This is an author produced version of *The group of automorphisms of the Lie algebra of derivations of a polynomial algebra*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/124645/

Article:

https://doi.org/10.1142/S0219498817500888
The group of automorphisms of the Lie algebra of derivations of a polynomial algebra

V. V. Bavula

Abstract

We prove that the group of automorphisms of the Lie algebra $\text{Der}_K(P_n)$ of derivations of a polynomial algebra $P_n = K[x_1, \ldots, x_n]$ over a field of characteristic zero is canonically isomorphic to the group of automorphisms of the polynomial algebra P_n.

Key Words: Group of automorphisms, monomorphism, Lie algebra, automorphism, locally nilpotent derivation.

1 Introduction

In this paper, module means a left module, K is a field of characteristic zero and K^* is its group of units, and the following notation is fixed:

- $P_n := K[x_1, \ldots, x_n]$ is a polynomial algebra over K where $x^n := x_1^{a_1} \cdots x_n^{a_n}$,
- $G_n := \text{Aut}_K(P_n)$ is the group of automorphisms of the polynomial algebra P_n,
- $\partial_1 := \frac{\partial}{\partial x_1}, \ldots, \partial_n := \frac{\partial}{\partial x_n}$ are the partial derivatives (K-linear derivations) of P_n,
- $D_n := \text{Der}_K(P_n) = \bigoplus_{i=1}^n P_n \partial_i$ is the Lie algebra of K-derivations of P_n where $[\partial, \delta] := \frac{\partial \delta - \delta \partial}{\partial}$,
- $\delta_1 := \text{ad}(\partial_1), \ldots, \delta_n := \text{ad}(\partial_n)$ are the inner derivations of the Lie algebra D_n determined by the elements $\partial_1, \ldots, \partial_n$ (where $\text{ad}(a)(b) := [a, b]$),
- $\mathcal{G}_n := \text{Aut}_{\text{Lie}}(D_n)$ is the group of automorphisms of the Lie algebra D_n,
- $D := \bigoplus_{i=1}^n K \partial_i$,
- $\mathcal{H}_n := \bigoplus_{i=1}^n KH_i$ where $H_1 := x_1 \partial_1, \ldots, H_n := x_n \partial_n$,
- $A_n := K\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \rangle = \bigoplus_{\alpha, \beta \in \mathbb{N}^n} K x^n \partial^\beta$ is the n’th Weyl algebra,
- for each natural number $n \geq 2$, $u_n := K \partial_1 + P_1 \partial_2 + \cdots + P_{n-1} \partial_n$ is the Lie algebra of triangular polynomial derivations (it is a Lie subalgebra of the Lie algebra D_n) and $\text{Aut}_K(u_n)$ is its group of automorphisms.

The aim of the paper is to prove the following theorem.

Theorem 1.1 $\mathcal{G}_n = G_n$.

Structure of the proof. (i) $G_n \subseteq \mathcal{G}_n$ via the group monomorphism (Lemma 2.3.3)

$G_n \to \mathcal{G}_n$, $\sigma \mapsto \sigma : \partial \mapsto \sigma(\partial) := \sigma \partial \sigma^{-1}$.

(ii) Let $\sigma \in \mathcal{G}_n$. Then $\partial'_1 := \sigma(\partial_1), \ldots, \partial'_n := \sigma(\partial_n)$ are commuting, locally nilpotent derivations of the polynomial algebra P_n (Lemma 2.4.1(1)).
(iii) $\bigcap_{i=1}^n \ker P_n(\partial_i) = K$ (Lemma 2.6 (2)).

(iv) (crux) There exists a polynomial automorphism $\tau \in G_n$ such that $\tau \sigma \in \text{Fix}_{G_n}(\partial_1, \ldots, \partial_n)$ (Corollary 2.9).

(v) $\text{Fix}_{G_n}(\partial_1, \ldots, \partial_n) = \text{Sh}_n$ (Proposition 2.5 (3)) where

$$\text{Sh}_n := \{s_\lambda \in G_n \mid s_\lambda(x_1) = x_1 + \lambda_1, \ldots, s_\lambda(x_n) = x_n + \lambda_n\}$$

is the shift group of automorphisms of the polynomial algebra P_n and $\lambda = (\lambda_1, \ldots, \lambda_n) \in K^n$.

(vi) By (iv) and (v), $\sigma \in G_n$, i.e., $G_n = G_n$. \square

An analogue of the Jacobian Conjecture is true for D_n. The Jacobian Conjecture claims that certain monomorphisms of the polynomial algebra P_n are isomorphisms: Every algebra endomorphism σ of the polynomial algebra P_n such that $J(\sigma) := \det(\frac{\partial \sigma(x_i)}{\partial x_j}) \in K^*$ is an automorphism. The condition that $J(\sigma) \in K^*$ implies that the endomorphism σ is a monomorphism.

Conjecture. Every homomorphism of the Lie algebra D_n is an automorphism.

Theorem 1.2 [7] Every monomorphism of the Lie algebra u_n is an automorphism.

