This is an author produced version of *The classical left regular left quotient ring of a ring and its semisimplicity criteria*.

White Rose Research Online URL for this paper: 
http://eprints.whiterose.ac.uk/124638/

**Article:**

https://doi.org/10.1142/S0219498817501031
The classical left regular left quotient ring of a ring and its semisimplicity criteria

V. V. Bavula

Abstract

Let $R$ be a ring, $C_R$ and $C'_R$ be the set of regular and left regular elements of $R$ ($C_R \subseteq C'_R$). Goldie’s Theorem is a semisimplicity criterion for the classical left quotient ring $Q_{l,cl}(R) := C'_R^{-1}R$. Semisimplicity criteria are given for the classical left regular left quotient ring $Q_{l,cl}(R) := C'^{-1}_R R$. As a corollary, two new semisimplicity criteria for $Q_{l,cl}(R)$ are obtained (in the spirit of Goldie).

Contents

1. Introduction.
2. Preliminaries, proofs of Theorem 1.1 and Theorem 1.2.
3. Semisimplicity criteria for the ring $Q_{l,cl}(R)$.
4. The left regular left quotient ring of a ring and its semisimplicity criteria.
5. Properties of $S_l(R)$ and $Q_{l,cl}(R)$.
6. The classical left regular left quotient ring of the algebra of polynomial integro-differential operators $I_1$.

Key Words: Goldie’s Theorem, the (classical) left quotient ring, the (classical) left regular left quotient ring.


1 Introduction

In this paper, $R$ is a ring with 1, $R^*$ is its group of units, module means a left module.

Semisimplicity criteria for the ring $Q_{l,cl}(R)$. For each element $r \in R$, let $r_l : R \to R$, $x \mapsto rx$ and $r_r : R \to R$, $x \mapsto xr$. The sets $C_R := \{ r \in R | \ker(r) = 0 \}$ and $C'_R := \{ r \in R | \ker(r) = 0 \}$ are called the sets of left and right regular elements of $R$, respectively. Their intersection $C_R = C_R \cap C'_R$ is the set of regular elements of $R$. The rings $Q_{l,cl}(R) := C'_R^{-1}R$ and $Q_{r,cl}(R) := R C'_R^{-1}$ are called the classical left and right quotient rings of $R$, respectively. Goldie’s Theorem states that the ring $Q_{l,cl}(R)$ is a semisimple Artinian ring iff the ring $R$ is semiprime, $\text{udim}(R) < \infty$ and the ring $R$ satisfies the a.c.c. on left annihilators (udim stands for the uniform dimension).

In this paper, we consider/introduce the rings $Q_{l,cl}(R) := C'_R^{-1}R$ (the classical left regular left quotient ring of $R$) and $Q_{r,cl}(R) := R C'_R^{-1}$ (the classical right regular right quotient ring of $R$) and give several semisimplicity criteria for them. In view of left-right symmetry, it suffices to consider, say ‘left’ case.

A subset $S$ of a ring $R$ is called a multiplicative set if $1 \in S$, $SS \subseteq S$ and $0 \notin S$. Suppose that $S$ and $T$ are multiplicative sets in $R$ such that $S \subseteq T$. The multiplicative subset $S$ of $T$ is called dense (or left dense) in $T$ if for each element $t \in T$ there exists an element $r \in R$ such that $rt \in S$. Main results of the paper are semisimplicity criteria for the ring $Q_{l,cl}(R)$. For a left ideal $I$ of $R$, let $C_I := \{ i \in I | i : I \to I, x \mapsto xi, \text{is an injection} \}$. For a nonempty subset $S$ of a ring $R$, let \( \text{ass}_R(S) := \{ r \in R | sr = 0 \text{ for some } s \in S \}. \)
Theorem 1.1 Let R be a ring, \( \mathcal{C} = \mathcal{C}_R \) and \( a := \text{ass}_R(\mathcal{C}) \). The following statements are equivalent.

1. \( \mathcal{Q} := \mathcal{Q}_{l,cl}(R) \) is a semisimple Artinian ring.

2. (a) \( a \) is a semiprime ideal of \( R \),
   (b) the set \( \mathcal{C} := \pi(\mathcal{C}) \) is a dense subset of \( \mathcal{C}_\pi \) where \( \pi : R \to \overline{R} := R/a, r \mapsto r + a \),
   (c) \( \text{udim}(\overline{R}) < \infty \), and
   (d) \( \mathcal{C}_V \neq \emptyset \) for all uniform left ideals \( V \) of \( \overline{R} \).

