

This is a repository copy of Lower vehicular primary emissions of NO2 in Europe than assumed in policy projections.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/124748/

Version: Accepted Version

Article:

Grange, Stuart Kenneth, Lewis, Alastair orcid.org/0000-0002-4075-3651, Moller, Sarah Julia orcid.org/0000-0003-4923-9509 et al. (1 more author) (2017) Lower vehicular primary emissions of NO2 in Europe than assumed in policy projections. Nature Geoscience. pp. 914-918. ISSN: 1752-0908

https://doi.org/10.1038/s41561-017-0009-0

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Lower vehicular primary emissions of NO_2 in Europe than assumed in policy projections

Stuart K. Grange^{1,*}, Alastair C. Lewis^{1,2}, Sarah J. Moller^{1,2},

David C. Carslaw^{1,3}

¹Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD,

United Kingdom

²National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD,

United Kingdom

³Ricardo Energy & Environment, Harwell, Oxfordshire, OX11 0QR, United Kingdom *stuart.grange@york.ac.uk

Many European countries do not currently meet legal air quality standards for ambient nitrogen dioxide (NO_2) near roads; a problem that has been forecast to persist to 2030. Whereas European air quality standards regulate NO_2 concentrations, emissions standards for new vehicles instead set limits for NO_x – the combination of nitric oxide (NO) and NO_2 . From around 1990 onwards, total emissions of NO_x declined significantly in Europe, but roadside concentrations of NO_2 – a regulated species – declined much less than expected. This discrepancy has been attributed largely to the increasing usage of diesel vehicles in Europe and more directly-emitted tailpipe NO_2 . Here we apply a data filtering technique to 130 million hourly measurements of NO_x , NO_2 and ozone (O_3) from roadside monitoring stations across 61 urban areas in Europe

over the period 1990 to 2015 to estimate the continent-wide trends of directly emitted NO_2 . We find that the ratio of NO_2 to NO_x emissions increased from 1995 to around 2010 but has since stabilised at a level that is substantially lower than is assumed in some key emissions inventories. The proportion of NO_x now being emitted directly from road transport as NO_2 is up to a factor of two smaller than the estimates used in policy projections. We therefore conclude that there may be a faster attainment of roadside NO_2 air quality standards across Europe than is currently expected.

Since the mid-1990s the European vehicle fleet has undergone considerable dieselisation 1-4 with incentivisation over other fuels and technologies on the basis of predicted fuel efficiency, lower CO_2 emissions, and increased driving performance.^{5–7} By 2014 diesel vehicles accounted for an average of 53 % of new European passenger vehicle sales compared to 14 % in 1990, in contrast to little increase in their adoption into US fleets.^{3,4} The proportion of diesel powered vehicles across Europe has contributed to widely published problems where legal ambient air quality standards are breached, usually near roads. Of particular concern in recent years is nitrogen dioxide (NO₂) although particulate matter (PM) is also important.⁸ Many European Union (EU) member states are struggling to comply with the 2008/50/EC Air Quality Directive which sets legal limits for hourly and 10 annual average $\mathrm{NO_2}$ concentrations. ^{8–10} While total national emissions of $\mathrm{NO_x}$ (NO + 11 NO₂) have shown reductions in Europe, urban concentrations of NO₂ have decreased less than expected and this has been attributed to the growth in diesel fuelled vehicles. 11-19 13 The impacts on public health of NO₂ are significant both through direct harm on 14 inhalation and as a precursor to secondary pollutants ozone (O_3) and PM.²⁰ Published estimates of premature deaths due to NO₂ in 28 EU countries were reported to be 72 000

annually, based on a 2012 analysis year. Roadside locations are perhaps the most important places where NO_2 must be controlled because this is where human exposure is at its highest. These are challenging locations from a legal compliance perspective — of all the reported exceedances of EU hourly and annual limit values in 2016, 94 % of those occurred at roadside monitoring locations.

NO₂ concentrations at roadside locations are primarily controlled by local road trans-22 port and are influenced by, firstly, the total amount of NO_x emitted and then the fraction 23 of that NO_x that is directly emitted as NO_2 .²³ A shift towards higher NO_2/NO_x emissions from road transport can lead to a counter intuitive situation where total NO_x emissions can fall over time, yet roadside concentrations of NO₂ do not decline. The influence of this key ratio in driving trends and forecasts has already been shown in central London. ¹⁶ Predictions of future NO₂ concentrations in Europe must make assumptions about this NO_2/NO_x ratio, and predicted increases in this ratio are in part, behind a predicted lack 29 of air quality standard attainment in many cities until 2025–2030. 15 Despite the critical 30 importance of the NO₂/NO_x ratio in controlling urban roadside concentrations, specific limits do not exist as part of European vehicular emission standards tests. New European vehicle tests report only total NO_x (NO + NO_2) in exhaust gases and whilst emission standards set limits for total NO_x they do not speciate between NO and NO₂. Beyond initial new vehicle tests little is known about how technologies such as diesel oxidation catalysts (DOC) and diesel particulate filters (DPF) influence this ratio in the real-world, despite the high profile given to the topic since the Volkswagen (VW) emissions scandal.^{7,24} The implications of not correctly estimating NO₂/NO_x ratios in policy support tools such as COPERT and HBEFA have been described by others.^{25–28}

Although recent NO_x emission underestimates from passenger cars have received most

media attention, other vehicles such as heavy duty vehicles (HDVs) and buses are also important in controlling roadside NO₂ because they are predominately diesel fuelled. In this study, which focuses on NO₂ trends in urban areas, it is expected that light duty vehicles (LDVs) and urban buses will make significant contributions to vehicle emissions. It should also be noted that in terms of emissions data availability there is considerably more information available on passenger cars compared with other types of vehicles. As a consequence, there is uncertainty in both the absolute and relative contributions to NO_x and NO₂ from these additional transport sources.

