 2013), for example showing that rapidly fluctuat-57

ing environments constrain co-evolutionary arms races in a bacteria-phage system (Harrison et58

al., 2013). Theoretically, however, evolution and seasonality have rarely been studied together59

in a host-parasite context. The few studies that do exist have either investigated evolution60

of only the parasite (Koelle et al., 2005; Sorrell et al., 2009; Donnelly et al., 2013), or used61

a genetic-based, rather than ecology-driven, model for evolution of the host (Nuismer et al.,62

2003; Mostowy & Engelstädter, 2011; but see Poisot et al., 2012). Seasonality in the host’s63

birth rate does not affect the evolution of the parasite’s transmission/virulence strategy un-64

less a density-dependence is applied to virulence (parasite-induced mortality) (Donnelly et al.,65

2013). This occurs because the average susceptible density, and therefore the parasite fitness,66

doesn’t depend on the seasonal parameters unless this density-dependence is included. Else-67

where, step-wise environmental variation implemented through a dynamic resource was found68

to change the coevolutionary outcomes in a gene-for-gene based host-parasite system (Poisot et69

al., 2012). In particular, they found that both the host and parasite invest more in resistance70

and infectivity respectively for higher amplitudes in the seasonality. However, we currently have71

no theory specifically addressing the impact that seasonality has on the evolution of host defence72

to parasitism.73

Here we investigate the impact of a continuous seasonal birth rate on the evolution of quantitative74

host avoidance through small mutation steps using an evolutionary invasion (adaptive dynamics)75

method. We use a classic SIS (Susceptible-Infected-Susceptible) model, and focus on how the76

amplitude and period of the implemented seasonality impacts the ecological/epidemiological77

dynamics, and therefore the evolution of the host.78

2. Methods79

The population is modelled using an SIS (susceptible-infected-susceptible) framework with the80

following set of ordinary differential equations:81
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dS

dt
= a(1− qN)S − bS − βSI + γI, (1)

82

dI

dt
= βSI − (b+ α+ γ)I, (2)

where S and I are the susceptible and infected population sizes respectively, and N = S + I is83

the total population size (Anderson & May, 1981). All offspring are born susceptible at rate a,84

and only susceptible hosts are able to reproduce, i.e. the parasite renders the host (temporarily)85

sterile. The births are limited by density with crowding coefficient q, so that birth rate is low86

when competition is high. All hosts die at baseline mortality rate b, with an additional infected87

death rate α. The parasite is transmitted to susceptible hosts at rate βI due to contact with88

infected individuals. Hosts recover from the parasite at rate γ and return to the susceptible89

class with no acquired immunity. Default parameter values are given in table 1.90

We assume that seasonality occurs on the ecological timescale, so to incorporate this we let the91

birth rate depend periodically on time t:92

a = a(t) = a0(1 + δ sin(2πt/ǫ)), (3)

where a0 is the average birth rate, δ ∈ [0, 1] is the amplitude and ǫ > 0 is the period of the93

forcing. Periodic birth rates have been observed in a large number of species (Rowan, 1938;94

Ketterson et al., 2015), and this type of function has been used many times to model a time-95

varying birth rate (He & Earn, 2007; Donnelly et al., 2013; Dorélien et al., 2013) or transmission96

rate (Schwartz & Smith, 1983; Grassly & Fraser, 2006; Childs & Boots, 2010). For our default97

Parameter Definition Default Value

â0 Trade-off coefficient in the average birth rate 108
p Trade-off coefficient in the average birth rate 103.75
c Trade-off coefficient in the average birth rate 1.5
β Transmission coefficient Varies

βmin Minimum transmission coefficient 0.5
βmax Maximum transmission coefficient 10
δ Amplitude of the birth rate forcing Varies
ǫ Period of the birth rate forcing 1
q Crowding coefficient acting on births 0.1
b Baseline mortality rate 1
γ Recovery Rate Varies
α Virulence/additional death rate due to parasite 1