3. \( a \) is a semiprime ideal of \( R \), \( \mathcal{C} \) is a dense subset of \( \mathcal{C}_\pi \) and \( \mathcal{Q}_{l,cl}(\overline{R}) \) is a semisimple Artinian ring.

If one of the equivalent conditions holds then \( \mathcal{Q} \in \text{Den}_l(R,0) \), \( \mathcal{C} \) is a dense subset of \( \mathcal{C}_\pi \) and \( \mathcal{Q} \cong \mathcal{C}_\pi^{-1} \overline{R} \cong \mathcal{Q}_{l,cl}(\overline{R}) \). Furthermore, the ring \( \mathcal{Q} \) is a simple ring iff the ideal \( a \) is a prime ideal.

Let \( n = n_R \) be the prime radical of the ring \( R \). The following theorem is an instrumental in proving several results of the paper including Theorem 1.1. It gives sufficient conditions for the set \( \mathcal{C}_R \) to be a left denominator set of the ring \( R \) such that the ring \( \mathcal{Q}_R^{-1}R \) is a semisimple Artinian ring.

- (Theorem 2.3) Let \( R \) be a ring. Suppose that \( \text{udim}(R) < \infty \) and \( \mathcal{C}_U \neq \emptyset \) for all uniform left ideals \( U \) of \( R \). Then \( \mathcal{C}_R \in \text{Den}_l(R) \), the ring \( \mathcal{Q}_{l,cl}(R) \) is a semisimple Artinian ring, \( \mathcal{Q}_{l,cl}(R) \cong \mathcal{Q}_{l,cl}(R/a) \) where \( a := \text{ass}_R(\mathcal{C}) \) and \( n_R \subseteq a \).

For an arbitrary ring \( R \), the set \( \text{max Den}_l(\mathcal{R}) \) of maximal left denominator sets is a non-empty set. The next semisimplicity criterion for the ring \( \mathcal{Q}_{l,cl}(R) \) is given via the set \( \mathcal{M} \) of maximal denominator sets of \( R \) that contain \( \mathcal{C}_R \).

- (Theorem 3.1) Let \( R \) be a ring, \( a = \text{ass}_R(\mathcal{C}_R) \) and \( \mathcal{M} := \{ S \in \text{max Den}_l(R) \mid \mathcal{C}_R \subseteq S \} \). The following statements are equivalent.

  1. \( \mathcal{Q}_{l,cl}(R) \) is a semisimple Artinian ring.
  2. \( \mathcal{M} \) is a finite nonempty set, \( \bigcap_{S \in \mathcal{M}} \text{ass}(S) = a \), for each \( S \in \mathcal{M} \), the ring \( S^{-1}R \) is a simple Artinian ring and the set \( \mathcal{C}' := \{ c + a \mid c \in \mathcal{C}_R \} \) is a dense subset of \( \mathcal{C}_{R/a} \) in \( R/a \).

Theorem 3.3 below is a semisimplicity criterion for the ring \( \mathcal{Q}_{l,cl}(R) \) that is given via the set \( \text{Min}_R(a) \) of minimal primes of the ideal \( a \). Theorem 3.3 describes explicitly the set \( \mathcal{M} \) in Theorem 3.1, see the full version of Theorem 3.3 in Section 3.

- (Theorem 3.3) Let \( R \) be a ring, \( \mathcal{C} = \mathcal{C}_R \) and \( a = \text{ass}_R(\mathcal{C}) \). The following statements are equivalent.

  1. \( \mathcal{Q}_{l,cl}(R) \) is a semisimple Artinian ring.
  2. (a) \( a \) is semiprime ideal of \( R \) and the set \( \text{Min}_R(a) \) is a finite set.
     (b) For each \( p \in \text{Min}_R(a) \), the set \( S_p := \{ c \in R \mid c + p \in \mathcal{C}_{R/p} \} \) is a left denominator set of the ring \( R \) with \( \text{ass}(S_p) = p \).
     (c) For each \( p \in \text{Min}_R(a) \), the ring \( S_p^{-1}R \) is a simple Artinian ring.
     (d) The set \( \mathcal{C}' := \{ c + a \mid c \in \mathcal{C} \} \) is a dense subset of \( \mathcal{C}_{R/a} \).