The NO₂/NO_x ratio from diesel vehicles is controlled by both engine and exhaust control technologies that have advanced in response to the 'Euro' series of emissions standards. The introduction of Euro 3 in 2000 saw the introduction of DOC into passenger vehicles; where in the presence of excess oxygen, NO can be oxidised to NO₂ over DOC metal catalysts resulting in more direct NO₂ being emitted. ^{16,29,30} The introduction of DPF in 2009 for compliance with the Euro 5 emission standards introduced a further technology that could lead to additional direct tailpipe NO₂. ³¹ However, as each progressive Euro standard has been introduced there have been no systemic observations of how new exhaust technologies might affect the NO₂/NO_x ratio in real world emissions, or evaluation of whether the emissions inventories that need this ratio for forecasts, and that unpin policy, are preforming well.

$_{ iny 60}$ Ambient observations to determine the ${ m NO_2/NO_x}$ trend

Using the measured roadside atmospheric ratio of NO_2 to NO_x (NO_2/NO_x ratio, expressed as a molar volume ratio) is one effective way of determining the influence on NO_2 of increased proportions of diesel vehicles in a fleet, as well as a method to detect change in

after treatment technologies resulting from progressive tightening of the Euro standards. Since there is no systematic set of vehicle exhaust measurements that show NO₂/NO_x trends we look instead at the combined national data sets of ambient monitoring information which measure NO and NO₂ in air. We carefully filter these datasets for roadside locations where the ratio of these two species can be taken as a proxy for the exhaust emission ratio. We note that there is considerable diversity in the penetration and uptake 69 of diesel vehicles, typical vehicle lifespans, and climates when considering Europe as a 70 whole. The analysis in this section uses data from roadside monitoring sites across 61 European urban areas between 1990 and 2015. The combined European trend (Fig. 1) for the 61 areas demonstrates a clear increase in annual mean NO_2/NO_x ratio between 73 1995 and 2010. The aggregation was performed on the mean for each city in each year to ensure the results were not biased towards cities with more measurement locations, such 75 as London. 76

Figure 1 shows three distinct periods where NO₂/NO_x ratio behaviour differed. The
first, from 1990 to 1994 coincides with a pre-Euro 3 fleet that did not use diesel oxidation
catalysts (DOCs) and the ratio was stable within the uncertainty of the slope estimate
and less than 10 % (Supplementary Table 2). The second period from 1995 to 2008 is a
period where there was a clear, sustained, and significant increase in the NO₂/NO_x ratio
corresponding to a period of growth in diesel passenger cars numbers and the introduction
of DOC to new vehicles via Euro 3 and Euro 4. Over this period the ratio increased to a
peak value of approximately 16 % in 2010. The third period is characterized by a stabilisation in the NO₂/NO_x ratio and coincides with the introduction of Euro 5 vehicles fitted
with diesel particle filters (DPFs). The second period is the only period that shows a
statistically significant change NO₂/NO_x ratio. The trends shown in Fig. 1 broadly follow

the pattern of reported changes in emissions seen from sporadic remote sensing measurements of almost 70 000 vehicles in London (during 2012), with a progressive increase in NO_2/NO_x ratio for diesel passenger cars and light vans from pre-Euro to Euro 5.³² 90 Although the ambient derived NO₂/NO_x ratio turning points in Fig. 1 broadly coincide 91 with identifiable regulatory landmarks, the changes are more complex than they would first appear. First, when a new Euro class is introduced, it takes time for those new 93 vehicles to significantly penetrate the vehicle fleet and affect overall emissions. Second, the emissions characteristics of vehicles will be expected to change as they age. For example, a Euro 3 car introduced in year 2000 will be ≈ 5 -6 years old at the end of the Euro 3 period. Analysis of vehicle emission remote sensing data has shown that vehicle ageing tends to decrease the NO₂/NO_x ratio of diesel passenger cars (and likely other types of vehicles fitted with DOC). 16,33 All these influences, as well as other local effects, contribute to the overall pattern seen in Fig. 1. Nevertheless, it is clear that on average, 100 across Europe, the ratio has not continued to increase after 2010 and is now declining. 101 At an European level, mean annual roadside NO_x concentrations demonstrated an 102 overall decrease from 1998 to 2015 with mean NO_x concentrations reducing from 338 to 103 $228\,\mu\mathrm{g\,m^{-3}}$ (Fig. 2). Before 1998, the $\mathrm{NO_x}$ means are scattered due to fewer sites and 104 observations and larger uncertainties concerning the quality of the measurements. This decrease can be attributed to improved vehicular NO_x emission control during this period. 106 Fig. 2 shows that mean NO_x concentrations have remained stable since 2010, however, 107 the trend in NO₂ concentrations (the regulated species of NO_x) differs from total NO_x in 108 several important ways. First, NO₂ concentrations tended to increase over the period from 109 around 1997 to 2009 (despite concentrations of NO_x decreasing). Second, concentrations 110 of NO₂ have tended to decrease from around 2009 at a time when concentrations of 111

 112 NO_x have been stable. These changes in concentrations are consistent with the changes calculated for the NO₂/NO_x ratio, shown in Fig. 1.

