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Abstract
The self-organized discharge behaviour occurring in a non-thermal radio-frequency plasma jet in
rare gases at atmospheric pressure was investigated. The frequency of the azimuthal rotation of
filaments in the active plasma volume and their inclination were measured along with the gas
temperature under varying discharge conditions. The gas flow and heating were described
theoretically by a three-dimensional hydrodynamic model. The rotation frequencies obtained by
both methods qualitatively agree. The results demonstrate that the plasma filaments forming an
inclination angle α with the axial gas velocity uz are forced to a transversal movement with the
velocity u utan za=f ( ) · , which is oriented in the inclination direction. Variations of uf in the
model reveal that the observed dynamics minimizes the energy loss due to convective heat
transfer by the gas flow. The control of the self-organization regime motivates the application of
the plasma jet for precise and reproducible material processing.

Keywords: plasma jet, self-organization, hydrodynamic simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

The broad variety of material processing ranging from surface
treatment, thin film synthesis to in-flight nanoparticle synth-
esis has driven the development of different plasma jet
designs both nowadays and in the past. In this context, non-
thermal atmospheric pressure plasma jets (nt-APPJ) have
been subject to numerous scientific studies during the last
decade. They instantiate a unique combination of interesting
properties regarding high chemical reactivity or gas dynamics
in a localized region under normal pressure conditions. At the
same time, due to their non-thermal character [1] they exert
only a limited thermal strain to exposed surfaces. Thanks to
these properties manifold applications have been reported in

the past and new ideas for beneficial use of these sources keep
coming-up constantly.

Historically, applications were related mostly to diverse
material processing methods. Already in 1988, a hollow
cathode radiofrequency (RF) jet was applied for fluorination
and carbon film deposition at atmospheric pressure [2]. Later
on, the first jet operating in both gaseous and liquid
environment in laboratory conditions was constructed for the
treatment of ancient artefacts [3]. The successful reduction of
oxidized metal surfaces (e.g. from antique bronze coins [3])
as well as the generation of atomic oxygen for polyimide
etching [4] or chemical vapour deposition (CVD) of SiO2

coatings [5] has triggered a thriving progress of plasma jet
devices. Nowadays, several technical solutions and lab-
devices exist, which differ largely in dimension, configuration
of applied electrical field, power density, materials and geo-
metries. Topical overviews are given e.g. by Lu et al [6] and
more recently by Reuter et al [7]. The investigation of the
interaction of plasma jets with biological targets has culmi-
nated in the inauguration of plasma medicine as a new

Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 60 (2018) 014038 (7pp) https://doi.org/10.1088/1361-6587/aa8f14

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

0741-3335/18/014038+07$33.00 © 2017 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0002-0652-5057
https://orcid.org/0000-0002-0652-5057
https://orcid.org/0000-0001-6157-4030
https://orcid.org/0000-0001-6157-4030
https://orcid.org/0000-0002-9590-375X
https://orcid.org/0000-0002-9590-375X
mailto:jschaefer@inp-greifswald.de
https://doi.org/10.1088/1361-6587/aa8f14
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6587/aa8f14&domain=pdf&date_stamp=2017-11-10
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6587/aa8f14&domain=pdf&date_stamp=2017-11-10
http://creativecommons.org/licenses/by/3.0/


discipline in medical research [8]. Notable new developments
involve also the treatment of fibres [9] or the implementation
of a jet as a preparation technique for scanning electron
microscopy [10].

The application of nt-APPJs for homogeneous surface
treatment, such as activation of polymer surfaces, cleaning
and thin film deposition [11] is still hampered by the presence
of steep local gradients of the plasma parameters due to the
chaotic (erratic) nature of the filamented discharge channels
(plasma filaments). Their formation in a discharge gap is
usually a random function of time and an averaging of spatial
filament distribution can be only achieved considering longer
time intervals. In contrast, collective filament interactions can
induce regular operation regimes which in consequence
influence the energy dissipation and contribute to a better
control of jet operation.