Remark. Not every epimorphism of the Lie algebra u_n is an automorphism. Moreover, there are countably many distinct ideals $\{I_{\omega^n} \mid i \geq 0\}$ such that

$$I_0 = \{0\} \subset I_{\omega^n} \subset I_{2\omega^n} \subset \cdots \subset I_{i\omega^n} \subset \cdots$$

and the Lie algebras $u_n/I_{i\omega^n}$ and u_n are isomorphic (Theorem 5.1 (1), [3]).

Theorems 1.2 and Conjecture have bearing of the Jacobian Conjecture and the Conjecture of Dixmier [8] for the Weyl algebra A_n over a field of characteristic zero that claims: every homomorphism of the Weyl algebra is an automorphism. The Weyl algebra A_n is a simple algebra, so every algebra endomorphism of A_n is a monomorphism. This conjecture is open since 1968 for all $n \geq 1$. It is stably equivalent to the Jacobian Conjecture for the polynomial algebras as was shown by Tsuchimoto [9], Belov-Kanel and Kontsevich [7] (see also [2] for a short proof which is based on the author’s new inversion formula for polynomial automorphisms [1]).

An analogue of the Conjecture of Dixmier is true for the algebra $\mathbb{I}_1 := K \langle x, \frac{d}{dx}, f \rangle$ of polynomial integro-differential operators.

Theorem 1.3 (Theorem 1.1, [3]) Each algebra endomorphism of \mathbb{I}_1 is an automorphism.

In contrast to the Weyl algebra $A_1 = K \langle x, \frac{d}{dx} \rangle$, the algebra of polynomial differential operators, the algebra \mathbb{I}_1 is neither a left/right Noetherian algebra nor a simple algebra. The left localizations, $A_{1,\theta}$ and $\mathbb{I}_{1,\theta}$, of the algebras A_1 and I_1 at the powers of the element $\theta = \frac{d}{dx}$ are isomorphic. For the simple algebra $A_{1,\theta} \simeq \mathbb{I}_{1,\theta}$, there are algebra endomorphisms that are not automorphisms [3].

The group of automorphisms of the Lie algebra u_n. In [3], the group of automorphisms $\text{Aut}_K(u_n)$ of the Lie algebra u_n of triangular polynomial derivations is found $(n \geq 2)$, it is isomorphic to an iterated semi-direct product (Theorem 5.3, [4]),

$$\mathbb{T}^n \rtimes (\text{UAut}_K(P_n)_n \rtimes (\mathbb{F}_{n}^n \times \mathbb{E}_n))$$

where \mathbb{T}^n is an algebraic n-dimensional torus, $\text{UAut}_K(P_n)_n$ is an explicit factor group of the group $\text{UAut}_K(P_n)$ of unitriangular polynomial automorphisms, \mathbb{F}_{n}^n and \mathbb{E}_n are explicit groups that are isomorphic respectively to the groups \mathbb{I} and \mathbb{I}^{n-2} where $\mathbb{I} := (1 + t^2 K[[t]], \cdot) \simeq K^N$.
and \(J := (tK[[t]], +) \simeq K^N \). Comparing the groups \(G_n \) and \(\text{Aut}_K(u_n) \) we see that the group \((\text{UAut}_K(P_n)_n \) of polynomial automorphisms is a tiny part of the group \(\text{Aut}_K(u_n) \) but in contrast \(G_n = \text{Aut}_K(P_n) \). It is shown that the adjoint group of automorphisms \(\mathcal{A}(u_n) \) of the Lie algebra \(u_n \) is equal to the group \(\text{UAut}_K(P_n)_n \) (Theorem 7.1, [6]). Recall that the adjoint group \(\mathcal{A}(G) \) of a Lie algebra \(G \) is generated by the elements \(e^{ad(g)} := \sum_{i \geq 0} \frac{ad(g)^i}{i!} \in \text{Aut}_K(G) \) where \(g \) runs through all the locally nilpotent elements of the Lie algebra \(G \) (an element \(g \) is a locally nilpotent element if the inner derivation \(ad(g) := [g, \cdot] \) of the Lie algebra \(G \) is a locally nilpotent derivation).

2 Proof of Theorem 1.1

This section can be seen as a proof of Theorem 1.1. The proof is split into several statements that reflect ‘Structure of the proof of Theorem 1.1’ given in the Introduction.

