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Abstract  

Western Amazonia is known to harbour some of Earth’s most diverse forests, but previous 

floristic analyses have excluded peatland forests which are extensive in northern Peru and are 

among the most environmentally extreme ecosystems in the lowland tropics. Understanding 

patterns of tree species diversity in these ecosystems is important both for quantifying 

beta-diversity in this region, and for understanding determinants of diversity more generally 

in tropical forests. Here we explore patterns of tree diversity and composition in two peatland 

forest types – palm swamps and peatland pole forests – using 26 forest plots distributed over 

a large area of northern Peru. We place our results in a regional context by making 

comparisons with three other major forest types: terra firme forests (29 plots), white-sand 

forests (23 plots) and seasonally-flooded forests (11 plots).   

Peatland forests had extremely low (within-plot) alpha-diversity compared with the other 

forest types that were sampled. In particular, peatland pole forests had the lowest levels of 

tree diversity yet recorded in Amazonia (20 species per 500 stems, Fisher’s alpha 4.57). 

However, peatland pole forests and palm swamps were compositionally different from each 

other as well as from other forest types in the region. Few species appeared to be peatland 

endemics. Instead, peatland forests were largely characterised by a distinctive combination 

of generalist species and species previously thought to be specialists of other habitats, 

especially white-sand forests.  

We suggest that the transient nature and extreme environmental conditions of Amazonian 

peatland ecosystems have shaped their current patterns of tree composition and diversity. 

Despite their low alpha-diversity, the unique combination of species found in tree 

communities in Amazonian peatlands augment regional beta-diversity. This contribution, 

alongside their extremely high carbon storage capacity and lack of protection at national 

level, strengthens their status as a conservation priority. 
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Introduction  

The forests of north-western Amazonia are floristically remarkable as they include some of the most 

diverse tree communities on Earth (Gentry 1988a, Valencia et al. 1994, ter Steege et al. 2003), 

harbour communities with numerous endemic species (e.g. white-sand forest specialists [Fine et al. 

2010]), and exhibit high species turnover over small spatial scales (i.e. high beta-diversity [Gentry 

1988b, Tuomisto et al. 1995, 2003]). However, although there have been some studies of 

seasonally-flooded forests (Nebel et al. 2001, Fortunel et al. 2014), these previous comparative 

studies of floristic composition and diversity are largely limited to non-inundated (terra firme) 

forests. Compared to terra firme forests, seasonally and permanently flooded forests in Amazonia 

have a distinctive composition (e.g. Wittmann et al. 2006, Pitman et al. 2014) and therefore may make 

an important contribution to floristic beta-diversity in north-western Amazonia. In particular, 

permanently waterlogged peatland ecosystems, which are common in the 120,000 km2 

Pastaza-Marañón Foreland Basin (Lähteenoja et al. 2012, Draper et al. 2014) may have an even more 

distinctive composition but have been excluded from previous floristic analyses and, botanically, 

remain largely undescribed (but see Valderrama Sandoval 2013, Householder et al. 2015, 

Householder and Wittmann 2016). 

The Pastaza-Marañón Foreland Basin holds a diverse range of wetland ecosystem types, several of 

which are peat-forming (Kalliola et al. 1991, Irion and Kalliola 2010, Lähteenoja and Page 2011, 

Draper et al 2014). Some of these peatland ecosystem types, such as palm swamps, fit into existing 

wetland classifications (Prance 1979, Encarnación 1985, López Parodi and Freitas 1990, Kalliola et 

al. 1991, Junk et al 2011): palm swamps in this region are typically less diverse than neighbouring 

terra firme forests (Richards 1969, Prance 1979, Dumont et al. 1990, Stropp et al. 2009, Pitman et al. 

2014), and are often dominated by one or more species of arboreal palm, most commonly Mauritia 

flexuosa (Kahn and Mejia 1990, Endress et al 2013, Pitman et al 2014), whilst specialist swamp 

species account for < 10% of the remaining flora (Pitman et al. 2014). 

In contrast, another ecosystem type, peatland pole forests (Lähteenoja and Page 2011, Draper et al. 

2014) has only been loosely described (Lähteenoja and Roucoux 2010, García-Villacorta et al. 2011, 

Torres Montenegro et al. 2015, 2016), and its floristic composition remains largely unknown. These 

pole forests occur on raised ombrotrophic bogs (water and nutrients dominantly supplied by  

atmospheric deposition; Rydin and Jeglum 2006), normally on top of several meters of peat, and are 

characterised by their distinctive structure which consists of a dense, low stature canopy made up of 

many thin-stemmed trees (Draper et al. 2014). Similar raised, ombrotrophic peatland forests in 

Southeast Asia have a distinctive flora with numerous specialist and endemic taxa (Anderson 1963, 

1983, Posa et al. 2011, Gunawan et al. 2012) but it is not known whether these characteristics are 
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shared with Amazonian peatland pole forests. 