This prediction embodies the basic motivation of the
current study. After the observation of a self-organized
regime of a plasma jet in 2006, coined with the term ‘locked
mode’ (LM) [12], several further studies were devoted to the
properties of the jet, its particular operating regimes, plasma
parameters and plasma chemistry during plasma enhanced
CVD using organic compounds [13–18]. However, the
mechanisms of the LM remain still not fully understood.
The plasma jet driven in LM forms equidistantly arranged
filaments (Turing pattern) located around the inner capillary
wall whereupon the filaments rotate around the symmetry axis
of the capillary with frequencies suggesting a decisive role of
thermal forces (figure 1). This phenomenon was observed in
krypton, argon and neon, but not in helium. Considerations
regarding the source of the effect could seize parallels from
complex fluid dynamics as e.g. linear vortex shedding
described by Strouhal number [19], symmetric travelling
waves in pipe flow [20], oscillations due to the Kelvin–

Helmholtz instability [21], Langmuir circulation [22] and
result in a modified case of a Taylor–Couette flow [23]. From
the plasma physics perspective, several related studies are
also relevant for consideration. Equidistant patterning has
been observed in dielectric barrier discharges [24]. In a
microwave plasma jet a spiral dynamics has been observed
with a typical frequency range similar to the RF jet [25].

Because of the complex mechanisms and different tem-
poral and spatial scales, the investigation of the plasma-flow
interaction leading to self-organization such as the observed
LMs remains a challenging task. In the framework of this
study, we attempt to tackle this task by a systematic invest-
igation of the flow dynamics and neutral gas temperature in
the LM by means of laser schlieren deflectometry (LSD) [26]
and by a three-dimensional hydrodynamic modelling of the
plasma jet which approximates the plasma action by heat
profiles embedded in the gas volume.

2. Plasma source and methods

The investigations have been performed using the non-ther-
mal capacitively coupled RF plasma jet shown in figure 2.

Figure 1. Photographs of locked modes in Ar (a), (c) and Ne (b), (d).
The trace of the filaments becomes visible due to longer exposure
time ( 0.1» s).

Figure 2. RF plasma jet operating in argon with three rotating
filaments (LM3).
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The RF plasma jet is composed of a quartz capillary with an
inner diameter of 4 mm and an outer diameter of 6 mm.
Two outer ring electrodes (width 5 mm, distance 5 mm) are
adjusted concentrically with the capillary axis. The discharge
operates at a frequency of 27.12MHz in pure argon with a
flow rate Q1 between 0.4 and 0.8 slm. Filaments in different
configurations are generated in the active plasma region
between both electrodes. The applied power ranges from 7 to
9 W. The inner capillary normally used to inject precursor
into the effluent [12] was not used in the current study.

The filament behaviour has been visualized optically by
means of a camera (μ digital 800, Olympus). The number of
filaments, their positions and inclination angles were deter-
mined by data processing of photographs in different dis-
charge conditions. The frequency of filament rotation as well
as the gas temperature were measured by LSD [26] in the
effluent.

3. Searching for a stationary solution

Our starting hypothesis is that the helical shape of a single
filament reflects a tendency of the system to conserve the gas
temperature inside the filament over a longer time. Indeed, the
gas temperature is in equilibrium with the excited atoms and
ions in the filament. Their inertia and live times stabilize the
discharge channel beyond the time scale of the RF period.
Therefore, the spatial coupling of the filament to its temper-
ature profile represents an optimum, sustaining the energy
flux and the gas temperature, too.