The Lie algebra \(D_n \) is \(Z^n \)-graded. The Lie algebra

\[
D_n = \bigoplus_{\alpha \in N^n} \bigoplus_{i=1}^n Kx^\alpha \partial_i
\]

is a \(Z^n \)-graded Lie algebra

\[
D_n = \bigoplus_{\beta \in Z^n} D_{n, \beta} \quad \text{where} \quad D_{n, \beta} = \bigoplus_{\alpha-e_i=\beta} Kx^\alpha \partial_i,
\]

i.e. \([D_{n, \alpha}, D_{n, \beta}] \subseteq D_{n, \alpha+i} \) for all \(\alpha, \beta \in N^n \) where \(e_1 := (1, 0, \ldots, 0), \ldots, e_n := (0, \ldots, 0, 1) \) is the canonical free basis for the free abelian group \(Z^n \). This follows from the commutation relations

\[
[x^\alpha \partial_i, x^\beta \partial_j] = \beta_i x^{\alpha+\beta-e_i} \partial_j - \alpha_j x^{\alpha+\beta-e_j} \partial_i.
\]

Clearly, for all \(i, j = 1, \ldots, n \) and \(\alpha \in N^n \),

\[
[H_j, x^\alpha \partial_i] = \begin{cases}
\alpha_j x^\alpha \partial_i & \text{if } j \neq i, \\
(\alpha_i - 1)x^\alpha \partial_i & \text{if } j = i,
\end{cases}
\]

\[
[\partial_j, x^\alpha \partial_i] = \alpha_j x^{\alpha-e_j} \partial_i.
\]

The support \(\text{Supp}(D_n) := \{ \beta \in Z^n \mid D_{n, \beta} \neq 0 \} \) is a submonoid of \(Z^n \). Let us find the support \(\text{Supp}(D_n) \), the graded components \(D_{n, \beta} \) and their dimensions \(\dim_K D_{n, \beta} \). For each \(i = 1, \ldots, n \), let \(N^{n,i} := \{ \alpha \in N^n \mid \alpha_i = 0 \} \) and \(P^\beta_n := \ker P_n(\partial_i) \). It follows from the decompositions \(P_n = P^\beta_n \oplus P_n x_i \) for \(i = 1, \ldots, n \) that

\[
D_n = \bigoplus_{i=1}^n (P^\beta_n \oplus P_n x_i) \partial_i = \bigoplus_{i=1}^n P^\beta_n \partial_i \oplus \bigoplus_{i=1}^n P_n H_i,
\]

\[
D_n = \bigoplus_{i=1}^n P^\beta_n \partial_i \oplus \bigoplus_{\alpha \in N^n} x^\alpha H_n.
\]

Hence,

\[
\text{Supp}(D_n) = \prod_{i=1}^n \left(N^{n,i} - e_i \right) \bigcap N^n.
\]

\[
D_{n, \beta} = \begin{cases}
\text{\(x^\alpha \partial_i \) if } \beta = \alpha - e_i \in N^{n,i} - e_i, \\
\text{\(x^\beta H_n \) if } \beta \in N^n.
\end{cases}
\]

\[
\dim_K D_{n, \beta} = \begin{cases}
1 & \text{if } \beta = \alpha - e_i \in N^{n,i} - e_i, \\
n & \text{if } \beta \in N^n.
\end{cases}
\]
Let \mathcal{G} be a Lie algebra and \mathcal{H} be its Lie subalgebra. The centralizer $C_{\mathcal{G}}(\mathcal{H}) := \{ x \in \mathcal{G} \mid [x, \mathcal{H}] = 0 \}$ of \mathcal{H} in \mathcal{G} is a Lie subalgebra of \mathcal{G}. In particular, $Z(\mathcal{G}) := C_{\mathcal{G}}(\mathcal{G})$ is the centre of the Lie algebra \mathcal{G}. The normalizer $N_{\mathcal{G}}(\mathcal{H}) := \{ x \in \mathcal{G} \mid [x, \mathcal{H}] \subseteq \mathcal{H} \}$ of \mathcal{H} in \mathcal{G} is a Lie subalgebra of \mathcal{G}, it is the largest Lie subalgebra of \mathcal{G} that contains \mathcal{H} as an ideal.

Let V be a vector space over K. A K-linear map $\delta : V \to V$ is called a locally nilpotent map if $V = \bigcup_{i \geq 1} \ker(\delta^i)$ or, equivalently, for every $v \in V$, $\delta^i(v) = 0$ for all $i \gg 1$. When δ is a locally nilpotent map in V we also say that δ acts locally nilpotently on V. Every nilpotent linear map δ, that is $\delta^n = 0$ for some $n \geq 1$, is a locally nilpotent map but not vice versa, in general. Let \mathcal{G} be a Lie algebra. Each element $a \in \mathcal{G}$ determines the derivation of the Lie algebra \mathcal{G} by the rule $\text{ad}(a): \mathcal{G} \to \mathcal{G}$, $b \mapsto [a, b]$, which is called the inner derivation associated with a. The set $\text{Inn}(\mathcal{G})$ of all the inner derivations of the Lie algebra \mathcal{G} is a Lie subalgebra of the Lie algebra $(\text{End}_K(\mathcal{G}), [\cdot, \cdot])$ where $[f, g] := fg - gf$. There is the short exact sequence of Lie algebras

$$0 \to Z(\mathcal{G}) \to \mathcal{G} \xrightarrow{\text{ad}} \text{Inn}(\mathcal{G}) \to 0,$$

that is $\text{Inn}(\mathcal{G}) \simeq \mathcal{G}/Z(\mathcal{G})$ where $Z(\mathcal{G})$ is the centre of the Lie algebra \mathcal{G} and $\text{ad}([a, b]) = [\text{ad}(a), \text{ad}(b)]$ for all elements $a, b \in \mathcal{G}$. An element $a \in \mathcal{G}$ is called a locally nilpotent element (respectively, a nilpotent element) if so is the inner derivation $\text{ad}(a)$ of the Lie algebra \mathcal{G}.