Our first aim is therefore to describe the tree communities of Amazonian peatland forest ecosystems 

and explore whether peatland pole forests in north-western Amazonia contain many endemic tree 

species, as in SE Asia, or whether their composition more closely reflects neighbouring forest types 

with just a few distinctive species, as found for Amazonian swamp forests. Secondly, we explore the 

contribution of these forests to beta-diversity (defined here as the turnover in species composition, or 

floristic dissimilarity, through space) in this region, using floristic data from all the  major forest 

types found in north-western Amazonian lowlands. 

The specific questions we address are: 

 1. Which species are most abundant in peatland forests, and how many of these species are 

shared with surrounding upland and seasonally-flooded forests?  

 2. How floristically diverse are peatland forests, and how does their alpha-diversity compare 

with that of upland and seasonally-flooded forests?  

 3. How does floristic dissimilarity among plots within peatland ecosystems compare with 

those in upland and seasonally- flooded forests? 

 4. How does floristic dissimilarity among plots in peatland forest types vary as a function of 

geographic distance, and how does these patterns compare with upland and seasonally-flooded 

forests?  

 

Materials and Methods 

Forest inventories  

Different data sets were used to compare the floristic composition of the five different forest types in 

the region. Data for 26 peatland forest plots (11 peatland pole forest and 15 palm swamp plots) are 

presented for the first time here, whilst data for 11 seasonally-flooded forest plots, 23 white-sand 

forest plots and 29 terra firme forest plots come from previously published datasets (Table 1, Figure 

1, and Appendix 1 [Pitman et al. 2008, Fine et al. 2010, Honorio Coronado et al. 2009, 2015]). Plots 

were assigned to the different forest types based on substrate character, forest structure and observed 

hydroperiod (Table S.1). Data for 55 out of the 89 plots used for this analysis were downloaded from 

the ForestPlots.net online repository (Lopez-Gonzalez et al. 2009, 2011). 

Peatland forest inventories were conducted between 2008 and 2014 by FCD, EHC, TRB, LATM and 

EVS. A total of 26 plots were established at 11 peatland locations across the Pastaza-Marañón 

Foreland Basin, northeast Peru (Figure 1). The sampling includes four peatland pole forest and seven 

palm swamp locations. Multiple plots were installed at several locations: the maximum number of 

plots in any given location was five and plots were located at least 500 m from any other plot. The 26 
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plots were 0.5 ha in area and were established using a modified version of the RAINFOR protocol 

(Phillips et al. 2009) whereby all trees with a diameter at breast height (dbh) ≥ 10 cm were measured 

and identified. As the peatland forests often contain many trees that are small in stature, the protocol 

was modified to include a 4 x 100 m transect in which all trees with a dbh ≥ 2 cm were measured and 

identified. Of the 26 plots, 16 were permanent plots where all dbh ≥ 10 cm trees were tagged and the 

plot corners were permanently marked. Full descriptions of plot inventories for the other forest types 

are provided in the supplementary material. 

Taxonomic standardisation  

Botanical vouchers were collected and deposited in herbaria for the terra firme, seasonally-flooded 

and white-sand forest datasets as described in the relevant publications (Pitman et al. 2008, Honorio 

Coronado et al. 2009, 2015, Fine et al. 2010). The collections from peatland forests, presented here 

for the first time, were determined by LTM and EVS, and standardised with the previous collections 

of Honorio Coronado et al. (2015) as well as specimens at the Herbarium Amazonense (AMAZ) in 

Iquitos. The new vouchers were deposited at Herbario Herrerense (HH), digitised and are available 

online through the digital herbaria of the ForestPlots.net database (Baker et al. 2017). Finally, the 

online Taxonomic Name Resolution Service was used to remove all synonyms from the dataset using 

Tropicos as the source of taxonomic information (Boyle et al. 2013). 

Comparing diversity and composition across datasets  

In order to make comparisons of species composition and diversity among forest types it was 

necessary to combine datasets with different sampling protocols. Morphospecies were consistently 

identified within, but not among, the different datasets. Therefore, all morphospecies and individuals 

not identified to species level were classified as unidentified morphospecies and excluded from all 

subsequent analyses. As plots of different sizes contained variable numbers of stems, species richness 

and alpha-diversity were estimated using a standard number of 500 identified stems for each plot, 

derived from unified interpolated/extrapolated rarefaction curves, following the multinomial model 

method of Colwell et al. (2012). Full descriptions of the methods and associated implications of 

excluding morphospecies and using rarefaction are provided in the supplementary material. 