Table 1: Parameter definitions and default values.
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parameter values, the period ǫ is the same as the average lifespan b (1 year), but see section 3.498

for varying ǫ or Appendix F for alternative b.99

We assume that the host evolves defence through the transmission coefficient (avoidance) β. We100

let the average birth rate depend on this as a trade-off so that there is a cost to resisting the101

parasite, as there is experimental support for such a relation to exist (Boots & Begon, 1993).102

We use the following trade-off function based on that used by White et al. (2006):103

a0 = a0(β) = â0 − p
(1 + β−βmin

βmax−βmin
)

(1 + c β−βmin

βmax−βmin
)
, (4)

where â0 > 0, 0 < p < â0, c > 1 and β ∈ [βmin, βmax]. a0(β) has minimum â0 − p, and104

parameters p, c determine the gradient and curvature of the trade-off, which needs to have105

positive gradient: as the host invests in defence against the parasite (β decreases), less can be106

invested in reproduction (a0(β) decreases) (Boots & Haraguchi, 1999; Geritz et al., 2007). The107

constraints on the trade-off parameters give accelerating costs of defence, so that it is more costly108

to invest in resistance when defence is already high
(

d2a0(β)
dβ2 < 0

)

, see figure A.1 in Appendix109

A. Accelerating trade-offs generally lead to evolutionary attractors (Hoyle et al., 2008), which110

will be our focus here.111

We use the adaptive dynamics method to study evolution of the host in the transmission coef-112

ficient β. The method involves adding a rare mutant with susceptible and infected population113

sizes Sm, Im and transmission coefficient βm very close to the resident transmission coefficient β.114

We assume that mutants occur infrequently so that the resident population reaches the dynamic115

attractor of the population dynamics (generally a limit cycle here) before the next mutant is116

introduced (Geritz et al., 1998). When a new mutant arises, it is rare compared to the current117

population, so we assume that the resident remains at its limit cycle as long as the mutant118

population is small (Geritz et al., 1998). To analyse how the host evolves, we consider the mu-119

tant’s fitness, defined to be the long-term exponential growth rate of the mutant in the current120

environment (Metz et al., 1992).121

In the case where γ = 0, the fitness is relatively simple to find. We no longer have infected122

mutants (they are absorbed into I), and we can read off the time-varying growth rate r(t) of the123

mutant host from the linearisation of the equation for the susceptible mutant (dSm/dt = r(t)Sm,124

see Appendix B). Following the method from Donnelly et al. (2013), we can then take the average125
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of this over one period to find the mutant fitness:126

r =
1

T

∫ P1

P0

r(t)dt =
a0(βm)

T

∫ P1

P0

{[

1 + δ sin

(

2πt

ǫ

)]

[1− qN(t)]

}

dt− b−
βm
T

∫ P1

P0

I(t)dt , (5)

where T is the period of the system, P0 is an arbitrary time after the resident dynamics have127

reached a limit cycle, and P1 = P0 + T .128

Unfortunately we cannot use this averaging method when γ > 0. Instead, we have to find the129

Lyapunov exponents or Floquet multipliers numerically (Metz et al., 1992; Klausmeier, 2008).130

We do this by letting the linearly independent solutions of the linearised mutant equations be131

of the form Xi(t) = eµitpi(t) for i ∈ 1, 2 (Grimshaw, 1990), and then take the largest µi as the132

mutant fitness. A full discussion of the method is given in Appendix B. We also ran stochastic133

simulations which relax the separation of timescales assumption, and these confirm our key134

results, for examples see figure 2 and Appendix D.135

3. Results136

3.1. Population dynamics137

To explore how the population dynamics shape selection, we first consider the nature of the138

attractors of equations (1) - (2). For most parameter sets, the period of the population dynamics139

is equal to that of the forcing in the birth rate, i.e. T = ǫ. However, there are parameter regions140

where the population undergoes a period-doubling bifurcation with resulting cycles of period141