The Cartan subalgebra \mathcal{H}_n of D_n. A nilpotent Lie subalgebra C of a Lie algebra \mathcal{G} is called a Cartan subalgebra of \mathcal{G} if it coincides with its normalizer. We use often the following obvious observation: *An abelian Lie subalgebra that coincides with its centralizer is a maximal abelian Lie subalgebra.*

Lemma 2.1

1. \mathcal{H}_n is a Cartan subalgebra of D_n.

2. $\mathcal{H}_n = C_{D_n}(\mathcal{H}_n)$ is a maximal abelian subalgebra of D_n.

Proof. Statements 1 and 2 follows from (6) and (7). □

P_n is a D_n-module. The polynomial algebra P_n is a (left) D_n-module: $D_n \times P_n \to P_n$, $(\partial, p) \mapsto \partial \ast p$. In more detail, if $\partial = \sum_{i=1}^{n} a_i \partial_i$ where $a_i \in P_n$ then

$$\partial \ast p = \sum_{i=1}^{n} a_i \frac{\partial p}{\partial x_i}.$$

The field K is a D_n-submodule of P_n and

$$\bigcap_{i=1}^{n} \ker_{P_n}(\partial_i) = K. \quad (8)$$

Lemma 2.2 The D_n-module P_n/K is simple with $\text{End}_{D_n}(P_n/K) = \text{id}$ where id is the identity map.

Proof. Let M be a nonzero submodule of P_n/K and $0 \neq p \in M$. Using the actions of $\partial_1, \ldots, \partial_n$ on p we obtain an element of M of the form λx_i for some $\lambda \in K^*$. Hence, $x_i \in M$ and $x^\alpha = x^\alpha \partial_i \ast x_i \in M$ for all $0 \neq \alpha \in \mathbb{N}^n$. Therefore, $M = P_n/K$. Let $f \in \text{End}_{D_n}(P_n/K)$. Then applying f to the equalities $\partial_i \ast (x_1 + K) = \delta_{i1}$ for $i = 1, \ldots, n$, we obtain the equalities

$$\partial_i \ast f(x_1 + K) = \delta_{i1} \text{ for } i = 1, \ldots, n.$$

Hence, $f(x_1 + K) \in \bigcap_{i=2}^{n} \ker_{P_n/K}(\partial_i) \cap \ker_{P_n/K}(\partial_1^2) = (K[x_1]/K) \cap \ker_{P_n/K}(\partial_1^2) = K(x_1 + K)$. So, $f(x_1 + K) = \lambda(x_1 + K)$ and so $f = \lambda \text{id}$, by the simplicity of the D_n-module P_n/K. □
The G_n-module D_n. The Lie algebra D_n is a G_n-module,
\[G_n \times D_n \to D_n, \ (\sigma, \partial) \mapsto \sigma(\partial) := \sigma \partial \sigma^{-1}. \]

Every automorphism $\sigma \in G_n$ is uniquely determined by the elements
\[x'_1 := \sigma(x_1), \ldots, x'_n := \sigma(x_n). \]

Let $M_n(P_n)$ be the algebra of $n \times n$ matrices over P_n. The matrix $J(\sigma) := (J(\sigma)_{ij}) \in M_n(P_n)$, where $J(\sigma)_{ij} = \frac{\partial x'_i}{\partial x_j}$, is called the Jacobian matrix of the automorphism (endomorphism) σ and its determinant $J(\sigma) := \det J(\sigma)$ is called the Jacobian of σ. So, the j'th column of $J(\sigma)$ is the gradient $\text{grad} x'_j := (\frac{\partial x'_1}{\partial x_j}, \ldots, \frac{\partial x'_n}{\partial x_j})^T$ of the polynomial x'_j. Then the derivations
\[\partial'_1 := \sigma \partial_1 \sigma^{-1}, \ldots, \partial'_n := \sigma \partial_n \sigma^{-1} \]
are the partial derivatives of P_n with respect to the variables x'_1, \ldots, x'_n.

\[\partial'_i = \frac{\partial}{\partial x'_i}, \ldots, \partial'_n = \frac{\partial}{\partial x'_n}. \tag{9} \]

Every derivation $\partial \in D_n$ is a unique sum $\partial = \sum_{i=1}^n a_i \partial_i$ where $a_i = \partial * x_i \in P_n$. Let $\partial := (\partial_1, \ldots, \partial_n)^T$ and $\partial' := (\partial'_1, \ldots, \partial'_n)^T$ where T stands for the transposition. Then
\[\partial' = J(\sigma)^{-1} \partial, \ i.e. \ \partial'_i = \sum_{j=1}^n (J(\sigma)^{-1})_{ij} \partial_j \text{ for } i = 1, \ldots, n. \tag{10} \]

In more detail, if $\partial' = A \partial$ where $A = (a_{ij}) \in M_n(P_n)$, i.e. $\partial_i = \sum_{j=1}^n a_{ij} \partial_j$. Then for all $i, j = 1, \ldots, n$,
\[\delta_{ij} := \partial'_i * x'_j = \sum_{k=1}^n a_{ik} \frac{\partial x'_j}{\partial x_k} \]
where δ_{ij} is the Kronecker delta function. The equalities above can be written in the matrix form as $AJ(\sigma) = 1$ where 1 is the identity matrix. Therefore, $A = J(\sigma)^{-1}$.