Spatial analysis of roadside NO_2/NO_x over Europe

The Europe-wide aggregation displayed in Fig. 1 hides the diversity of trends in the 115 NO₂/NO_x ratio across European roadside monitoring sites, urban areas, and countries. 116 When estimates of the NO₂/NO_x ratio were aggregated at an urban level, a peak ratio 117 was observed at or near 2010 in most European urban areas (Fig. 3). The trends in 118 NO_2/NO_x ratio are shown for two periods 2005 to 2010 and 2010 to 2015. Over the first 119 period most urban areas showed an increase in NO₂/NO_x, most pronounced in western 120 and central Europe. For the later period the majority of regions showed a declining trend 121 in NO₂/NO_x albeit generally smaller than the earlier increases. 122

Seven percent of the urban areas however showed opposing trends most likely reflect-123 ing unique and localised site or urban area conditions. Some of these urban areas includ-124 ing Amsterdam (Netherlands), Barcelona (Spain), Milan (Italy), and Krakow (Poland) 125 demonstrate a levelling-off of the NO₂/NO_x ratio but had not shown decreasing trends 126 by 2015. Other urban areas such as Dublin (Ireland which had the largest delta), Rotter-127 dam (Netherlands), some urban areas in central United Kingdom, and Helsinki (Finland) 128 showed further increases in NO_2/NO_x by 2015. Some urban areas, most conspicuously 129 in Reykjavík (Iceland), are not shown in the 2010–2015 panel (b) in Fig. 3. This was 130 due to the absence of more-recent observations, usually due to O_3 or NO_x monitoring site 131 closures or when the EU member state stopped reporting NO_x and NO alongside NO₂. It 132 is very difficult to attempt attribute the underlying causes of the 7 % outliers; it may be 133 associated with fleet makeup or indeed other local factors such as changing road layouts, 134

new sources and urban infrastructure. In the absence of consistent information across
Europe on these factors we do not speculate further.

The overwhelming consistency seen in the 93 % of urban areas and across the whole of the continent is however strongly suggestive of a European-scale influence on primary NO₂, not that this change in NO₂/NO_x is a result of a series of uncoordinated local factors. These changes are consistent with a steady evolution of the European fleet as a whole, for example, the effect of Euro standards and technologies, rather than trends driven by city or country specific interventions such as changes to local urban public transport fleets, introduction of congestion zones, and so on.

Potential factors controlling recent declines in $\mathrm{NO_2/NO_x}$

Whilst the periods of increase in the NO₂/NO_x ratio can be rationalised based on previous evidence, the recent declines in ratio from around 2010 are more difficult to understand 146 because diesel vehicles continue to use DOC with DPF. We raise here some potential 147 factors that could explain this result. Remote sensing measurement of selected vehicles has showed that selective catalytic reduction (SCR) control systems introduced on heavy 149 duty vehicles have improved, resulting in both lower overall emissions of NO_x and a better 150 control of NO₂. ¹⁶ Although the numbers of heavy duty vehicles passing each monitor is 151 unknown across Europe, this technology working on part of the fleet may have contributed 152 to the ratio declining. A second potential factor is the ageing of exhaust control systems 153 themselves, and an engineering shift towards 'catalytic thrifting'. This refers to vehicle 154 manufacturers and catalyst developers progressively reducing the amount of platinum group metals used in exhaust systems which in turn has a consequence of reducing the 156 amount of NO₂ generated. Finally, evidence from vehicle emission remote sensing shows 157

that as light duty diesel vehicles age, the NO_2/NO_x ratio does decrease over time although the extent of this is uncertain. It would seem plausible that all of these poorly understood factors could, in combination, contribute to the stabilisation and decline seen in NO_2/NO_x ratio since 2010. However, with ambient data alone, it is impossible to quantify the individual contributions robustly.

163 Comparisons to emissions inventories

The Europe-wide primary NO₂/NO_x estimated by the observational filtering method here 164 differs substantially from previous works which report roadside NO₂/NO_x ratio trends. 165 Other inventories estimate higher NO₂/NO_x than what we see in the real world. A 166 modelled estimate of traffic emissions at a national and European level in five year intervals 167 between 2000 and 2030^{15} predicted NO_2/NO_x to increase $\approx 25 \%$ by 2020 and stay at this level until 2030 (Fig. 4). Using these model estimates of NO₂/NO_x around 30 monitoring 169 areas were then forecast to still be in breach of the European NO₂ air quality standard in 170 2030. The current United Kingdom (UK) vehicular primary NO₂ emission factors are also 171 predicted up to 2030 in the National Atmospheric Emissions Inventory (NAEI). 34 The UK 172 emission factors are derived from the COPERT database with modelling of predicted fleet 173 changes in the future. The UK primary NO₂ emission factors for all UK urban areas are 174 currently predicted to reach a peak NO₂/NO_x ratio in 2015 at 23 % (Fig. 4). After 2015, 175 the UK emission factors decrease until 2030 to a minimum ratio of 17 %. 176

Both emission estimates appear to substantially overstate the current fraction of emissions that is directly released as NO₂, in one case by nearly a factor two for the year 2015, and the measured vs. modelled trends are currently diverging further from one another.