A ring \( R \) is called left Goldie if it satisfies the a.c.c. on left annihilators and \( \text{udim}(R) < \infty \). Theorem 3.4 below is a semisimplicity criterion for the ring \( \mathcal{Q}_{l,cl}(R) \) in terms of left Goldie rings.

- (Theorem 3.4) The following statements are equivalent.
1. \( \mathcal{Q}_{l,cl}(R) \) is a semisimple Artinian ring.

2. (a) \( a \) is a semiprime ideal of \( R \) and the set \( \text{Min}_R(a) \) is finite.
(b) For each \( p \in \text{Min}_R(a) \), the ring \( R/p \) is a left Goldie ring.
(c) The set \( \mathcal{U} \) is a dense subset of \( \mathcal{C}_R \).

Theorem 3.5 is a useful semisimplicity criterion for the ring \( \mathcal{Q}_{l,cl}(R) \) as often we have plenty of simple Artinian localizations of a ring.

- (Theorem 3.5) The following statements are equivalent.

1. \( \mathcal{Q}_{l,cl}(R) \) is a semisimple Artinian ring.

2. There are left denominator sets \( S_1, \ldots, S_n \) of the ring \( R \) such that
   (a) the rings \( S_i^{-1}R \) are simple Artinian rings,
   (b) \( a = \bigcap_{i=1}^n \text{ass}_R(S_i) \), and
   (c) \( \mathcal{U} \) is a dense subset of \( \mathcal{C}_R \).

Remark. Let \( R \) be a ring. If \( \mathcal{C}_R \) is a right denominator set of the ring \( R \) then \( \mathcal{C}_R = \mathcal{C}_R \) and \( \mathcal{Q}_{l,cl}(R) = \mathcal{Q}_{l,cl}(R) \) is the classical right quotient ring of \( R \). Similarly, if \( \mathcal{C}_R \) is a left denominator set of the ring \( R \) then \( \mathcal{C}_R = \mathcal{C}_R \) and \( \mathcal{Q}_{l,cl}(R) = \mathcal{Q}_{l,cl}(R) \) is the classical left quotient ring of \( R \).

Semisimplicity criteria for the ring \( \mathcal{Q}_{l,cl}(R) \). The next theorem shows that the a.c.c. condition on left annihilators in Goldie’s Theorem can be replaced by the a.c.c. condition on right annihilators (or even by a weaker condition) and adding some extra condition.

Theorem 1.2 Let \( R \) be a ring, \( \mathcal{C} = \mathcal{C}_R \) and \( \mathcal{C} = \mathcal{C}_R \). The following statements are equivalent.

1. \( \mathcal{Q}_{l,cl}(R) \) is a semisimple Artinian ring.

2. \( R \) is a semiprime ring, \( \text{udim}(R) < \infty \), the ring \( R \) satisfies the a.c.c. on right annihilators and \( \mathcal{C}_U \neq \emptyset \) for all uniform left ideals \( U \) of \( R \).

3. The ring \( R \) is a semiprime ring, \( \text{udim}(R) < \infty \), the set \( \{ \ker(c_R) \mid c \in \mathcal{C} \} \) satisfies the a.c.c. and \( \mathcal{C}_U \neq \emptyset \) for all uniform left ideals \( U \) of \( R \).

4. The ring \( R \) is a semiprime ring, \( \text{udim}(R) < \infty \), the set \( \{ \ker(c_R) \mid r \in R \} \) satisfies the a.c.c. and \( \mathcal{C}_U \neq \emptyset \) for all uniform left ideals \( U \) of \( R \).

Below is another semisimplicity criterion for the ring \( \mathcal{Q}_{l,cl}(R) \) via \( \mathcal{C}_R \).

Theorem 1.3 Let \( R \) be a ring. The following statements are equivalent.

1. \( \mathcal{Q}_{l,cl}(R) \) is a semisimple Artinian ring.

2. \( R \) is a semiprime ring, \( \text{udim}(R) < \infty \), \( \mathcal{C}_R = \mathcal{C}_R \) and \( \mathcal{C}_U \neq \emptyset \) for all uniform left ideals \( U \) of \( R \).