Criteria for defining ecological guilds  

In order to identify specialist peatland taxa, all species found in peatland plots were split into five 

exclusive ecological guilds based on their occurrence in different forest types following similar 

definitions to those in Pitman et al. (2001, 2014). These categories were applied independently to 

peatland pole forest and palm swamp forest taxa. ‘Generalists’ were defined as species that occurred 

in the relevant peatland forest type and were common (occurred at a mean density >1 individual ha-1) 

in two or more other forest types. ‘Spill-over’ species were defined as species that occurred in the 
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relevant peatland forest type and were also common in one other forest type. ‘Strict specialists’ were 

those species that were common in the relevant peatland forest type and had over 95% of total stems 

within the same peatland ecosystem. ‘Functional specialists’ were those that were common in the 

relevant peatland forest type and had 80- 95% of total stems within the same peatland ecosystem. 

Taxa with fewer than five individuals across all plots were considered too rare for their distribution to 

be characterised in this way. Taxa that did not fit the criteria for any of the above ecological guilds 

were grouped as ‘other’. 

In addition to these qualitative thresholds we also used indicator species analysis to identify those 

species that were significantly (P<=0.05) indicative of peatland forest types using the R package 

labdsv (Roberts 2013). Indicator species analysis provides a measure of which species are strong 

associated with a given forest type based on their abundance within and among forest types (Legendre 

and Legendre, 2012). A permutation procedure is then used to compare these associations to those 

obtained from a random distribution for each species in order to assess significance (Dufrêne and 

Lengendre 1997). 

Alpha-diversity analysis  

Alpha-diversity was estimated for the rarefied 500 stems per plot (as outlined above) using two of the 

most widely used metrics, Fisher’s alpha and the exponential Shannon index (Rosenzweig 1995, 

Magurran 2013). These two metrics allow for easy comparison with existing studies and reflect 

slightly different qualities of diversity. The exponential Shannon index quantifies diversity as the 

effective number of species, which takes into account both species richness and the evenness of 

species abundances (Jost 2006). All values of species richness, Fisher’s alpha and the Shannon index 

were calculated using estimate-S. 

Beta-diversity analysis  

To compare floristic composition among plots, floristic distance matrices were constructed using the 

Hellinger distance for abundance data and the inverse Jaccard index (1-Jaccard) for presence/absence 

data (Legendre and Legendre, 2012). The indices were selected as they are both asymmetric 

resemblance measure, and are suitable for analysing community composition data (Anderson et al. 

2011). Additionally, because the Hellinger index is based on proportional abundances, it minimizes 

the effect of different numbers of individuals among plots (Legendre & Legendre 2012). The distance 

matrices were constructed in the vegan package of R (Oksanen et al. 2013), and were used to create 

non-metric multidimensional scaling (NMDS) ordinations (optimized for two axes) in order to 

visualise floristic dissimilarity within and amongst forest types. A non-parametric permutational 

multivariate analysis of variance (PERMANOVA) was conducted (where the Hellinger distance 

matrix was the response variable) in order to test the significance of the variation in species 
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composition among forest types (Anderson 2001). Furthermore, in order to examine the influence of 

variable plot size and stem number on patterns of beta-diversity, we repeated our analysis using a 

standardised number of 79 randomly chosen individuals from each plot. 

In order to test how floristic similarity within forest types was affected by the geographic distance 

among plots, a distance decay approach was also used (Whittaker 1960). Here floristic similarity was 

calculated using the inverse Hellinger distance, which was then standardised to give values ranging 

from zero (completely dissimilar) to one (identical). A binomial generalised linear model (GLM) 

approach with a log link function was used to model variation in species similarity as a function of 

geographic distance within forest types (Millar et al. 2011). This method can cope with values of zero 

dissimilarity and is known to be an effective method for modelling distance decay relationships 

(Steinbauer et al. 2012). In order to generate 95% confidence intervals, a modified bootstrap 

resampling procedure was adopted (Millar et al. 2011). This procedure consists of repeatedly 

performing the GLM outlined above with a randomly sampled subset of 4050 (the total number of 

unique plot pairs) paired ecological and geographical distances, 10,000 times. This sampling was 

conducted with replacement (i.e. bootstrapping), and samples were drawn from the lower left triangle 

of the similarity matrix. 

A Raup-Crick null model approach was used to assess the probability that the overall beta-diversity 

between forest types was higher or lower than expected by chance (Chase et al. 2011, Raup and Crick 

1979). For each pair of plots with a species richness of Į1 and Į2 and SS12 species in common, Į1 and 

Į2  species were randomly sampled from the total species pool, and the number of species between 

them (SSexp) was calculated. By repeating this process 10,000 times for each plot pair, we were able to 

build a null distribution of (SSexp) for each pair of plots. We then compare this null distribution with 

our observed values (SSobs), and produce a metric that describes the proportion of the SSexp 

distribution that is greater than SSobs. Finally, we standardise this metric to produce a pairwise 

community dissimilarity metric (beta RC) ranging from -1 to 1. Metric values approaching -1 suggest 

that communities are more similar than expected by chance, values approaching 0 suggest that 

communities are as similar as would be expected by chance, and values approaching 1 indicate 

greater dissimilarity than would be expected by chance. 

All data manipulations and statistical analyses were conducted in the R statistical environment (R 

Core Team 2012). Apart from the packages specified above, all code for resampling and data 

manipulation was custom-written. 