If primary NO₂ emissions remain similar or even further decreases as the current analysis

suggests, the use of these inventory estimates for air quality modelling purposes would result in overly pessimistic future predictions of compliance with European NO₂ ambient air quality standards.

184 Impact on the attainment of air quality standards

Policy projections of air quality that use too high a value for the NO₂/NO_x ratio will 185 predict higher concentrations of roadside NO₂ than may actually occur for the same 186 total amount of NO_x emitted. As an example of the potential changes brought about 187 by using different NO₂/NO_x ratios, we compare how ambient concentrations would vary 188 based on the current range of estimates. The most recent ratio reported here by the 189 filtering method was 14.5 % in 2015 while the other reported estimates ranged from 25190 to 22 % (Fig. 4). To estimate the influence of differing primary NO₂ assumptions on 191 roadside annual mean NO₂ concentrations, we have considered the roadside increment of 192 NO_x concentration at each measurement site i.e. the increment in NO_x concentration 193 above urban background values of NO₂. Two scenarios have been considered: first, that the roadside NO_x increment is associated with a NO_2/NO_x ratio of 14.5 % and second, 195 that it is associated with a ratio of 23 %. Considering all European roadside sites, the 196 mean difference in NO_2 concentration between these two scenarios is $6.6 \,\mu\mathrm{g}\,\mathrm{m}^{-3}$. The 197 current analysis, which applies data filtering techniques, is not strictly consistent with 198 the changes expected to annual mean NO₂ concentrations because only a subset of data 199 have been analysed. However, the changes in the NO₂/NO_x ratio identified will have a 200 strong influence on annual mean NO₂ concentrations close to roads. 201

The impact of differing primary NO_2 assumptions will clearly vary depending on individual sites. However, for the most polluted NO_2 sites in Europe, examples being Brixton

Road and Farringdon Street in London, the annual mean difference in NO₂ from the traffic 204 contribution could be as much as $19 \,\mu\mathrm{g}\,\mathrm{m}^{-3}$. Differences in projected NO₂ of this kind of 205 magnitude are highly significant when compared against targets for compliance with the 206 European annual NO $_2$ ambient standard which is currently 40 $\mu\mathrm{g}\;\mathrm{m}^{-3}.$ In this respect, cur-207 rent air quality modelling of roadside NO₂ that uses these unrealistically high NO₂/NO_x 208 ratios for the future will tend to also be overly pessimistic. Should NO₂/NO_x ratios of 209 the kind now being observed across Europe be projected forward for the next decade then 210 attainment of annual roadside NO₂ standards in many places might be achieved sooner 211 than is currently predicted. 212

We note however the substantial disconnections that still exist between the legislative controls being placed on reporting vehicle emissions and air quality standards designed to protect public health. By only requiring the reporting of total NO_x from new vehicles, and not NO and NO₂ as separate quantities, the later impacts of those vehicles, and how they influence the regulate pollutant NO₂, cannot be assessed. The continued lack of any systematic collection of information on changes to NO and NO₂ emissions as vehicles age is a further gap in evidence that if filled would greatly improve the reliability of future forecasts of air quality in cities.

$_{\scriptscriptstyle{221}}$ Methods

$_{^{222}}$ Data

The primary data sources for the air quality data used in this study were the European 223 Environment Agency (EEA) AirBase and air quality e-Reporting (AQER) data repositories. 35,36 These two repositories cover all European Union (EU) member states and 225 other cooperating countries such as those in the European Economic Area (EEA) and 226 Switzerland. The AirBase repository contains observational data during 1969–2012 but from 2013 onwards, the AirBase system was superseded with the more comprehensive 228 AQER reporting system. AQER uses new data vocabulary, file formats, and requires 220 EEA member states to report a range of observational units called "data flows" which 230 were not required for AirBase. The AQER system uses the XML (Extensible Markup 231 Language) file format to transfer data but it is common for other file formats to be used 232 alongside XML for some data flows. 233 The AirBase and AQER data were cleaned and inserted into a single database with 234 a simple data model.³⁷ The AirBase data are available in well-formatted tabular text 235 files which only required decoding of their file names to be used. However, the AQER 236 XML, documents were a far greater challenge due to the need to parse different observational units to create a coherent and decoded data model. Despite AQER formalising 238 XML schemas, many variations were found across the member states' files which required 239 significant development to ensure that the variations were handled correctly. The database was also supplemented with other data where available. London for 241 example, has a much larger air quality monitoring network which is not represented by 242 AirBase and the AQER repositories because these monitoring activities are coordinated

by other bodies and do not form part of the national network. Therefore, these additional sites and data were accessed using openair, which accesses data from King's College London. 38,39 These additional sites follow equivalent quality assurance and quality procedures 246 as the national network. Many countries have not reported the full complement of NO, NO₂, and NO_x presumably due to a lack of a legal obligation and file size concerns. The analysis reported here required both hourly NO₂ and NO_x to be present for a monitor-249 ing site and therefore the missing variables were derived from the other components if 250 possible. In the case of Paris, the additional NO_x was accessed through the Airparif web 251 portal. 40 Once the cleaning and tidying was complete, the database contained 2.7×10^9 252 observations from 8 400 air quality monitoring sites. ^{37,41} 253

The data import, transformation, and tidying was conducted with R and the database technology used was PostgreSQL. Alg. Alg. NO_x data spanned from 1973 to 2015, but the analysis focused on years between 1990 and 2015 when the operation of chemiluminescent NO_x instrumentation was wide-spread throughout Europe.