Suppose that a group G acts on a set S. For a nonempty subset T of S, $\text{St}_G(T) := \{ g \in G \mid gT = T \}$ is the stabilizer of the set T in G and $\text{Fix}_G(T) := \{ g \in G \mid gt = t \text{ for all } t \in T \}$ is the fixator of the set T in G. Clearly, $\text{Fix}_G(T)$ is a normal subgroup of $\text{St}_G(T)$.

The maximal abelian Lie subalgebra \mathcal{D}_n of D_n.

Lemma 2.3

1. $C_{D_n}(\mathcal{D}_n) = \mathcal{D}_n$ and so \mathcal{D}_n is a maximal abelian Lie subalgebra of D_n.

2. $\text{Fix}_{G_n}(\mathcal{D}_n) = \text{Fix}_{G_n}(\partial_1, \ldots, \partial_n) = Sh_n$.

3. \mathcal{D}_n is a faithful G_n-module, i.e. the group homomorphism $G_n \to \mathbb{G}_n, \sigma \mapsto \sigma : \partial \mapsto \sigma \partial \sigma^{-1}$, is a monomorphism.

4. $\text{Fix}_{G_n}(\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) = \{ e \}$.

Proof. 1. Statement 1 follows from (2).

2. Let $\sigma \in \text{Fix}_{G_n}(\mathcal{D}_n)$ and $J(\sigma) = (J_{ij})$. By (10), $\partial = J(\sigma) \partial$, and so, for all $i, j = 1, \ldots, n$,
\[\delta_{ij} = \partial'_i * x'_j = \sum_{k=1}^n a_{ik} \frac{\partial x'_j}{\partial x_k} \]
for some scalars $\lambda_i \in K$, and so $\sigma \in S_{h_n}$.

3 and 4. Let $\sigma \in \text{Fix}_{G_n} = (\partial_1, \ldots, \partial_n, H_1, \ldots, H_n)$. Then $\sigma \in \text{Fix}_{G_n}(\partial_1, \ldots, \partial_n) = Sh_n$, by statement 2. So, $\sigma(x_1) = x_1 + \lambda_1, \ldots, \sigma(x_n) = x_n + \lambda_n$ where $\lambda_i \in K$. Then $x_i \partial_i = \sigma(x_i \partial_i) = (x_i + \lambda_i) \partial_i$ for $i = 1, \ldots, n$, and so $\lambda_1 = \cdots = \lambda_n = 0$. This means that $\sigma = e$. So, $\text{Fix}_{G_n} = (\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) = \{ e \}$ and D_n is a faithful G_n-module. \square

By Lemma 2.3(3), we identify the group G_n with its image in \mathbb{G}_n.

Lemma 2.4 1. D_n is a simple Lie algebra.

2. $Z(D_n) = \{0\}$.

3. $[D_n, D_n] = D_n$.

Proof. 1. Let $0 \neq a \in D_n$ and $a = (a)$ be the ideal of the Lie algebra D_n generated by the element a. We have to show that $a = D_n$. Using the inner derivations $\delta_1, \ldots, \delta_n$ we see that $\delta_i \in a$ for some i. Then $a = D_n$ since

$$x^\alpha \partial_j = (\alpha_i + 1)^{-1}[\partial_i, x^{\alpha+\epsilon_j} \partial_j] \in a$$

for all α and j.

2 and 3. Statements 2 and 3 follow from statement 1. \(\square\)

Proposition 2.5 1. $\text{Fix}_{G_n}(\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) = \{e\}$.

2. Let $\sigma, \tau \in G_n$. Then $\sigma = \tau$ iff $\sigma(\partial_i) = \tau(\partial_i)$ and $\sigma(H_i) = \tau(H_i)$ for $i = 1, \ldots, n$.

3. $\text{Fix}_{G_n}(\partial_1, \ldots, \partial_n) = \text{Sh}_n$.