Apart from Goldie’s Theorem, Theorem 1.2 and Theorem 1.3, there are several semisimplicity criteria for \( \mathcal{Q}_{l,cl}(R) \), [4].

The left regular left quotient ring \( \mathcal{Q}_l(R) \) of a ring \( R \) and its semisimplicity criteria. Let \( R \) be a ring. In general, the classical left quotient ring \( \mathcal{Q}_{l,cl}(R) \) does not exists, i.e. the set of regular elements \( \mathcal{C}_R \) of \( R \) is not a left Ore set. The set \( \mathcal{C}_R \) contains the largest left Ore set denoted by \( S_l(R) \) and the ring \( \mathcal{Q}_l(R) := S_l(R)^{-1}R \) is called the (largest) left quotient ring of \( R \), [2]. Clearly, if \( \mathcal{C}_R \) is a left Ore set then \( \mathcal{C}_R = S_l(R) \) and \( \mathcal{Q}_{l,cl}(R) = \mathcal{Q}_l(R) \). Similarly, the set \( \mathcal{C}_R \) of left regular elements of the ring \( R \) is not a left denominator set, in general, and so in this case the classical left regular left quotient ring \( \mathcal{Q}_{l,cl}(R) \) does not exist. The set \( \mathcal{C}_R \) contains the largest left denominator set \( S_l(R) \) (Lemma 4.1.(1)) and the ring \( \mathcal{Q}_l(R) := S_l(R)^{-1}R \) is called the left regular left quotient ring of \( R \). If \( \mathcal{C}_R \) is a left denominator set then \( \mathcal{C}_R = S_l(R) \) and \( \mathcal{Q}_{l,cl}(R) = \mathcal{Q}_l(R) \). Theorem 4.3 is a semisimplicity criterion for the ring \( \mathcal{Q}_l(R) \).
• (Theorem 4.3) Let $R$ be a ring. Then

1. $'Q_l(R)$ is a left Artinian ring iff $'Q_{l,cl}(R)$ is a left Artinian ring. If one of the equivalent conditions holds then $'S_l(R) = 'C_R$ and $'Q_l(R) = 'Q_{l,cl}(R)$.

2. $'Q_l(R)$ is a semisimple Artinian ring iff $'Q_{l,cl}(R)$ is a semisimple Artinian ring. If one of the equivalent conditions holds then $'S_l(R) = 'C_R$ and $'Q_l(R) = 'Q_{l,cl}(R)$.

So, all the semisimplicity criteria for the ring $'Q_{l,cl}(R)$ are automatically semisimplicity criteria for the ring $'Q_l(R)$.

The rings $'Q_{l,cl}(I_1)$ and $Q_{r,cl}'(I_1)$. Let $K$ be a field of zero characteristic, $A_n = K\langle x_1, \ldots, x_n,$ \(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\rangle$ the Weyl algebra and $I_n = K\langle x_1, \ldots, x_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}, i_1, \ldots, i_n\rangle$ be the algebra of polynomial integro-differential operators. The ring $Q(A_n) := Q_{l,cl}(A_n)$ is a division ring and $Q_{l,cl}(A_n) = Q_l(A_n) = 'Q_{l,cl}(A_n) = 'Q_l(A_n)$.

• (Lemma 4.8) 1. For all $K$-algebras $A$ and $n \geq 1$, the rings $Q_{l,cl}(I_n \otimes A)$ and $Q_{r,cl}(I_n \otimes A)$ do not exist.

2. For all $R, I_1$, the rings $Q_{l,cl}(I_n \otimes A)$ and $Q_{r,cl}(I_n \otimes A)$ are not left Noetherian and the rings $Q_{r,cl}(I_n \otimes A)$ are not right Noetherian.

As an application of some of the results of the paper the rings $'Q_{l,cl}(I_1)$ and $Q_{r,cl}'(I_1)$ are found.

• (Theorem 6.5) $'Q_{l,cl}(I_1) \simeq Q(A_1)$ and $Q_{r,cl}'(I_1) \simeq Q(A_1)$ are division rings.

Explicit descriptions of the sets $'C_{l_1}$ and $'C_{l_1}'$ are given in Theorem 6.7. This and some other results demonstrate that on many occasions the ring $'Q_{l,cl}(R)$ has ‘somewhat better properties’ than $Q_{l,cl}(R)$ which for $R = \mathbb{I}_n$ even does not exist.