258 NO $_{ m x}$ filtering method

To isolate the primary NO₂ component, a multi-step filtering process was conducted which
was similar to past calculation of CO/NO_x ratios by other authors (for example see^{44,45}).

The first step was to choose urban areas and these were generally identified by the European Commission's Functional Urban Area definition. A Functional Urban Area includes
a city and their communing zones, which is approximately equivalent to a metropolitan
area. The spatial boundaries (polygons) for these urban areas were obtained from the
AQER zones data flow which form the official EU air quality management zones. When
the polygons were not available or not suitable for use in the AQER repository, the appro-

priate administrative boundaries were scraped from OpenStreetMap. 47,48 These polygons
were then used as a spatial boundary for an urban area and only monitoring sites within
the boundary were selected and used. Seventy-six urban areas were identified and used
but after the filtering process, 61 urban areas had the variables and volume of data needed
for the analysis. An European urban area map can be found in Supplementary Fig. 1.

For each urban area that was defined with a boundary, a representative ozone (O₃)
background site was identified. The representative O₃ site had the requirements of having

a continuous monitoring operation, i.e. not a seasonal site and having an hourly time 274 series of at least five years. These O₃ time series were used to represent the typical urban 275 background concentrations of O_3 for each urban area. In some situations, an unbroken 276 time series was unavailable, usually due to monitoring site closures, therefore more than 277 one representative O_3 site was used to gain a minimum of five years of O_3 data. No data 278 capture filters were applied to the observations. Sites classified as urban background were 279 prioritised over other site types but for seven urban areas this was not possible and an 280 industrial or roadside site was used. One-hundred and thirty million hourly measurements of $\mathrm{NO_2},\,\mathrm{NO_x},\,\mathrm{and}\,\,\mathrm{O_3}$ were evaluated from 488 sites. Details on the urban areas and the 282 O_3 monitoring sites can be found in Supplementary Table 3. 283

After a representative O_3 site was identified for an urban area, hourly NO_2 and NO_x observations from traffic, roadside, and kerbside sites where filtered to include only trafficdominated periods between 06:00–18:00 (Coordinated Universal Time, Eastern European
Time, or Central European Time depending on location; Supplementary Table 3) for weekdays (Monday–Friday), and when the representative O_3 background concentrations were
low. Low- O_3 conditions were considered when hourly concentrations were $\leq 10 \,\mu \text{g m}^{-3}$ (5 ppb). The low- O_3 threshold was varied to determine the effect on the calculated ratio of

NO₂ to NO_x. Varying the absolute value of the threshold between 5 and 30 μ g m⁻³ did not alter the patterns which were determined, only the absolute values of the NO₂/NO_x ratio due to an increase of contamination of non-primary NO₂ (Supplementary Fig. 2). The 10 μ g m⁻³ threshold allowed for more recent years with higher urban O₃ concentrations when compared to earlier time periods to have an adequate number of observations which could be used to estimate the NO₂/NO_x ratio which was not the case for the 5 μ g m⁻³ threshold.

The filtering process removed many of the total NO_2 and NO_x observations but had 298 the goal of isolating the times when the influence of the $NO + O_3$ reaction was negligible. 299 These conditions would therefore represent those when the roadside increment in NO₂ 300 above background would be dominated by primary NO₂ emissions from vehicles using the 301 road. A potential source of uncertainty is the use of chemiluminescent NO_x analysers with 302 molybdenum catalysts in most analysers for compliance monitoring. These instruments 303 are affected by interference due to NO_v species, which are detected as NO₂. However, at 304 roadside locations, and in particular for increments above local background concentrations with very little ageing of the airmass, the influence of NO_v species is expected to be 306 negligible. 49 A potentially more important interferent is the direct emission of nitrous 307 acid (HONO), which would also be detected as NO₂ in these instruments. Measurements of HONO in vehicle exhausts suggests only low amounts are emitted and its effect would 309 be small. For example, ⁵⁰ measured a HONO/NO_x ratio of $2.9 \pm 0.5 \times 10^{-3}$. 310

${ m NO_2/NO_x}$ ratio estimation

After the filters had been applied, for each site and year combination, the NO_2/NO_x ratio was calculated with robust linear regression with an MM-estimator. The use of the linear

model in this way allowed for the slope to be estimated, which represents an estimate of 314 the the primary NO₂/NO_x ratio. The robust linear regression functions were provided 315 with the MASS R package.⁵¹ The robust regression technique is hardened against out-316 liers by a high breakdown point which helped handle noisy observations before 2000 in 317 some locations. When ratios were sequentially aggregated to urban area, country, and 318 European level the arithmetic mean was used as the summary function. For n values, see 319 Supplementary Table 2. After the NO₂/NO_x ratio estimates were aggregated to European 320 level, the trend was non-monotonic. The breakpoints in the trend were identified with the 321 segmented R package and three linear least squares regression models were calculated 322 to represent the pieces of the trend.^{52,53} 323