Proof. 1. Let $\sigma \in F := \text{Fix}_{G_n}(\partial_1, \ldots, \partial_n, H_1, \ldots, H_n)$. We have to show that $\sigma = e$. Since $\sigma \in \text{Fix}_{G_n}(H_1, \ldots, H_n)$, the automorphism σ respects the weight decomposition of D_n. By \(\Box\), $\sigma(x^\alpha \partial_i) = \lambda_{\alpha,i} x^\alpha \partial_i$ for all $\alpha \in \mathbb{N}^{n \times n}$ and $i = 1, \ldots, n$ where $\lambda_{\alpha,i} \in K$. Clearly, $\lambda_{0,i} = 1$ for $i = 1, \ldots, n$. Since $\sigma \in \text{Fix}_{G_n}(\partial_1, \ldots, \partial_n)$, by applying σ to the relations $\alpha_j x^{\alpha - \epsilon_j} \partial_i = [\partial_j, x^\alpha \partial_i]$, we get the relations

$$\alpha_j \lambda_{\alpha - \epsilon_j,i} x^{\alpha - \epsilon_j} \partial_i = [\partial_j, \lambda_{\alpha,i} x^\alpha \partial_i] = \alpha_j \lambda_{\alpha,i} x^{\alpha - \epsilon_j} \partial_i.$$

Hence $\lambda_{\alpha,i} = \lambda_{\alpha - \epsilon_j,i}$ provided $\alpha_j \neq 0$. We conclude that all the coefficients $\lambda_{\alpha,i}$ are equal to one of the coefficients $\lambda_{\epsilon_j,i}$ where $i, j = 1, \ldots, n$ and $i \neq j$. The relations $\partial_j = [\partial_i, x_i \partial_j] = \lambda_{\epsilon_j,i} \partial_j$, hence all the coefficients $\lambda_{\epsilon_j,i}$ are equal to 1. So, $\sum_{i=1}^n P_i \partial_i \subseteq F := \text{Fix}_{D_n}(\sigma) := \{\partial \in D_n | \sigma(\partial) = \partial\}$. To finish the proof of statement 1 it suffices to show that $x^\alpha H_i \in F$ for all $\alpha \in \mathbb{N}^{n \times n}$ and $i = 1, \ldots, n$, see \([\Box]\) and \([\Box]\). We use induction on $|\alpha| := a_1 + \cdots + a_n$. If $|\alpha| = 0$ the statement is obvious as $\sigma \in F$. Suppose that $|\alpha| > 0$. Using the commutation relations

$$[\partial_j, x^\alpha H_i] = \begin{cases} \alpha_j x^{\alpha - \epsilon_j} H_i & \text{if } j \neq i, \\ (\alpha_i + 1) x^\alpha \partial_i & \text{if } j = i, \end{cases} \quad (11)$$

the induction and the previous case, we see that

$$[\partial_j, \sigma(x^\alpha H_i) - x^\alpha H_i] = 0 \quad \text{for } i = 1, \ldots, n.$$

Therefore, $\sigma(x^\alpha H_i) - x^\alpha H_i \in C_{D_n}(D_n) = D_n$. Since the automorphism σ respects the weight decomposition of D_n, we must have $\sigma(x^\alpha H_i) - x^\alpha H_i \in x^\alpha H_n \cap D_n = \{0\}$. Hence, $x^\alpha H_i \in F$, as required.

2. Statement 2 follows from statement 1.

3. Clearly, $\text{Sh}_n \subseteq F = \text{Fix}_{G_n}(\partial_1, \ldots, \partial_n)$. Let $\sigma \in F$ and $H'_1 := \sigma(H_1), \ldots, H'_n := \sigma(H_n)$. Applying the automorphism σ to the commutation relations $[\partial_j, H'_i] = \delta_{ij} \partial_i$ gives the relations $[\partial_j, H'_i] = \delta_{ij} \partial_i$. By taking the difference, we see that $[\partial_i, H'_i - H_i] = 0$ for all i and j. Therefore, $H'_i = H_i + \delta_i$ for some elements $d_i \in C_{D_n}(D_n) = D_n$ (Lemma \([\Box]\) (3)), and so $d_i = \sum_{j=1}^n \lambda_{ij} \partial_j$ for some elements $\lambda_{ij} \in K$. The elements H'_1, \ldots, H'_n commute, hence

$$[H'_j, \partial_i] = [H_i, \partial_j] \quad \text{for all } i, j,$$
or equivalently,
\[\lambda_{ij} \partial_j = \lambda_{ji} \partial_i \text{ for all } i, j. \]
This means that \(\lambda_{ij} = 0 \) for all \(i \neq j \), i.e.
\[H'_i = H_i + \lambda_{ii} \partial_i = (x_i + \lambda_{ii}) \partial_i = s_{\lambda}(H_i) \]
where \(s_{\lambda} \in \text{Sh}_n \), \(s_{\lambda}(x_i) = x_i + \lambda_{ii} \) for all \(i \). Then \(s_{\lambda}^{-1} \sigma \in \text{Fix}_{\text{Sh}_n}(\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) = \{ e \} \) (statement 2), and so \(\sigma = s_{\lambda} \in \text{Sh}_n. \)

\[\text{Lemma 2.6 Let } \sigma \in \mathbb{G}_n \text{ and } \partial' := \sigma(\partial_1), \ldots, \partial'_n := \sigma(\partial_n). \text{ Then} \]
1. \(\partial'_1, \ldots, \partial'_n \) are commuting, locally nilpotent derivations of \(P_n \).
2. \(\bigcap_{i=1}^n \ker_{P_n}(\partial'_i) = K. \)