T = λǫ for some positive integer λ. We can also find cases of multiple attractors, often with142

different periods. After finding this period, we can write down the average size of each class as143

follows (method in Appendix C):144

Ŝ =
1

T

∫ P1

P0

S(t)dt =
α+ b+ γ

β
(6)

145

Î =
1

T

∫ P1

P0

I(t)dt =
β

(α+ b+ γ)T

∫ P1

P0

SIdt . (7)

Immediately we can see that the average susceptible population Ŝ does not depend on either of146

the seasonal parameters. However, this is not the case for the average infected population Î,147
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which we have to evaluate numerically for δ > 0. For the default parameter values in table 1,148

we find that Î increases with the amplitude of seasonality δ, and hence the average prevalence149

(

1
T

∫ P1

P0

I(t)
N(t)dt

)

of the parasite also increases. When we vary the period ǫ, Î increases to a peak150

at ǫ ≈ 1.5 due to resonance with the unforced system, then decreases as ǫ continues to increase.151

This is discussed further in section 3.4. Considering the fitness expression in (5), it is clear that152

the effect of seasonality on these population averages will have crucial impacts on host evolution153

for all recovery values, unlike with parasite evolution (Donnelly et al., 2013). We can therefore154

use these averages to explain how the host evolves in response to changes in parameters.155

3.2. Evolution for γ = 0156

When we set γ = 0, we revert back to the simpler SI model. As stated in section 2, we can write157

down the fitness of the host in this case for all δ ∈ [0, 1] in equation (5). Here we only consider158

continuously stable strategies (CSSs) unless stated otherwise, i.e. singular points that are both159

evolutionarily stable (ES) and convergence stable (CS) as defined by Geritz et al. (1998) which160

lead to long-term evolutionary attractors. This behaviour was confirmed using pairwise-invasion161

plots (PIPs) and simulations over a range of parameters, for an example see Appendix D.162

When δ is increased from 0, we find that the average infected population increases and so does163

the investment in defence (i.e. β∗ decreases & higher defence), see figure 1(a),(b). This is what164

we would naively expect: as the average infected population increases, the host has to invest165

more in resistance against the parasite to reduce the proportion of infected individuals (Boots166

& Haraguchi, 1999; Boots et al., 2009).167

In section 3.1 we mentioned that for particular parameter sets, period-doubling bifurcations and168

bistability between different attractors in the population dynamics can occur. Figure 1(c),(d)169

shows an example of this phenomenon together with host selection. As we increase δ, there170

is a point at which the 1-year solution undergoes a period-doubling bifurcation. The resulting171

2-year solution then goes through two folds, after which a stable solution exists, see Appendix E.172

Bistability between different solutions for δ ∈ (0.57, 0.63) causes overlap of the singular points173

given by each cycle, giving a discrete change in the CSS resistance β∗ and average infected174

population, figure 1(c),(d). Note that due to the basins of attraction for each CSS within175

the bistability region, the host can only evolve towards the T = 2 singular point for initial176

transmission coefficient β0 greater than the lower bound of the bistablility region, see Appendix177
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Figure 1: Change in (a),(c) the singular point β∗ and (b),(d) the average infected population for β = β∗ as the
amplitude of seasonality δ varies for γ = 0. Default parameters were used in (a),(b), with â0 = 104 in (c),(d). In
(c),(d), on the left only the 1-year solution is stable, and on the right only the 2-year solution. In the centre there
is bistability between the 1 and 2-year cycles or between the two different 2-year cycles. Blue - period T = 1; Red
- period T = 2.