Conjecture. $'Q_{l,cl}(I_n) \simeq Q_{l,cl}(A_n)$ is a division ring.

2 Preliminaries, proofs of Theorem 1.1 and Theorem 1.2

The following notation is fixed in the paper.

Notation:

• $R$ is a ring with 1, $n = n_R$ is its prime radical and $\text{Min}(R)$ is the set of minimal primes of $R$;

• $C = C_R$ is the set of regular elements of the ring $R$ (i.e. $C$ is the set of non-zero-divisors of the ring $R$);

• $Q_{l,cl}(R) := C^{-1}R$ is the classical left quotient ring (the classical left ring of fractions) of the ring $R$ (if it exists) and $Q^*$ is the group of units of $Q$;

• Ore$_l(R) := \{S \mid S$ is a left Ore set in $R\}$ and $\text{ass}(S) := \{r \in R \mid sr = 0 \text{ for some } s = s(r) \in S\}$;

• Den$_l(R) := \{S \mid S$ is a left denominator set in $R\}$;

• Den$_l(R,I)$ is the set of left denominator sets $S$ of $R$ with $\text{ass}(S) = I$ where $I$ is an ideal of $R$;

• $\text{max.Den}_l(R)$ is the set of maximal left denominator sets of $R$ (it is always a non-empty set, [2]).

• $'C := 'C_R$ is the set of left regular elements of the ring $R$ and $a := \text{ass}_R('C)$,

• $'Q := 'Q_{l,cl}(R) := 'C_R^{-1}R$ is the classical left regular left quotient ring and $'Q^*$ is the group of units of $Q$;

• if $a$ is an ideal of $R$ then $\overline{R} := R/a$, $\pi : R \to \overline{R}$, $r \mapsto r + a$, and $'C := \pi('C)$;
• \('S_l(R)\) is the largest left denominator set in \('C_R\) and \('Q_l(R) := \ 'S_l(R)^{-1}R\) is the left regular left quotient ring of \(R\);

• \('a := \text{ass}_R\('S_l(R)\)'\) and \(\pi : R \to \overline{R} := R/\!\!/a, r \mapsto \overline{r} := r + \!\!/a\).

Sufficient conditions for semisimplicity of the ring \('Q_{l,cl}(R)\). In this section, proofs are given of Theorem 1.1, Theorem 1.2 and Theorem 1.3. Let \(I\) be a nonzero left ideal of a ring \(R\). Sufficient conditions are given for a right Noetherian ring to have a semisimple left quotient ring (Corollary 2.4). For each ideal \(a\) of a ring \(R\), the left singular ideal \(\zeta_l(R,a)\) of \(R\) over \(a\) is introduced that, in the case when \(a = 0\), coincides with the (classical) left singular ideal \(\zeta_l(R)\) of \(R\). It is proved that \(\zeta_l(R,a)\) is an ideal of \(R\).

Let \(\mathcal{C}_l := \{i \in I \mid \cdot i : I \to I, x \mapsto xi\text{ is an injection}\}\). A nonzero module is called a uniform module if every two of its nonzero submodules have nonzero intersection.

**Lemma 2.1** Suppose that \(R\) is a ring, \(U\) is a left uniform ideal of \(R\), \(u \in \mathcal{C}_U\) and \(K = \ker(-u_R)\). Then

1. \(U \oplus K\) is an essential left ideal of \(R\).
2. If \(I\) is a left ideal of \(R\) such that \(U \subseteq I\) then \(U \oplus (K \cap I)\) is an essential left \(R\)-submodule of \(I\).

**Proof.** 1. Clearly, \(U \cap K = 0\) (since \(\ker(-u_U) = 0\) and \(Ku = 0\)). So, \(U + K = U \oplus K\). Suppose that the left ideal \(J := U \oplus K\) of \(R\) is not essential, we seek a contradiction. Then \(J \cap V = 0\) for some nonzero left ideal \(V\) of \(R\). The map \(-u_V : V \to U\) is an injection. So, \(Vu \cap Uu \neq 0\), i.e. \(vu = u'u\) for some nonzero elements \(v \in V\) and \(u' \in U\), and so \(k := v - u' \in K\). This means that \(0 \neq v = u' + k \in V \cap J\), a contradiction.