If this is a characteristic property of the LM, then the
temperature field T can be assumed to fulfil the stationary
solution in the helical coordinate system fixed to the moving
filament

T

t

rd

d
0. 1

¢
=

( ) ( )

The transformation from the laboratory system to the helical
coordinate system of the filament ( r z r zr r, , , ,f f ¢ ¢ ¢ ¢( ) ( ))
is given by following equations:

r r, 2¢ = ( )
t, 3f f w¢ = + ( )

z z u t, 4z¢ = + ( )

where ω is the observed angular velocity of the filament (LM
velocity) and uz is the axial gas velocity. For the definition of
the coordinates see figure 3.

By substituting equations (2)–(4) in (1) we obtain a linear
relation for the angular velocity:
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where zf¶ ¢ ¶ ¢ denotes the helicality of the filament and α is
the inclination angle of the filament with the unit vector z0.
Note that the considerations predict the movement of fila-
ments in the direction of the inclination and in the right-
handed system uz is u0, 0, z-( ). The validity of the hypoth-
esis has been tested experimentally by a systematic variation
of RF power, gas flow, and electrode distance. All these
implicit parameters cause variations of the LM frequency and
of the inclination angle, too. The results are shown in figure 4
and they demonstrate a linear correlation of the frequency and
the angular inclination as derived in equation (5).

Despite the simple deduction and the verification, some
aspects have been omitted in the present consideration, e.g.
the presence of a radial velocity profile and its role in the LM
at different axial positions in the jet. Therefore, the hydro-
dynamic modelling of the jet as well as experimentally
investigations of the LM including the related velocity and
temperature profiles are required and considered in the fol-
lowing sections.

4. Hydrodynamic model

The flow velocity u of the gas and its temperature T were
determined by solving the hydrodynamic equations of the gas
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Figure 3. Coordinate system describing the dynamics of the filament.

Figure 4. Correlation of helicality or inclination and rotation
frequency of filaments in LM3. The point labels denote the flow rate
in slm. The photograph of an example (a) demonstrates the filament
inclination 12a =  (helicality 0.11 rad mm–1).
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c T S T Tu q q, 8p
plr l +  = = - · · ( ) ( )( )

which describe the conservation of mass (6), momentum (7)
and energy (8) for compressible fluids. Here, ρ denotes the
total mass density and p the pressure. The second term on the
right-hand side of (7) is deduced from a more general for-
mulation assuming an isotropic fluid with the dynamic visc-
osity μ. The heat balance equation (8) accounts with the first
and second term on the left-hand side for heat convection
with the specific heat capacity at constant pressure cp and for
the heat conduction with the heat flux q and the heat con-
ductivity λ, respectively. The required coefficients for the
argon gas have been taken from [27]. A heat conductivity of

1.4l = Wm−1 K−1 was used for the capillary quartz
glass [28].

The source term S pl( ) describes the heating of the gas due
to elastic collisions of electrons with gas atoms, due to
reactions between heavy particles and due to Joule heating of
ions. This quantity could be calculated by a complete plasma
model as it was done for an axially symmetric geometry [29].
However, because such a model in three dimensions is a very
demanding task, an approximation was used to describe the
gas heating from the plasma. Based on investigations of a
single filament [17], the power density profile

S r s S r s, 9pl
f max

pl
f= W Q( ) ( ) ( ) ( )( ) ( )

depending on the coordinate s along the trace of the filament
and on the distance rf from its trace has been deduced. The
profile functions rfW( ) and sQ( ) are detailed in [18]. As
illustrated in figure 2, the centres of the three filaments
occurring in the LM3 mode are positioned on an orbit with
radius r 1.45 mmorb = and at the axial position z 8.5 mmf = .
Furthermore, the filaments were inclined in azimuthal direc-
tion by the angle α. The amplitude Smax

pl( ) was chosen equal to
5 109´ Wm−3 which is a typical value estimated from
prior experimental findings [12].