Results 

Floristic composition of peatland forests  

Palm species accounted for approximately 50% of individuals on average in palm swamps, with four 
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palm species in the top ten most abundant species (Table S.2). The palm species Mauritia flexuosa 

was the most abundant species, accounting for 33 % of all individuals and occurring in all 15 sampled 

plots. Other important palms include Mauritiella armata, Euterpe precatoria and Socratea exorrhiza, 

all of which were significant palm swamp indicator species. Among dicot tree species, Tabebuia 

insignis var. monophylla (Bignoniaceae), Virola pavonis (Myristicaceae) and Symphonia globulifera 

(Clusiaceae) were also significant indicator species, and characteristic of palm swamps (Tables S.2 

and A.2). 

Within peatland pole forests, the seven most abundant species were all dicot trees (Table S.3). 

Pachira brevipes (Malvaceae) was the most abundant species, accounting for 29% of all peatland 

pole forest individual trees and occurred in nine out of 11 plots (Table S.3). Other abundant and 

significant indicator tree species in peatland pole forests include: Cybianthus cf. reticulatus 

(Primulaceae), Tabebuia insignis var. monophylla, Platycarpum loretensis (Rubiaceae) and Hevea 

guianensis (Euphorbiaceae) (Table A.2). Two species of palms: Mauritia flexuosa and Mauritiella 

armata were also abundant and widespread in peatland pole forests. 

Associations between peatlands and other forest types 

Few peatland pole forest or palm swamp species were strict specialists that occur almost entirely in 

those habitats (eleven and seven species out of a total 99 and 234 respectively; Table A.2), and they 

accounted for an even smaller proportion of individuals. In contrast, most species and stems were 

spill-over species (common in one other forest type), or habitat generalists (common in two or more 

forest types) (Figure 2). Spill-over species in peatland pole forest mostly also occurred in white-sand  

forests. This group accounted for 16% of species and 44% of stems in the peatland pole forest plots 

and includes species such as Bocageopsis canescens, and the recently described Platycarpum 

loretensis (Davila & Kinoshita 2016) (Figure 2, Appendix 2). Within palm swamps, most species 

were either spill-over species or ‘too rare’ (total number or species <5) (Figure 2). The most 

important source of spill-over species in palm swamps was seasonally-flooded forest. This group 

accounted for 20% of species and 11% of stems in palm swamps and included species such as 

Coccoloba densifrons and Hura crepitans (Figure 2). In terms of stems, spill-over species from palm 

swamps were also important in pole forests and vice versa, these peatland spill-over species included 

very common species such as Mauritia flexuosa. 

Tree species richness and alpha-diversity 

Peatland pole forests and palm swamps had lower tree species richness and alpha-diversity than all 

other forest types (Figure 3 and S.1). Peatland pole forest was less species rich and less diverse than 

the other forest types (P < 0.001), and on average contained an estimated 20 species per 500 stems. In 

comparison, on average, palm swamps had an estimated 38 species per 500 stems (Figure 3). Terra 



A
c

c
e

p
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 
 

firme plots were always the most diverse and species rich forest type (P < 0.001), with an estimated 

166 species per 500 stems (Figure 3). 

Beta-diversity among forest types  

The five forest types defined on the basis of structural and environmental characteristics were also 

clearly distinct from one another in terms of their floristic composition (Figure 4). These 

compositional differences among forest types were highly significant (PERMANOVA, P<0.001) and 

persisted irrespective of whether species abundance or simply presence/absence of species were 

considered (Figure 4). Furthermore, the distinctiveness of forest types cannot be attributed to the 

difference in stem numbers among plots, as compositional patterns were conserved when the analysis 

was repeated with the subset of 79 individuals per plot (Figure S.2). 

Results from the Raup-Crick null models provided further support for the significance of the floristic 

differences among forest types. Overall the mean beta RC values among most of the different forest 

types were positive and many approached one, suggesting that dissimilarity between forest  

types was greater than would be expected by chance (Table 2). The three beta RC values that were 

negative (suggesting these forests types are more similar than expected by chance) were those 

obtained for comparisons between peatland pole forest and palm swamp, peatland pole forest and 

white-sand forest, and palm swamp and seasonally-flooded forest (Table 2), consistent with the links 

between these forest types identified by the analysis of ecological guilds (Figure 2). 

Beta-diversity within forest types  

The mean floristic similarity among plots within the two peatland forest types was higher than within 

any other forest type (Figure 5). However, although peatland plots overall were usually more similar 

to one another than other forest types, this was not the case in all instances, and there were several 

pairs of peatland plots that had a very different floristic composition: the variation in floristic 

similarity was higher when compared with plots within other forest types (see error bars in Figure 5). 