Proof. 1. The derivations \(\partial'_1, \ldots, \partial'_n \) commute since \(\partial_1, \ldots, \partial_n \) are commute. The inner derivations \(\delta_1, \ldots, \delta_n \) of the Lie algebra \(D_n \) are commuting and locally nilpotent. Hence, inner derivations
\[\delta'_1 := \text{ad}(\partial'_1), \ldots, \delta'_n := \text{ad}(\partial'_n) \]
of the Lie algebra \(D_n \) are commuting and locally nilpotent. The vector space \(P_n \partial'_i \) is closed under the derivations \(\delta'_j \) since
\[\delta'_j(P_n \partial'_i) = [\partial'_j, P_n \partial'_i] = (\partial'_j * P_n) \cdot \partial'_i \subseteq P_n \partial'_i. \]
Therefore, \(\partial'_1, \ldots, \partial'_n \) are locally nilpotent derivations of the polynomial algebra \(P_n \).
2. Let \(\lambda \in \bigcap_{i=1}^n \ker_{P_n}(\partial'_i). \) Then
\[\lambda \partial'_i \in C_{D_n}(\partial'_1, \ldots, \partial'_n) = \sigma(C_{D_n}(\partial_1, \ldots, \partial_n)) = \sigma(C_{D_n}(D_n)) = \sigma(D_n) = \sigma(\bigoplus_{i=1}^n K \partial_i) = \bigoplus_{i=1}^n K \partial'_i, \]
since \(C_{D_n}(D_n) = D_n \), Lemma 2.3(1). Then \(\lambda \in K \) since otherwise the infinite dimensional space \(\bigoplus_{i \geq 0} K \lambda^i \partial'_i \) would be a subspace of a finite dimensional space \(\sigma(D_n). \) □

The following lemma is well-known and it is easy to prove.

Lemma 2.7 Let \(\partial \) be a locally nilpotent derivation of a commutative \(K \)-algebra \(A \) such that \(\partial(x) = 1 \) for some element \(x \in A \). Then \(A = A^{\partial}[x] \) is a polynomial algebra over the ring \(A^{\partial} := \ker(\partial) \) of constants of the derivation \(\partial \) in the variable \(x \).

The next theorem is the most important point in the proof of Theorem 1.1 and, roughly speaking, the main reason why Theorem 1.1 holds.

Theorem 2.8 Let \(\partial'_1, \ldots, \partial'_n \) be commuting, locally nilpotent derivations of the polynomial algebra \(P_n \) such that \(\bigcap_{i=1}^n \ker_{P_n}(\partial'_i) = K. \) Then there exist polynomials \(x'_1, \ldots, x'_n \in P_n \) such that
\[\partial'_i * x'_j = \delta_{ij}. \] (12)

Moreover, the algebra homomorphism
\[\sigma : P_n \rightarrow P_n, \ x_1 \mapsto x'_1, \ldots, x_n \mapsto x'_n \]
is an automorphism such that \(\partial'_i = \sigma \partial_i \sigma^{-1} = \frac{\partial}{\partial x'_i} \) for \(i = 1, \ldots, n. \)
Proof. Case $n = 1$: By Lemma 2.7, the derivation ∂'_1 of the polynomial algebra P_1 is a locally nilpotent derivation with $K'_1 := \ker_{P_1}(\partial'_1) = K$. Hence, $\partial'_1 + x'_1 = 1$ for some polynomial $x'_1 \in P_1$. By Lemma 2.7, $K[x_1] = K'_1[x'_1] = K[x'_1]$, and so $\sigma : K[x_1] \rightarrow K[x_1], x \mapsto x'_1$, is an automorphism such that $\sigma_{\partial'_1} = \frac{d}{dx'_1} = \sigma_{\partial'_1} \sigma^{-1}$.

Case $n \geq 2$. Let $K'_i := \ker_{P_n}(\partial'_i)$ for $i = 1, \ldots, n$. Clearly, $K \subseteq K'_i$.

(i) $K'_i \neq K$ for $i = 1, \ldots, n$: If $K'_i = K$ for some i then by the same argument as in the case $n = 1$ there exists a polynomial $x'_i \in P_1$ such that $\partial'_i + x'_i = 1$, and so $P_n = K'_i[x'_i] = K[x'_i]$, a contradiction.

(ii)(a) Suppose that $m < n$, i.e. $\partial'_1 + x'_m = \delta_m$ for all $i = 1, \ldots, n$. By Lemma 2.7, $P_n = K'_n[x'_n]$. The algebra K'_n admits the set of commuting, locally nilpotent derivations

$$\partial''_n := \partial'_1|_{K'_n}, \ldots, \partial''_{n-1} := \partial'_{n-1}|_{K'_n}$$

with $\bigcap_{i=1}^{n-1} \ker_{K'_n}(\partial''_i) = K'_n \cap \bigcap_{i=1}^{n-1} K'_i = K$.