$_{^{324}}$ Method validation

The filtering method employed was tested with a total oxidant $(OX = NO_2 + O_3)$ method 325 reported by Jenkin⁵⁴. OX can be thought of as the sum of regional and local oxidant 326 contributions at a monitoring site. Like the filtering method, if the OX method is applied to a roadside site, the local oxidant component can provide an estimate of the primary 328 NO_2/NO_x ratio. Therefore the estimates of the filtering and OX methods can be directly 329 compared. The OX method has the limitation of requiring O_3 observations as well as NO_x 330 observations. However, the measurement of O_3 at roadside sites is uncommon. The two 331 methods showed very good agreement and for London Marylebone Road, a monitoring site 332 reported by Jenkin⁵⁴, the methods demonstrated near-equivalence for the years 1997–2014 333 (Supplementary Fig. 3).

References

- 1. Cames, M. & Helmers, E. Critical evaluation of the European diesel car boom global comparison, environmental effects and various national strategies. *Environmental Sciences Europe* **25**, 1–22 (2013).
- 2. European Environment Agency. Dieselisation in the EEA 2015. http://www.eea.
 europa.eu/data-and-maps/figures/dieselisation-in-the-eea>.
- 341 3. International Council on Clean Transportation Europe. European vehicle market

 statistics, 2015/2016 Pocketbook. 2015. http://www.theicct.org/european-vehicle-market-statistics-2015-2016>.
- 4. ACEA. Share of Diesel in New Passenger Cars European Automobile Manufacturers' Association. 2016. http://www.acea.be/statistics/tag/category/share-of-diesel-in-new-passenger-cars.
- 5. Koetse, M. J. & Hoen, A. Preferences for alternative fuel vehicles of company car drivers. Resource and Energy Economics 37, 279–301 (2014).
- 6. European Automobile Manufacturers' Association. ACEA Tax Guide 2016.
- 7. Schmidt, C. W. Beyond a One-Time Scandal: Europe's Onging Diesel Pollution Problem. Environmental Health Perspectives 124, A19–A22 (2016).
- 8. Weiss, M. et al. Will Euro 6 reduce the NO_x emissions of new diesel cars? Insights from on-road tests with Portable Emissions Measurement Systems (PEMS).

 Atmospheric Environment 62, 657–665 (2012).
- 9. European Parliament and Council. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for

 Europe http://data.europa.eu/eli/dir/2008/50/oj (2008).

- ³⁵⁸ 10. European Environment Agency. Air quality in Europe 2016 report EEA Report.
- No 28/2016. 2016. http://www.eea.europa.eu/publications/air-quality-
- in-europe-2016>.
- 11. Carslaw, D. C. & Carslaw, N. Detecting and characterising small changes in urban nitrogen dioxide concentrations. *Atmospheric Environment* **41**, 4723–4733 (2007).
- 363 12. Alvarez, R., Weilenmann, M. & Favez, J.-Y. Evidence of increased mass fraction
 364 of NO₂ within real-world NO_x emissions of modern light vehicles derived from a
 365 reliable online measuring method. Atmospheric Environment 42, 4699–4707 (2008).
- 13. Keuken, M., Roemer, M. & van den Elshout, S. Trend analysis of urban NO₂ concentrations and the importance of direct NO₂ emissions versus ozone/NO_x equilibrium. Atmospheric Environment 43, 4780–4783 (2009).
- Williams, M. L. & Carslaw, D. C. New Directions: Science and policy Out of step
 on NO_x and NO₂? Atmospheric Environment 45, 3911–3912 (2011).
- 15. Kiesewetter, G. et al. Modelling NO₂ concentrations at the street level in the GAINS integrated assessment model: projections under current legislation. Atmospheric Chemistry and Physics 14, 813–829 (2014).
- 16. Carslaw, D. C., Murrells, T. P., Andersson, J. & Keenan, M. Have vehicle emissions of primary NO₂ peaked? *Faraday Discussions* **189**, 439–454 (2016).
- 17. Carslaw, D. C. Evidence of an increasing NO₂/NO_x emissions ratio from road traffic emissions. *Atmospheric Environment* **39**, 4793–4802 (2005).
- 18. Ligterink, N. E., Kadijk, G. & van Mensch, P. Determination of Dutch NO_x emission
 factors for Euro-5 diesel passenger cars TNO 2012 R11099. 2012.

- 19. Carslaw, D. C., Beevers, S. D., Tate, J. E., Westmoreland, E. J. & Williams, M. L.

 Recent evidence concerning higher NO_x emissions from passenger cars and light duty

 vehicles. Atmospheric Environment 45, 7053–7063 (2011).
- World Health Organization. in WHO air quality guidelines for Europe, 2nd edition,

 2000 (2000). http://www.euro.who.int/en/health-topics/environment-
 and-health/air-quality/publications/pre2009/who-air-quality-guidelinesfor-europe,-2nd-edition,-2000-cd-rom-version>.
- 21. European Environment Agency. Premature deaths attributable to air pollution 2016.