Beta-diversity and geographic distance  

Floristic similarity within forest type declined with geographic distance, but the importance of 

distance varied substantially among forest types. Floristic similarity decreased with geographic 

distance more strongly in peatland forests and seasonally-flooded forests than in upland forests 

(Figure 5 and S.4). The large variability in floristic similarity observed in peatland forests seemed to 

be independent of distance, as high variability occurred between plots that were located both close to 

and far from one another (Figure 5 and S.4). Again these patterns persisted when the analysis was 

repeated using the subset of 79 individuals, demonstrating that our results were not dependant on the 

number of individuals per plot (Figure S.3). 

Discussion  



A
c

c
e

p
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 
 

Floristic composition of peatland ecosystems  

This study shows that the peatland forests of the Pastaza-Marañón Foreland Basin have a distinct 

floristic composition compared to the other major forest types in the region. However, unlike 

Amazonian white-sand forests and seasonally-flooded forests, and similar peatlands in SE Asia, the 

floristic distinctiveness of these peatland forests is not due to the presence of a highly specialised 

endemic flora (Fine et al. 2010, Wittmann et al. 2013, Posa et al. 2011). Instead, peatland forests are 

floristically distinctive because of the identity of their most abundant species, which are often not 

strict specialists. For example, although Mauritiella armata occurs occasionally in white-sand plots, 

it only forms dominant stands in peatland forests. This finding is further supported by our indicator 

species analysis, which shows that most significant peatland indicator species are not specialists, but 

instead are generalists or spill-over species (Table A.2). Such dominance or “oligarchic” patterns are 

ubiquitous across Amazonia, in a range of forest types (Pitman et al. 2001, 2013, 2014, ter Steege, et 

al. 2013). A small number of peatland specialist species (e.g. T. insignis var. monophylla) also 

contribute to these oligarchies, and overall it is the unique combination of species forming oligarchies 

in peatland forests that makes the tree biodiversity of these ecosystems distinctive. 

As there are apparently few specialist peatland taxa, many species that occur here are also found in 

other forest types. Interestingly, peatland pole forests are compositionally similar to white-sand 

forests as has been suggested previously (Lähteenoja et al. 2009a, García-Villacorta et al. 2011), and 

a number of species that had previously been considered white-sand endemics are common in 

peatland pole forests, such as Platycarpum loretensis (Davila & Kinoshita 2016). A likely 

explanation for this pattern is that peatland pole forests and white-sand forests share common 

environmental filters (Keddy 1992), including exceptionally low levels of exchangable cations and 

extreme acidity (pH 3.5–4.7) (Anderson 1981, Kalliola and Flores Paitan 1998, Quesada et al. 2010, 

Lähteenoja and Page 2011, Adeney et al. 2016 GarcíaǦVillacorta et al. 2016). 

Palms swamps are floristically similar to both peatland pole forests and seasonally-flooded forests, 

and contain many seasonally-flooded forest spill-over taxa (Figure 2). This is likely because palms 

swamps share similar environmental filters with both peatland pole forests and seasonally-flooded 

forests. Like peatland pole forests, palm swamps are constantly waterlogged, but typically have much 

higher fertility and higher pH than either peatland pole forests or white-sand forests due to fluvial 

mineral input (Lähteenoja and Page 2011). Palm swamps also experience extended inundation, as do 

seasonally-flooded forests. However, for both palm swamp and peatland pole forest it is difficult to 

separate the effect of environmental filters from possible dispersal limitation, as palm swamp forests 

266  

are often found close to seasonally-flooded forests and peatland pole forests are most common in the 
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267 north-east of the Pastaza-Marañón Foreland Basin close to the extensive white-sand forests 

around the 268 Nanay river (Fine et al. 2010, Draper et al. 2014).  269  

Endemism in peatlands  270  

It is remarkable that there are so few candidates for peatland endemic tree species in our study, as 271 

peatlands present a distinct combination of environmental filters compared with upland forests. We 

272 would expect this distinct environment to lead to both parapatric and allopatric speciation, as has 

been 273 shown for white-sand forests in both plant and bird communities (Fine et al. 2004, 2005, 

2006, 2014, 274 Fine and Kembel 2011, Fine and Baraloto 2016, Alonso Alvarez et al. 2016). 

Therefore, the lack of 275 endemism observed in the Pastaza-Marañón Foreland Basin peatlands is 

curious, particularly given 276 the apparently high numbers of endemics species reported in other 

environmentally extreme habitats 277 (e.g. white-sand forests in western Amazonia, 114 endemic 

trees species (Fine et al. 2010); 278 Amazonian white water seasonally-flooded forests, 68 endemic 

tree species (Wittmann et al. 2013); 279 SE Asian peatland forests, 172 endemic tree species (Posa et 

al. 2011)).  280  

One possible explanation for this apparent low endemism is that peatlands are a relatively transient 

281 feature on the landscape in this region, and as a result there has been insufficient time for 

speciation to 282 occur. Wetland swamp habitats have occurred at least intermittently in Western 

Amazonia since the 283 early Miocene, although their permanence on the landscape remains unclear 

(Hoorn et al. 1994, 2010 284 a, b). However, unlike in SE Asia, no peats dating to Quaternary glacial 

periods have yet been 285 identified in the Pastaza-Marañón Foreland Basin (Lähteenoja 2009b, 

Lähteenoja et al. 2012, 286 Roucoux, et al. 2013, Swindles, et al. 2015, Watson, et al. 2015). 