(ii)(b) Suppose that $m < n - 1$. By (12),

$$K \cdot x'_{m+1} + K = K \cdot x'_{m+2} + K = \cdots = K \cdot x'_n + K,$$

and so $\lambda_j := \partial''_j \cdot x'_n \in K$ for $j = m + 1, \ldots, n - 1$. Hence, $(\partial''_j - \lambda_j \partial''_j) \cdot x'_n = 0$ for $j = m + 1, \ldots, n - 1$. A linear combination of commuting, locally nilpotent derivations is a locally nilpotent derivation (the proof boils down to the case $\partial + \delta$ of two commuting, locally nilpotent derivations, then the result follows from $(\partial + \delta)^m = \sum_{i=0}^{m} \binom{m}{i} \partial^i \delta^{m-i}$ and $\partial \delta^{m-i} = \delta^{m-i} \partial$).

Using the set of commuting, locally nilpotent derivations $\partial''_1, \ldots, \partial''_n$ that satisfy (12), we obtain the set of commuting, locally nilpotent derivations

$$\delta_{i} := \partial''_1, \ldots, \delta_{m} := \partial''_m, \delta_{m+1} := \partial''_{m+1} - \lambda_{m+1} \partial''_m, \ldots, \delta_{n-1} := \partial''_{n-2} - \lambda_{n-2} \partial''_{n-1}, \delta_{n} := \partial''_{n-1}$$

that satisfy (12) with

$$\delta_{i} \cdot x'_n = \delta_{i} \qquad \text{for } i = 1, \ldots, n.$$

Then repeating the arguments of (ii)(a), we see that $P_n = K'_n[x'_n]$. The algebra K'_n admits the set of commuting, locally nilpotent derivations

$$\partial''_1 := \delta''_1|_{K'_n}, \ldots, \partial''_{n-1} := \delta''_{n-1}|_{K'_n}$$

with

$$\bigcap_{i=1}^{n-1} \ker_{K'_n}(\partial''_i) = K'_n \cap \bigcap_{i=1}^{n-1} \ker_{P_n}(\delta'_i) = K'_n \cap \bigcap_{i=1}^{n-1} \ker_{P_n}(\partial''_i) = \bigcap_{i=1}^{n-1} K'_i = K.$$

(iii) Using the cases (ii)(a) and (ii)(b) $n - 1$ more times we find polynomials x'_1, \ldots, x'_n and commuting set of locally nilpotent derivations of P_n, say, $\Delta_1, \ldots, \Delta_n$ that satisfy (12) and such that

$$(\alpha) \Delta_i \cdot x'_j = \delta_{ij} \quad \text{for all } i, j = 1, \ldots, n;$$

and the derivations ∂'_j acts locally nilpotently on the algebra $A^{\partial'_j}$. Therefore, for each index $j = m + 1, \ldots, n$, there exists an element $x'_j \in A$ such that $\partial'_j \cdot x'_j = 1$, and so (Lemma 2.7)

$$A = A^{\partial'_j}[x'_j] = K[x'_j] \quad \text{for } j = m + 1, \ldots, n.$$
Corollary 2.9
Let φ ism (see (\(\Delta = \Lambda\partial\)))

Theorem 2.8. By Theorem 2.8, \(\partial\) is invertible.

Indeed, by (\(\alpha\), $\Lambda \cdot (\partial_i \ast x_j) = 1$, the identity $n \times n$ matrix. Hence, (\(\partial_i \ast x_j\) · $\Lambda = 1$, as required.

(v) Let x'_1, \ldots, x'_n be the set of polynomials as in the theorem. Then σ is an algebra automorphism (see (\(\gamma\)) and (iv)) such that $\partial'_i = \sigma \partial_i \sigma^{-1} = \frac{\partial'}{\partial x'_i}$ for $i = 1, \ldots, n$. \square

Corollary 2.9 Let $\sigma \in \mathbb{G}_n$. Then $\tau \sigma \in \text{Fix}_{\mathbb{G}_n}(\partial_1, \ldots, \partial_n)$ for some $\tau \in G_n$.

Proof. By Lemma 2.8, the elements $\partial'_1 := \sigma(\partial_1), \ldots, \partial'_n := \sigma(\partial_n)$ satisfy the assumptions of Theorem 2.8. By Theorem 2.8, $\partial'_1 := \tau^{-1}(\partial_1), \ldots, \partial'_n := \tau^{-1}(\partial_n)$ for some $\tau \in G_n$. Therefore, $\tau \sigma \in \text{Fix}_{\mathbb{G}_n}(\partial_1, \ldots, \partial_n)$. \square

Proof of Theorem 1.1 Let $\sigma \in \mathbb{G}_n$. By Corollary 2.9, $\tau \sigma \in \text{Fix}_{\mathbb{G}_n}(\partial_1, \ldots, \partial_n) = \text{Sh}_n$ (Proposition 2.5(3)). Therefore, $\sigma \in G_n$, i.e. $\mathbb{G}_n = G_n$. \square

Acknowledgements
The work is partly supported by the Royal Society and EPSRC.

References

Department of Pure Mathematics
University of Sheffield
Hicks Building
Sheffield S3 7RH
UK
email: v.bavula@sheffield.ac.uk