 <a href="https://www.eea.europa.eu/media/newsreleases/many-europeans-still-exposed-to-air-pollution-2015/premature-deaths-attributable-to-a
- European Environment Agency. Exceedances of air quality objectives due to traffic

 2016. http://www.eea.europa.eu/data-and-maps/indicators/exceedances-of-air-quality-objectives-9.
- ³⁹⁴ 23. Grice, S. *et al.* Recent trends and projections of primary NO₂ emissions in Europe.

 ³⁹⁵ Atmospheric Environment **43**, 2154–2167 (2009).
- Brand, C. Beyond 'Dieselgate': Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom. *Energy Policy* **97**, 1–12 (2016).
- Ntziachristos, L., Papadimitriou, G., Ligterink, N. & Hausberger, S. Implications of
 diesel emissions control failures to emission factors and road transport NO_x evolution.
 Atmospheric Environment 141, 542–551 (2016).

- Gkatzoflias, D., Kouridis, C., Ntziachristos, L. & Samaras, Z. COPERT 4. Computer

 programme to calculate emissions from road transport User manual (version 9.0).

 2012.
- 27. INFRAS. Handbook emission factors for road transport (HBEFA) 2015. http://www.hbefa.net/e/index.html.
- 28. Department for Transport. Vehicle Emissions Testing Programme 2016.
- ⁴⁰⁸ 29. Johnson, T. V. Review of Diesel Emissions and Control. SAE International Journal of Fuels and Lubricants 3, 16–29 (2010).
- 410 30. Wild, R. J. et al. On-road measurements of vehicle NO₂/NO_x emission ratios in
 411 Denver, Colorado, USA. Atmospheric Environment 148, 182–189 (2017).
- European Commission. Transport Emissions Air pollutants from road transport

 2016. http://ec.europa.eu/environment/air/transport/road.htm.
- Carslaw, D. C. & Rhys-Tyler, G. New insights from comprehensive on-road measurements of NO_x, NO₂ and NH₃ from vehicle emission remote sensing in London,

 UK. Atmospheric Environment 81, 339–347 (2013).
- Carslaw, D. C., Williams, M. L., Tate, J. E. & Beevers, S. D. The importance of high vehicle power for passenger car emissions. *Atmospheric Environment* **68**, 8–16 (2013).
- 34. UK National Atmospheric Emission Inventory. Primary NO₂ Emission Factors for
 Road Vehicles August 2014 update. 2014.
- European Environment Agency. AirBase The European air quality database (Version 8) http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8. 2014.

- 36. European Environment Agency. Eionet Central Data Repository 2016. http://cdr.eionet.europa.eu/.
- 37. Grange, S. K. **smonitor**: A framework and a collection of functions to allow for

 maintenance of air quality monitoring data (2016). https://github.com/skgrange/

 smonitor>.
- 430 38. Carslaw, D. C. & Ropkins, K. openair An R package for air quality data analysis.

 431 Environmental Modelling & Software 27–28, 52–61 (2012).
- 432 39. Carslaw, D. & Ropkins, K. openair: Open-source tools for the analysis of air pollution
 433 data 2015.
- 434 40. Airparif. Association de surveillance de la qualité de l'air en Île-de-France http:

 //www.airparif.asso.fr/. 2016.
- 436 41. Grange, S. K. Technical note: smonitor Europe (Version 1.0.1) tech. rep. (Wolfson

 437 Atmospheric Chemistry Laboratories, University of York, 2017). doi:10.13140/RG.

 438 2.2.20555.49448.
- 439 42. R Core Team. R: A Language and Environment for Statistical Computing R Founda-440 tion for Statistical Computing (Vienna, Austria, 2016). https://www.R-project.
- 43. PostgreSQL Global Development Group. PostgreSQL. Version 9.5. https://www.postgresql.org/ (2016).
- 44. Parrish, D. D. et al. Decadal change in carbon monoxide to nitrogen oxide ratio in

 445. U.S. vehicular emissions. Journal of Geophysical Research 107, ACH 5-1-ACH 5-9

 446. (2002).

- 447 45. Hassler, B. et al. Analysis of long-term observations of NO_x and CO in megacities
 448 and application to constraining emissions inventories. Geophysical Research Letters
 449 43. http://dx.doi.org/10.1002/2016GL069894 (2016).
- 450 46. European Commission. European cities the EU-OECD functional urban area def451 inition 2015. http://ec.europa.eu/eurostat/statistics-explained/index.
 452 php/European_cities_%E2%80%93_the_EU-OECD_functional_urban_area_
 453 definition>.
- 454 47. OpenStreetMap Foundation & OpenStreetMap contributors. OpenStreetMap http:

 //www.openstreetmap.org. 2016.
- 48. Haklay, M. & Weber, P. OpenStreetMap: User-Generated Street Maps. *IEEE Per-*457 vasive Computing 7, 12–18 (2008).
- 49. Steinbacher, M. et al. Nitrogen oxide measurements at rural sites in Switzerland:

 Bias of conventional measurement techniques. Journal of Geophysical Research 112,

 13pp (2007).
- 50. Kirchstetter, T. W., Harley, R. A. & Littlejohn, D. Measurement of Nitrous Acid in
 Motor Vehicle Exhaust. Environmental Science & Technology 30, 2843–2849 (1996).
- Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S Fourth. ISBN 0-387-95457-0. http://www.stats.ox.ac.uk/pub/MASS4 (Springer, New York, 2002).
- Muggeo, V. M. Estimating regression models with unknown break-points. Statistics
 in Medicine 22, 3055–3071 (2003).
- Muggeo, V. M. Segmented: an R package to fit regression models with broken-line
 relationships. R news 8, 20–25 (2008).