Peatlands can be exceptionally 287 sensitive to climate dynamics, such as changes to precipitation 

and the flood regime (Fenner and 288 Freeman 2011, Kelly et al. 2017). Although Western Amazonia 

probably only experienced modest 289 drying during glacial periods (Cheng et al. 2013), even 

slightly reduced rainfall may have been 290 sufficient to cause peatlands, particularly domed 

ombrotrophic peatlands where pole forests are found, 291 to disappear from the landscape for long 

periods (Dommain et al. 2014).  292  

One species variety that is amongst the most common in both peatland forest types and which may 

293 be a peatland specialist is Tabebuia insignis var. monophylla. Interestingly, this variety is 

abundant 294 not only in other peatland forests elsewhere in Northwest Amazonia (Torres 

Montenegro et al. 2016), 295 but also found in swamp forests in Guyana, Venezuela and northeastern 

Brazil (Gentry 1992, ter 296 Steege et al 1993, White et al. 2002, Van Andel 2003, Vegas-Vilarnibia 

et al. 2006). Understanding 297 the evolutionary history of this unusual example of a potentially 

endemic Amazonian peatland tree, 298 would be a useful future research direction in order to 
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understand the evolution and development of 299 peatland forests in Amazonia.    

Patterns of alpha-diversity   

Overall, the alpha-diversity of both peatland ecosystems, is low compared with other forest types.  

This finding is consistent with numerous records showing that Amazonian swamps are less diverse  

than terra firme forests (Dumont et al. 1990, Kahn and Mejia 1990, Pitman et al. 2014,). Peatland 

pole  forests are, in turn, much less diverse than palm swamps (estimated mean Fisher’s alpha 4.57), 

and to  our knowledge the least diverse forest type yet recorded in Amazonia. This includes 

comparisons with  so-called ‘monodominant’ forests and low-diversity igapó forests, which 

typically contain more than  twice as many species per plot than was observed here (Table S.4) 

(Nascimento et al. 1997, Marimon  et al. 2001, ter Steege et al. 2000, Targhetta et al. 2015, Johnston 

and Gillman 1995).    

Why are Amazonian peatland pole forests so species-poor? One possible explanation is that the low  

diversity observed in the peatlands results from their strong environmental filters. However,  

environmental filtering alone cannot explain the disparity in diversity between peatland pole forests  

and white-sand forests in our data. Like peatland pole forests, white-sand forests have exceptionally  

nutrient-poor soils and highly acidic soils (Kalliola and Flores Paitan 1998, Quesada et al. 2010), yet  

they maintain much higher levels of diversity. Interestingly, SE Asian peatland pole forests, are also  

much more diverse (65-80 species per 0.16 ha plot; Poesie et al. 2010, Posa et al. 2011) than those we  

describe (7-35 species per 0.5 ha plot), despite sharing broadly equivalent environmental filters.   

Another explanation is that the low diversity found in peatland pole forests results from their small  

area and isolated nature, which leads to enhanced dispersal limitation and increased stochastic   

extinctions (ter Steege et al. 2000, 2010, Stropp et al. 2009). This explanation is consistent with  

neutral theory (Hubbell 2001), area-diversity theory (Rosenzweig 1995), and island biogeography  

theory (MacArthur and Wilson 1967). To some extent our results support this explanation, as the  

more diverse palm swamps occupy a greater area (27,732 km2) than the less diverse peatland pole  

forests (3,686 km2) and occur in more continuous patches (>50 km2) (Draper et al. 2014). However,  

white-sand forests also occupy a small area and have a patchy distribution in this region (Adeney et  

al. 2016), but are floristically more diverse than both peatland ecosystems. Furthermore, far smaller  

patches of palm swamp forest occurring within terra firme in western Amazonia are much more  

diverse than our palm swamp plots (e.g. up to 164 species ha-1; Cornejo Valverde and Janovec 2006).  

This suggests that the tree diversity of palm swamps does not always increase with patch size, and in  

fact the opposite seems to be the case in this instance. This may be because small swamp patches  

surrounded by terra firme forest may contain many spill-over species, while larger swamp areas may  

effectively form their own buffer zone from surrounding vegetation types.    
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An alternative explanation for the low diversity observed in peatlands is that environmental  

dynamism over centennial timescales in peatlands may have prevented the accumulation of diversity.  