E. This jump in the average infected population and singular point occurs whenever a period-178

doubling bifurcation and bistability between attractors exists for γ = 0.179

Overall the impact of the amplitude of seasonality δ on the singular point for γ = 0 is weak for180

a wide range of parameters as seen in figure 1. Seasonality has a much stronger effect for higher181

recovery rates, as discussed below.182

3.3. Evolution for γ > 0183

Unlike in the SI model above, when γ > 0 we use a numerical approximation to find the184

host fitness. When γ is relatively close to zero, we find one singular point which decreases as185

δ increases, as seen in section 3.2. However for positive but small values of γ, this behaviour186

changes direction. We start to see both the singular point β∗ and the average infected population187

increasing, in contrast to γ = 0 where the trends go in opposite directions. As recovery increases,188

selection for defence is weakened, and so at this small recovery maintaining a large population189

size through births becomes more important than resistance to the parasite, causing the change190
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in evolutionary direction.191

Figure 2: (a) Change in the singular points as δ varies for â0 = 104, γ = 0.005. Blue lines indicate the CSS
points, red dashed lines the repeller point and black dotted lines the switch between attractors. The period of
the population dynamics is 2 in the shaded region and 1 (ǫ) elsewhere. (b) Simulation example corresponding to
(a) with initial transmission coefficient β0 = 0.7 and δ = 0.9, which evolves towards the lowest CSS β∗

L = 5.067.
Darker squares indicate a higher proportion of the population with the corresponding transmission coefficient β,
and the dashed line marks the point where evolution drives the population to switch to an attractor with period
T = 2. (i)-(iii) correspond to sample population dynamics of the resident strain shown in (c), with black for S

and red for I at evolutionary times (i) 10, (ii) 20 and (iii) 100.

As we continue to increase the recovery rate, we reach a region of γ values where three singular192

points exist, two CSSs with a repeller between them, for an example see figure 2(a). Here we193

have evolutionary bistability between two CSSs, and for certain parameter sets the CSSs have194

different cycle lengths due to the stability of the attractors in the population dynamics, as in195

the example shown. In this case the host could start in a 1-year cycle, but evolution would196

drive it into a 2-year regime, i.e. evolution can drive changes in the population dynamics, see197

figure 2(b),(c). We can also have the situation where all three singular points give period two198

population dynamics (not shown). Figure 3 shows two-dimensional contour plots for two CSS199

points in the parameter regions where they occur. Both CSS points increase with δ, as argued200

above, but they go in opposite directions as γ increases. This occurs because at high levels of201

defence (low β∗, figure 3(a)), selection for even higher defence weakens as recovery increases,202

and so the host decreases its resistance. However, when the host has a low level of defence (high203

β∗, figure 3(b)), the susceptible hosts become infected more quickly and an increase in recovery204

raises the infected population further, hence there is strong selection for defence and the host205

invests more in resistance. Recovery therefore has a much more complicated effect on evolution206

when seasonality is included in the model, since most of these bistability regions occur for large207

amplitudes.208

If we increase γ further, the size of the interval of δ values where bistability occurs decreases to209

zero. For all γ values above this point, we find only one singular point β∗ that increases with δ,210
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Figure 3: Two-dimensional contour plots showing the change in the two CSS points that occur as γ and δ vary for
default parameters. (a) β∗

L, the smallest CSS point; (b) β∗

H , the highest CSS point. White areas indicate where
each singular point does not exist.

figure 4(a), for the same reasons as explained above.211

Figure 4(a) shows a two-dimensional contour plot for the singular point β∗ as δ and γ vary212

in the region where one singular point exists. For the majority of amplitudes, the average213

infected population decreases with increasing recovery, and hence the host invests less in defence.214

However, we have slightly more complicated behaviour for high δ. Initially we find that the host215

increases defence (decreases β∗), then at an intermediate recovery the trend turns and the host216

decreases its defence (increases β∗). This behaviour is due to changes in the average infected217

population, which peaks for intermediate γ since initially the increase in susceptible individuals218

available to be infected outweighs the loss from recovery.219

Figure 4: Two-dimensional contour plots showing the value of the singular point β∗ as amplitude of seasonality
δ and (a) recovery rate γ, (b) crowding factor q and (c) virulence α vary. Other parameters were fixed at default
values from table 1 with γ = 1.