Jenkin, M. E. Analysis of sources and partitioning of oxidant in the UK—Part 2: contributions of nitrogen dioxide emissions and background ozone at a kerbside location in London. *Atmospheric Environment* 38, 5131–5138 (2004).

473 Correspondence

- 474 Correspondence and requests can be addressed to the corresponding author, Stuart K.
- Grange (stuart.grange@york.ac.uk).

476 Acknowledgements

- 477 The authors thank Anthony Wild with the provision of the Wild Fund Scholarship.
- This work was also partially funded by the 2016 Natural Environment Research Council
- (NERC) air quality studentships programme (grant reference number: NE/N007115/1).
- 480 ACL is supported by the NCAS national capability programme and SJM acknowledges
- the receipt of a NERC KE Fellowship. Carl Stovell and his team are thanked for setting-up
- and the maintenance of a PostgreSQL database server.

483 Author contributions

- DCC designed the research questions and with SKG developed and evaluated the appro-
- priate methods. SKG processed the European air quality data and with DCC conducted
- the data analysis. SKG, DCC, ACL and SJM wrote the paper.

Data availability

- The datasets analysed in the current study are publicly available, are referenced in
- the text, and can be accessed from the AirBase (https://www.eea.europa.eu/data-and-
- maps/data/airbase-the-european-air-quality-database-8) and the European Environment
- Agency's Central Data Repository (http://cdr.eionet.europa.eu) repositories.

Code availability

- $_{\rm 493}$. The code used to estimate the $\rm NO_2/NO_x$ ratios and to aggregate the ratios are available
- $_{\rm 494}$ $\,$ from the corresponding author on reasonable request. All software used for data storage
- and analysis is referenced in text and is open-source.

496 Competing financial interests

The authors declare no competing financial interests.

Figure captions

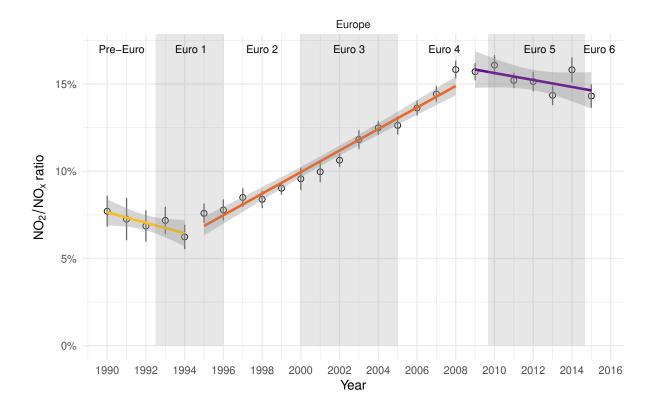


Figure 1: Mean NO_2/NO_x ratio for all roadside monitoring sites for the 61 European urban areas analysed between 1990 and 2015. The error bars represent the 95% confidence intervals of the slope estimates based on the number of samples (for extra details see Supplementary Table 1). Linear regression models were applied to three separate periods: 1990–1994, 1995–2008, and 2009–2015 identified by segmented regression (see Supplementary Table 2).

Figure 2: Mean NO_x and NO_2 concentrations after the filtering method was applied (see Methods section) for all roadside monitoring sites for the 61 European urban areas analysed between 1990 and 2015. These concentration data were used for the calculation of the NO_2/NO_x ratio displayed in Fig. 1. The smoothed lines are loess (local regression) fits.

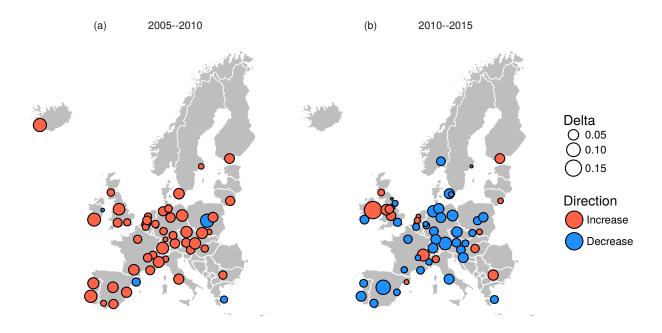


Figure 3: The change in the NO_2/NO_x ratio for each urban area for two time periods, the five years leading up to 2010, and the five years after 2010 (2010 is the year with the highest NO_2/NO_x ratio). Plot (a) shows the change in the NO_2/NO_x ratios from 2005 to 2010 and the plot (b) displays the change in ratio from 2010 to 2015. The size of the dots indicates the magnitude of the change.

Figure 4: Comparison of three methods which estimate roadside primary NO_2 as a NO_2/NO_x ratio and forecasts from two other sources. Shaded zones are the individual EU member state range in Kiesewetter et al. 2014^{15} and the 95% confidence interval of the observation filtering method's loess fit.