The oldest known peatlands in the Pastaza-Marañón Foreland Basin have been accumulating peat for  

8000 years, but the ombrotrophic conditions associated with peatland pole forest may have only  

developed over recent centuries (Lähteenoja et al. 2012, Kelly et al. 2017). This temporal dynamism  

contrasts markedly with white-sand forests which formed over six million years ago, and have  

probably maintained a relatively constant edaphic environment for millennia (Räsänen, 1987, Roddaz  

et al. 2005). Within this context, Amazonian peatlands may be analogous to an early successional  

system where species turnover in space or time is fast, but diversity at any one point is relatively low.  

This explanation is consistent with pollen analysis showing that peatlands in this region have  

undergone substantial floristic change through their development (Roucoux et al. 2013, Draper 2015,  

Kelly et al. 2017).    

These three explanations relating to area, environment and time are not mutually exclusive, and  

almost certainly all three contribute to the low diversity observed in peatlands. However, we suggest 

it  is the relative youth of Amazonian peatlands that makes them especially species-poor. A similar   

habitat-age explanation has been shown to determine species richness in fen-ecosystems in northern  

peatlands (Horsák et al. 2012). It will be important to test the importance of environmental dynamism  

through time in determining current diversity in these ecosystems using palaeoecological methods.   

Patterns of beta-diversity   

Floristic dissimilarity within peatland ecosystems is slightly lower but far more variable than that  

found among upland terra firme (Figure 5). This pattern is particularly striking in the field as the high  

turnover in composition and abundance can occur over very short distances. For example, in one  

peatland pole forest plot Pachira brevipes accounts for ~70 % of individuals, while in another  

peatland pole forest plot < 1 km away Pachira brevipes is entirely absent. Similar patterns of high tree  

species turnover have been found in white-sand habitats (Fine et al. 2010), and may be a product of  

strong fertility gradients occurring over short distances. Alternatively these beta-diversity patterns  

may derive from historical contingency and priority effects (Fukami 2015), whereby the species that  

first colonise the peatland dominate specific patches. This explanation - that the decrease in  

community similarity with increasing distance between peatland plots (Figure 5), primarily reflects  

dispersal limitation, rather than some underlying environmental gradient – seems most likely in this  

case. This is because whilst there are strong environmental gradients within individual peatlands,  

these gradients do not appear to vary systematically across the Pastaza-Marañón Foreland Basin  

within peatland ecosystem types (Lähteenoja and Page 2011). The seemingly high dispersal 

limitation  in peatlands contrasts with other forest types: particularly in terra firme and white-sand 
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forests, where  distance appears to be a relatively poor predictor of similarity (Figure 5), an 

observation consistent  with other studies in this region (Tuomisto et al. 2003, Condit et al. 2002).    

Limitations of our study design   

Our study draws on a range of different plot datasets, including plots of different sizes and  different 

diameter limits. The inclusion of many datasets is both a strength and a limitation of our  study, as it 

allows us to have a large sample size across all forest types in this region, but makes  comparison 

among sampling protocols more difficult. Although we have taken measures to  standardise our 

dataset (e.g. through excluding morphospecies), the overall high beta-diversity among   

white-sand forest plots may be due, in part, to variation in sampling design, as plots varied in size  

from 0.025 to 1 ha, and included diameter limits of both 2 cm and 10 cm. Additionally, because we  

have only sampled woody stems >2 cm, the diversity patterns that we find may not be representative  

of other plant groups such as herbs.   

Conservation importance of peatland forests   

Whilst peatland forests in the Pastaza-Marañón Foreland Basin may lack the alpha-diversity of  terra 

firme forests and the endemism of white-sand forests, they make a substantial contribution to the  

regional variation in beta-diversity. As peatlands have been confirmed to harbour a number of white- 

sand specialist species in high abundance, they appear to provide a previously unaccounted-for link  

between isolated patches of white-sand forests (,Lahteenoja et al. 2009, García-Villacorta et al. 

2011).  Therefore, conserving peatlands may be an important step in conserving white-sand endemic 

species  that have been identified as a conservation priority (Alvarez Alonso et al. 2013).    

Peatland forests also harbour a number of economically important tree species. Mauritia flexuosa  in 

particular is not only one of the most abundant peatland species but also the most important wild  

fruit-bearing plant in this region, providing a valuable resource for local communities (Manzi and  

Coomes 2009, Horn et al. 2012, Endress et al. 2013, Gilmore et al. 2013). Therefore, the contribution  

to regional beta-diversity and abundance of economically important species present a strong rationale  

for peatland conservation, quite apart from their value as a carbon store and potential sink 

(Lähteenoja  et al. 2012, Draper et al. 2014, Roucoux et al. 2017).   