2. The left ideal \(J\) of \(R\) is essential (statement 1) and \(I \neq 0\). Then the intersection \(J \cap I = U \oplus I \cap K\) is an essential left \(R\)-submodule of \(I\). \(\Box\)

We say that \(\text{udim}(R) < \infty\) if there are uniform left ideals \(U_1, \ldots, U_n\) of \(R\) such that \(\bigoplus_{i=1}^n U_i\) is an essential left ideal of \(R\). Then \(n = \text{udim}(R)<\infty\) does not depend on the choice of the uniform left ideals \(U_i\) and is called the left uniform dimension of \(R\). Similarly, the right uniform dimension \(\text{udim}(R)\) of \(R\) is defined.

Let \(J\) be a nonzero ideal of a ring \(R\). Let \(\mathcal{C}_l(R,J) := \{r \in R \mid \cdot_r J \to J, x \mapsto xr\text{ is an injection}\}\). We set \(\mathcal{C}_l(R,0) := R\). For \(r \in R\), let \(-r_R = \cdot_r : R \to R, x \mapsto xr\), and \(\cdot_J : J \to J, y \mapsto yr\).

The classical left quotient ring \(Q_{l,cl}(R) = C^{-1}_R R\) often does not exists, i.e. the set \(\mathcal{C}_R\) is not a left Ore set of \(R\). The set \(\mathcal{C}_R\) contains the largest left Ore set denoted \(S_l(R)\) and the ring \(Q_l(R) := S_l(R)^{-1} R\) is called the (largest) left quotient ring of \(R\), [2]. If \(\mathcal{C}_R \in \text{Ore}(R)\) then \(\mathcal{C}_R = S_l(R)\) and \(Q_{l,cl}(R) = Q_l(R)\).

**Theorem 2.2** [2, Theorem 2.9] The ring \(Q_l(R)\) is a semisimple ring iff the ring \(Q_{l,cl}(R)\) is a semisimple ring. In this case, \(S_l(R) = \mathcal{C}_R\) and \(Q_l(R) = Q_{l,cl}(R)\).

The next theorem gives sufficient conditions for the set \(\mathcal{C}_R\) to be a left denominator set of \(R\) such that the ring \(\mathcal{C}_R^{-1} R\) is a semisimple Artinian ring.

**Theorem 2.3** Let \(R\) be a ring and \(\mathcal{C} := \mathcal{C}_R\). Suppose that \(\text{udim}(R) < \infty\) and \(\mathcal{C}_U \neq \emptyset\) for all uniform left ideals \(U\) of \(R\). Then

1. \(\mathcal{C} \in \text{Den}_1(R,a)\) and \(\mathcal{Q} := \mathcal{C}^{-1} R\) is a semisimple Artinian ring (where \(a := \text{ass}_R(\mathcal{C})\)).
2. \(\mathcal{Q} \simeq Q_{l,cl}(R,a)\), an \(R\)-isomorphism.
3. Let \(\pi = \pi_a : R \to R/a, r \mapsto \overline{r} = r + a\), and \(\sigma : R \to \mathcal{Q}, r \mapsto r + \overline{a}\). Then

   (a) \(\mathcal{C} = \pi^{-1}(\mathcal{C}_{R/a}) \cap \mathcal{C}(R,a) = \{c \in R \mid \cdot_{\mathcal{C}_{R/a}} c\text{ and }\cdot_a c\text{ are injections}\}\) and \(\mathcal{C} = \sigma^{-1}(\mathcal{Q}^+) \cap \mathcal{C}(R,a)\).
(b) \(C_{R/a} = C_{R/a} = R/a \cap Q^*\).

4. For all essential left ideals \(I\) of \(R\), \(I \cap C \neq \emptyset\).

5. The prime radical \(n = n_R\) of \(R\) is contained in the ideal \(a\) (In general, \(n \neq a\), eg \(R = \mathbb{Z}_1\), \(n_1 = 0\) but \(a = F \neq 0\) is the largest proper ideal of \(\mathbb{Z}_1\), Theorem 6.5.(1)).

Proof. 4. We use the following fact repeatedly: Given \(R\)-modules \(K \subseteq L \subseteq M\) such that \(K\) is an essential submodule of \(L\) and \(L\) is an essential submodule of \(M\) then \(K\) is an essential submodule of \(M\). We also use repeatedly Lemma 2.1.