The Navier–Stokes equations (6)–(8) were solved in a
coordinate system which rotates with the rotation frequency

f2 aziw p= of the filaments. Therefore, the boundary condi-
tions had to be transformed from the lab to the rotating sys-
tem. The no-slip condition, normally used in the lab system at
the wall, changes to the boundary condition v v v, ,r z =f( )

r t0, 0, cap w-( ) and to the condition at the inlet to
v v v v r r t, , 0, ,r z z

in w= -f( ) ( ( ) ) with a parabolic velocity
profile v r r r v2 1z i

in 2
max- = -( ) ( ( ) ) . The maximum velocity

vmax is deduced from the flow rate at the inlet given as
parameter.

With respect to the heat balance equation (8), the temp-
erature was fixed at the electrodes and at the outlet boundaries
to T 3000 = K. At the inlet boundaries, the zero gradient
condition Tn 0 =· was applied. At the boundaries adja-
cent to the electrodes, the ambient radiation was used as
boundary condition according to n q- =· s sbe s T Tamb

4 4-( ),
where sbs denotes the Stefan–Boltzmann constant, se is the
surface emissivity of quartz and T 300amb = K is the ambient
temperature.

The equation system (6)–(8) was solved using a sta-
tionary solver of Comsol Multiphysics. To investigate the
influence of the inclination angle and the rotation frequency,
the simulations have been performed for a series of para-
meters. For the inclination angle α the values 8◦, 10◦, 12 ,◦ 16◦

were used and for each of these values, the rotation frequency
was varied. In all cases the gas flow rate amounts to 0.5 slm.

5. Results

As an example, a combined representation of the results for
16a =  and f=30 Hz is shown in figure 5. The position of

the three filaments are depicted as green iso-surfaces repre-
senting a gas temperature of 1200 K. Furthermore, lateral cuts
of the gas temperature are shown at z=0, 5 and 12 mm.
Lateral cuts of the azimuthal velocity vf are shown at z 3= - ,
3, 8.5, 14 and 18 mm. An iso-surface of v 1.75=∣ ∣ m s–1

Figure 5. Gas temperature and azimuthal velocity in the plasma jet
operating in LM3 mode.
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shows the formation of the plume in the transition from the
active plasma region to the effluent. Three streamlines illus-
trate the shape of the gas flow from the inlet at z=18 mm to
the effluent.

The azimuthal velocity component vf is depicted in
figure 6 at three axial positions in the lab and rotating system.
Furthermore, this figure contains contour plots of the gas
temperature. The action of the boundary condition imposed
on the velocity in the rotating system is obvious in the right
figures. The contour plots of the gas temperature reveal the
asymmetric profile of the filament temperature which is the
result of the filament inclination and the azimuthal gas velo-
city component. In the lab system, three weak vortices
establish at z 3.5 mm= as shown by the arrows.

The calculated gas temperature at the same three z
positions is shown in figure 7. The series illustrates the
evolution of the gas temperature from a position above
the active zone (z = 13.5 mm) where only a weak tail of the
heating profile leads to a slight temperature increase, to a
position somewhat below the maximum heating (z = 3.5 mm)
up to the outlet of the capillary (z = 0 mm), where the
effluent begins. According to the filament inclination, a tor-
sion of the maximum position can be observed.

Furthermore, the asymmetric contours especially at
z 3.5 mm= indicate the interplay of heating and convection.

The gas flow transports energy from the active zone into the
effluent were temperatures up to 550 K are reached. Due to
the overall velocity profile, the energy transport is more
pronounced near the centre. Therefore, the distance between
the temperature maximum positions at z=0 mm is smaller
than at z 3.5 mm= . Furthermore, the profiles become more
symmetric here indicating that the influence of the azimuthal
velocity component diminishes at the outlet position.

Figure 6. Azimuthal velocity component in the lab system (left) and
rotating system (right) for 16a =  and f=30 Hz for three axial
positions.