Conclusions    

The largest peatland complex in Amazonia contains two floristically distinct forest ecosystems,  

peatland pole forests and palm swamps. These peatland ecosystems are anomalous due to their  

extremely low alpha-diversity and low levels of endemism in tree species. Whilst habitat area and soil  

fertility appear to contribute to this low tree species diversity, our results indicate that environmental  

dynamism over centennial timescales may lead to increased dispersal limitation or priority effects, 

resulting in the exceptionally low diversity found in peatland pole forests. The low levels of peatland 



A
c

c
e

p
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 
 

endemic tree taxa in our dataset may be a result of environmental instability over longer, millennial  

timescales, which may have prevented speciation. Amazonian peatlands should therefore be valued 

as an important component of regional ecosystem diversity and not only as large carbon stores.   
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FIGURE LEGENDS 

Figure 1 Location map showing all 89 forest plots, the location of the Pastaza-Marañón 

Foreland Basin (shaded area) within Peru (red boundary). Many locations contain several 

plots (median = 1, mean = 1.6, max = 11). Full details of all plots can be found in Appendix 

T1. River and country boundary was downloaded from (DIVA GIS 2014). The inset map 

shows the study region in relation to the rest of Peru. 
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Figure 2. Percentage of species and stems in the two peat forming forest types (peatland pole 

forests and palm swamps) belonging to specific ecological guilds defined in the methods 

section. Codes refer to forest types as follows: PF (pole forest); PS (palm swamp); SF 

(seasonally-flooded forest); TF (terra firme forest); WS (white-sand forest). 
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Figure 3. Estimated species richness and diversity as estimated by the exponential Shannon 

index and Fisher’s alpha for the five forest types: Peatland pole forest (PF), palm swamp 

(PS), white-sand forest (WS), seasonally-flooded forest (SF) and terra firme forest (TF). 

Estimated richness and diversity indices were calculated for 500 extrapolated individuals. 

Error bars are 95% confidence intervals. Asterisks indicate values significantly different 

from peatland pole forest (red) and palm swamp (blue), (* = P < 0.05, ** = P < 0.01, and *** 

= P < 0.001). 
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Figure 4. NMDS ordinations showing the similarity of all 89 forest plots within and among 

forest types. Panel A is an NMDS ordination based on tree species abundance data (Hellinger 

distance), Panel B is an NMDS ordination based on all tree species presence/absence data 

(Jaccard distance). Both ordinations were optimized for two dimensions. Labels and colours 

correspond to forest types: Peatland pole forest (PF, red); palm swamp (PS, blue); 

seasonally-flooded forest (SF, green); terra firme (TF, purple); white-sand forests (WS, 

orange). The corresponding analyses using a subset of 79 individuals per plot are presented in 

figure S.2.  
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Figure 5. Floristic similarity (inverse Hellinger distance based on all tree species abundance 

data) between pairs of plots, within forest types, as a function of geographical distance 

between the plots. Solid lines show the mean similarity from the GLM models and shaded 

areas show the 95% confidence interval of the model fits. Individual (within forest type) 

model fits alongside their underlying data are presented in figure S.4. The corresponding 

analysis using a subset of 79 individuals per plot is presented in figure S.3. 
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TABLE LEGENDS 

Table 1. Summary information for the plot dataset across five forest types showing the number, size and total 

plot area in each forest type, the minimum stem diameter included in the inventory, and the total number of 

stems and species recorded. Figures in square brackets correspond to subplots within the larger plots. 
 

 Pole forest Palm Terra Seasonally White- 
  swamp firme flooded sand 

No. plots 11 15 28 12 24 

Plot size (ha) 0.5 [0.04] 0.5 [0.04] 1 0.5 or 1 1, 0.1 or 

0.025 

Minimum diameter 10 [2] 10 [2] 10 10 10 or 2 

(cm)      

Total area of plots (ha) 5.5 [0.44] 7.5 [0.6] 28 6.5 5.275 

Total stems recorded 9427 4667 17311 4391 8519 

Mean large (>10 cm dbh) 1044 532 618 682 838 

stem   density (ha-1)      

Mean small (2-10 cm 9905 1594   6103 

dbh) stem density (ha-1)      

Percentage total   stems 97 95 64 81 86 

identified      

Mean and range of total 815 (418- 292 (226- 394 (181- 290 (194- 303 (79- 

identified stems per plot 1684) 484) 601) 543) 914) 

Total identified species 99[85]# 234[201]# 1113 270 351 

# refers to number of identified species found only in the 2-10 cm dbh subplots. 
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Table 2 Mean Raup-Crick community dissimilarity. The given value indicates the degree to which the similarity 
between forest types is more similar, equally similar, or less similar, than would be expected by chance. The 
observed similarity was tested against 1000 random permutations of a null model. Values approaching zero 
indicate levels of similarity expected by chance, values approaching 1 indicate greater dissimilarity than 
expected by chance, and values approaching -1 indicate greater similarity than expected by chance. 

 

 PF PS SF WS TF 

Pole Forest -0.95 -0.52 0.46 -0.38 0.66 

Palm swamp - -0.83 -0.31 0.50 0.61 

Seasonally- - - -0.77 0.80 0.77 

flooded forest      

White-sand - - - -0.80 0.52 

forest      

Terra firme - - - - -0.55 

9      

 
 
  

 