Alterations to other model parameters also causes variation in the host’s evolution. Figure 4(b)220

shows the change in the singular point β∗ as δ and the crowding coefficient q are varied. As221

above, we see that β∗ increases with δ for all values of q. As we increase q for fixed δ, the infected222

population size decreases. We therefore expect the host to invest less in defence as q increases,223
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i.e. β∗ to increase, which is exactly what we find for most values of δ. However, for very high224

amplitudes we find that the level of defence has a more complicated relationship with q, and225

in particular that defence is minimal (β∗ maximum) for intermediate and very high values of226

q. For low q, the average infected population decreases as q increases, hence the host invests227

less in defence as for lower δ. However, there comes a point where the susceptible population is228

relatively low due to the decreased resistance, and so the host invests more in defence rather than229

births to increase the average susceptible population. As q continues to increase, the average230

infected population becomes small enough that selection for defence is weakened, and so the231

host returns to its previous behaviour and invests less in defence (β∗ increases) for very high q.232

We find similar results when the virulence α varies, figure 4(c). As α increases, the average233

infected population decreases and the host can afford to invest less in defence, which is exactly234

what we find for δ up to intermediate values. However, as for varying q, the trend becomes235

more complicated for highly seasonal birth rates. In this region, we now have a large peak in β∗
236

for an intermediate value of α, followed by a trough and a small increase in β∗ for high α. For237

small and very large α, this behaviour is due to the average infected population decreasing and238

therefore the host can afford to invest less in defence. However, the initial behaviour causes the239

total population to decrease, and there is a region of α values where the host needs to evolve240

in such a way that the population size increases. Therefore the host has to balance changes in241

the infected and total population sizes, giving the more complicated evolutionary behaviour for242

high amplitudes.243

The results discussed above are for a parameter set where the host lifespan is equal to the period244

of forcing (one year). The effects seen are dampened for longer lived hosts (smaller b), and there245

can be no difference in the evolutionary behaviour with γ, q or α for different amplitudes (see246

Appendix F). Hence the effect of the amplitude on the host’s evolutionary behaviour with other247

parameters depends on context, and in particular we cannot rely on the behaviour remaining248

the same as the amplitude of the birth rate increases for short-lived hosts.249

3.4. Varying the Period of the Forcing ǫ250

The population dynamics have period determined by that of the forcing ǫ, as discussed in251

section 3.1. We can investigate how changing this period over a wide range of values affects the252

evolution of the host, figure 5(a) (although in many systems a 1-year cycle (ǫ = 1) may be the253
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Figure 5: (a) Change in the CSS singular point β∗ as ǫ varies for default parameters with δ = 0.5 & γ = 1. (b)
Change in the size of the bistability region in recovery rate γ as ǫ varies. Blue: γ value where bistability starts;
Red dashed: γ value where bistability ends.

most appropriate). We found that there is a large peak in both the average infected population254

and the singular point β∗ caused by resonance with the natural timescale of the model, after255

which they decrease slowly as ǫ is increased further. Hence for rapidly changing environments256

(ǫ low), any alteration to the period would have a significant impact on the host’s evolution. In257

comparison, for slowly varying environments any change in the period barely alters the host’s258

evolution. This behaviour with ǫ stays roughly the same for all parameters tested. Similarly,259

when both the period and other parameters are varied simultaneously, the period doesn’t affect260

the evolutionary behaviour we find as other parameters change and vice versa.261

The bistability region studied in section 3.3 changes in size for varying period ǫ. Figure 5(b)262

shows this, indicating that the bistability region is largest (in γ) for ǫ ≈ 1, slightly lower than263

the peak seen in figure 5(a). Above and below this value the bistability region decreases in size264

and quickly disappears. The period of the seasonality therefore has a large impact on whether265

or not these bistability regions occur.266

4. Discussion267

We have shown that seasonality in the ecological dynamics, specifically the birth rate, has a268

clear quantitative and qualitative effect on the evolution of host resistance against a parasite269

in our model. The relative size and nature of the impact depends crucially on the underlying270

epidemiological model, and particularly on the potential for recovery from infection. We found271

regions of parameter space where there is bistability between two distinct evolutionary strategies272