Figure 7. Calculated gas temperature for 16a =  and f=30 Hz.
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The temperature profile derived from the LSD measure-
ment at the same position z=0 mm, i.e. at the beginning of
the effluent, is shown in figure 8. For the determination of the
temperature profile from the measured deflection, the LSD
constant of 0.530d = mrad was applied [26]. Note, that the
corresponding hyperbolic LSD model fits to a stationary
analytic solution of the Fourier equation of the heat transport
assuming a pure conduction in the gas and the boundary
conditions given by maximum laser deflection and by the
laboratory temperature. Good qualitative agreement between
the modelling and experimental results was obtained at this
position. The difference of about 50 K in the maximum
temperature can be explained by the uncertainty of the real
power values in the plasma.

The gas temperature and the velocity direction obtained
on the orbit cylinder with a radius of r 1.45 mmorb = are
shown in figure 9. The spatial coordinate s denotes the
position on this cylinder in azimuthal direction. The shape of
the temperature profiles largely coincides with that of the
heating profile S pl( ) widened by heat conduction. Large dif-
ferences of up to 700 K between the maxima and minima
have been obtained which correspond to pronounced temp-
erature gradients. A closer analysis of the temperature and
variation of the rotation frequency reveals the influence of
heat convection.

Slight different maximum temperatures, obtained for
varying rotation frequency, result from the fact that the con-
vective energy transport is only directed along the filament if
the gas velocity direction is parallel to the filament. Because
of the influence of the capillary wall, this condition is only
fulfilled at a certain rotation frequency. At larger or smaller
frequencies, the component of the gas velocity perpendicular
to the filament orientation leads to additional convective
cooling of the filament. Therefore, the optimal frequency can
be determined from the simulation results by detecting the
maximum temperature in the plasma jet. These selected
points, i.e. the maximum temperature at optimal rotation

frequency, are indicated as labels in figure 10 for the flow
rates 0.5 and 1.0 slm. Moreover, this figure shows the relation
between filament inclination and rotation frequency. The
linear dependence deduced from the simulations for the flow
rates 0.5 and 1.0 slm is mostly confirmed by the experimental
results for 0.5 slm. Deviations between the slope obtained
experimentally and from the simulation may be caused by the
uncertainty about the supplied power. Indeed, a part of the
power supplied by the generator is consumed by the matching
network driving the RF plasma jet. Therefore, the exper-
imental values can be slightly overestimated, while the
inclination and LM frequency are smaller than in the model.

Figure 8.Gas temperature measured at z=0 using the LSD method. Figure 9. Calculated gas temperature T and velocity direction on the
cylinder with radius rorb crossing the filaments.

Figure 10. Relation between filament inclination and rotation
frequency for modelling and experimental results. The labels denote
the power and the calculated global maximum temperature,
respectively.
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6. Summary

The self-organization of filaments occurring in a non-thermal
plasma jet at atmospheric pressure has been investigated. The
complex interaction of various physical mechanisms limits the
investigation to one aspect of this phenomenon. This aspect
refers to the relation between the inclination of the filaments in
the capillary and their rotation frequency.

The gas flow and the heating of the gas due to three
inclined plasma filaments (LM3) has been investigated by a
three-dimensional hydrodynamic model. The model com-
prises the Navier–Stokes equations for the compressible
argon gas and the heat balance equation with heat sources
caused by the filaments. The filaments are fixed in the rotating
system with a pre-assumed inclination and spatial heating
profile. The latter has been determined by previous investi-
gations of a single filament by a detailed plasma model.

The results confirm the linear dependence of the rotation
frequency on the inclination angle of the filaments. It has been
found that such a rotation frequency is established which
leads to a maximum gas temperature. With such an optimal
frequency of in the LM, the gas flow around the filaments is
parallel to the inclined filaments which minimizes the energy
loss due to convective cooling as assumed for a self-organized
regime.

The results motivate the application of the locked-mode
in processes where a regular and efficient filament dynamics
contribute to an enhanced reproducibility of the plasma
conditions and hence a better control of the aspired product
properties.
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