(CSS points), which can occur alongside a switch between attractors in the population dynamics.273
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In these regions, evolution could drive the population to a different attractor, fundamentally274

altering the population dynamics the host experiences. Crucially, we also found that well known275

patterns for the host’s evolutionary strategy in a constant environment don’t necessarily hold276

for variable birth rates, particularly when the amplitude of fluctuations is high.277

We found that the amplitude of the seasonality and the recovery rate are key processes affecting278

the evolution of the host’s defence for a seasonal birth rate in our model. When recovery is279

absent, the host invests more in defence as the amplitude of seasonality increases as this leads280

to an increase in the average infected population and thus selection for increased defence. The281

trends observed were weak, but are consistent with existing theory on the evolution of avoidance282

in the absence of recovery (Boots & Haraguchi, 1999; Donnelly et al., 2015). When the host283

can recover from the parasite, the evolutionary dynamics become more complicated. The trend284

of host investment with the amplitude of seasonality switches direction at a low recovery rate,285

above which the host decreases its defence as the amplitude increases, since the host is now286

balancing reduced transmission against the increased contribution to fitness made by infected287

hosts through recovery. These results emphasise the importance of recovery in host-parasite288

infections as they prevent the parasite from being a ’functional predator’ (Boots, 2004; Donnelly289

et al., 2015; Best et al., 2017). We also note that our results with recovery for host evolution are290

similar to the findings of Donnelly et al. (2013) for parasite evolution, where the parasite invests291

more in infectivity as the amplitude of seasonality increases. This suggests a robust result that292

in many systems increased seasonal amplitude will lead to higher transmission, though a full293

coevolutionary study that includes recovery would be needed to confirm this.294

There has been a lack of attention to how seasonality might affect host evolution in theoretical295

studies, even though it has been shown that epidemiological dynamics can be greatly impacted296

by a variable environment (Altizer et al., 2006; Grassly & Fraser, 2006). In addition, it is well297

known that a wide range of species reproduce seasonally due to environmental fluctuations, for298

example in bats (Stawski et al., 2014), killifish (Furness, 2016) and birds (Ketterson et al., 2015).299

The theorectical studies that do consider seasonality are generally co-evolutionary with a gene-300

for-gene based infection interaction (Nuismer et al., 2003; Mostowy & Engelstädter, 2011; Poisot301

et al., 2012). Of particular relevance to our study, Poisot et al. (2012) include explicit ecological302

dynamics in their model, using an additional resource variable with discrete fluctuations to303

implement seasonality, as well as a partial gene-for-gene infection mechanism. Despite these304

12



different underlying assumptions, they too find that the host invests more in defence when the305

amplitude of the seasonality is high and there is no recovery. Moreover, in an experimental study,306

Blanford et al. (2003) showed that pea aphids, Acyrthosiphon pisum, evolved higher resistance307

against a fungal pathogen, Erynia neoaphidis, when periodically exposed to higher temperatures.308

Since the fecundity of aphids varies with temperature (Ramalho et al., 2015) and aphids lack309

many of the genes associated with immune response to microbes (Gerardo et al., 2010), these310

results agree with the theoretical results found here and by Poisot et al. (2012), that increased311

seasonality leads to increased resistance in the absence of recovery.312

Interestingly, we found that evolutionary bistability can exist between two convergence stable313

strategies for small recovery rates. When the amplitude of the birth rate is high, the host may314

evolve towards either of two levels of defence depending on initial conditions. This bistability315

only occurs for a finite range of amplitudes, meaning that a small change in the amplitude could316

lead to a large change in the level of defence the host evolves. Furthermore, the bistability317

can occur in conjunction with a switch between attractors with different cycle lengths, with the318

higher level of defence (lower transmission) giving a regime of two-year cycles in the population319

dynamics, whereas the lower defence (higher transmission) is in a one-year regime, meaning that320

evolution can in fact drive the population dynamics into a cycle with a different period. This321

effect of evolution moving host-parasite systems into regions of qualitatively different population322

dynamics has also been shown in systems which assume a constant environment but population323

cycles occur naturally (Hoyle et al., 2011; Best et al., 2013). These results emphasize that324

ecology/epidemiology and evolution are involved in a two-way feedback, as not only does ecology325

drive selection, but evolution can determine the nature of the population dynamics.326

There have been many studies considering the evolution of host defence against parasites that327

did not include seasonality (van Baalen, 1998; Boots & Bowers, 1999; Boots & Haraguchi, 1999).328

We have shown here that many classic results are likely to be true in a weakly seasonal system,329

but may not hold for an increasingly variable birth rate. For example, as virulence varies,330

investment in resistance decreases as found previously (Boots & Haraguchi, 1999; Best et al.331

2017) for low amplitudes of seasonality, but at high amplitudes is maximized at either minimum332

or relatively high virulence. We see similar behaviour for varying crowding factor, in that our333

results agree with those found by Boots & Haraguchi (1999) for low amplitudes, but disagree for334

high amplitudes. These differences are a result of complicated feedbacks between seasonality,335

13



population sizes and selection which alter the costs/benefits of resistance and births. However,336

we have shown that this effect is dampened for hosts with longer lifespans, returning to the337

behaviours seen in previous work for all amplitudes of the seasonality (see Appendix F). It is338

clear that while many results found for constant environments remain true when the birth rate339

is variable in time, this may not be the case when the amplitude is particularly high, especially340

for short-lived hosts.341

We also investigated the impact of changing the period of the forcing on the evolution of the342

host’s defence. We found that changing the period induces a peak in the infected density, caused343

by resonance in the population dynamics with the unforced system. Naively we would expect344

this to lead to a maximum level of investment in defence, however, as with varying amplitude345

in the presence of recovery, the host evolves towards a minimum level of defence in order to346

maintain a large overall population size through increased birth rate. Near the peak, small347

alterations in the period will lead to relatively large changes in the evolutionary investment in348

defence. Away from the peak, the curve is almost flat and so the host’s evolution is barely349

affected by changes in the period when it is already large. In an experimental study, Harrison350

et al. (2013) found that resistance of P. fluorescens SBW25 to a phage was constrained most351

strongly in rapidly fluctuating environments, while Duncan et al. (2017) showed that resistance352

of the same bacteria evolved more quickly in rapidly fluctuating environments. It is unclear to353

what extent our results agree with these experimental studies, in part due to these systems being354

co-evolutionary with genetic specificity, and in part because it is difficult to ascertain which side355

of the resonance peak these studies may be focusing on. It is clear, though, that the time-frame356

of the fluctuations has important consequence to the evolutionary outcome.357

Temporal heterogeneity, including seasonal fluctuations, are a fundamental aspect of all natural358

ecological systems. However, both experimental and theoretical studies have rarely investigated359

the impact of fluctuating environments on evolutionary patterns. Here we have shown that a360

seasonal birth rate has a significant qualitative impact on the evolution of host defence in an361

SIS model, which is highly dependent on the presence and size of recovery. It is clear that362

key features of evolutionary dynamics may be missed by assuming a constant environment, and363

therefore important for us to consider how seasonality may impact host-parasite evolution more364

widely. There is clearly scope for further theoretical and experimental work to explore the365

impacts of seasonality on host-parasite evolution.366
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