Let \(I\) be an essential left ideal of \(R\). Fix a uniform left ideal, say \(U_i\), of \(R\) such that \(U_1 \subseteq I\) and fix an element \(u_1 \in C_{U_i}\). Let \(K_1 := \ker((-u_1)_R)\) and \(K_1' = I \cap K_1\). By Lemma 2.1(2), \(U_1 \oplus K_1'\) is an essential left \(R\)-submodule of \(I\), hence \(U_1 \oplus K_1'\) is an essential left ideal of \(R\) such that \(K_1' \cap U_1 = 0\). Repeating the same argument for the left ideal \(K_1'\) we will find a uniform \(R\)-submodule \(U_2\) of \(K_1'\) and an element \(u_2 \in C_{U_2}\) such that \(U_2 \oplus K_2'\) is an essential left \(R\)-submodule of \(K_1'\) where \(K_2' = K_1' \cap K_2\) and \(K_2 := \ker((-u_2)_R)\). So, \(U_1 \oplus U_2 \oplus K_2'\) is an essential left ideal of \(R\) such that \((U_2 \oplus K_2')_1 = U_2 \oplus K_2 = 0\). Repeating the same process several times and using the fact that \(n := \mathrm{udim}(R/R) < \infty\), we will find uniform submodules \(U_1, \ldots, U_n\) of \(I\) and elements \(u_1 \in C_{U_1}, \ldots, u_n \in C_{U_n}\) such that

- \((i)\) \(J := \bigoplus_{i=1}^n U_i\) is an essential left ideal of \(R\), and
- \((ii)\) \(J_{n+1} = 0 = 1, \ldots, n - 1\) where \(J_s := \bigoplus_{i=s}^n U_i, s = 1, \ldots, n\).
- \(\text{Claim: } c = u_1 + \cdots + u_n \in C \cap I\).

Clearly, \(c \in I\) since all \(u_i \in U_i \subseteq I\). We aim to show that \(\ker(-c_R) = 0\), i.e. \(c \in I \cap C\). Since \(J\) is an essential left ideal of \(R\) it suffices to show that \(\ker((-c)R) = 0\) (where \((-c)R : J \rightarrow J, x \mapsto xc\).

The map \(-c_R\) respects the ascending filtration of left ideals

\[ 0 = J_{n+1} \subseteq J_n \subseteq J_{n-1} \subseteq \cdots \subseteq J_1 = J,\]

i.e. \(\tau c = \tau_j(u_s + \cdots + u_n) \subseteq J_{n+1}\) for all \(s\) by (ii) and since \(u_s + \cdots + u_n \in J_s\). Moreover, \(J_s/J_{s+1} \simeq U_s\) and the map \(-c_{J_s/J_{s+1}} = (u_s)_{U_s}\) is an injection (since \(u_s \in C_{U_s}\)). Hence, the map \(-c_R\) is an injection. The proof of the Claim and of statement 4 is complete.

1. (i) \(C \in \mathrm{Ore}(R)\): Given \(r \in R\) and \(c \in C\), we have to show that \((C \cap R) \cap R \neq \emptyset\). Since \(c \in C\), \(\mathrm{udim}(R/Rc) = \mathrm{udim}(R/c)\), i.e. \((C \cap R) \cap R\) is an essential left ideal of \(R\). Then the left ideal of \(R\), \((C \cap R) : r \subseteq \{a \in R | ar \in C\}\), is an essential left ideal. By statement 4, we can find an element \(c' \in C \cap (R : r)\); so \(c'r' = r'c\) for some \(r' \in R\).

(ii) \(C \in \mathrm{Den}(R, a)\) where \(a := \mathrm{ass}_R(C)\): This follows from the statement (i).

(iii) \(Q\) is a semisimple Artinian ring: Since \(\mathrm{udim}(R) = \infty\) we can fix a direct sum \(J = \bigoplus_{i=1}^n U_i\) of uniform left ideals of \(R\) such that \(J := J \oplus a\) is an essential left ideal of \(R\). By statement 4, \(I \cap C \neq \emptyset\). Hence, \(\tau Q = \tau C - I = \bigoplus_{i=1}^n C - U_i\) (since \(C - a = 0\)). It suffices to show that each \(Q\)-module \(\tau C - U_i\) is a simple module. Suppose that, say \(\tau C - U_1\), is not a simple \(Q\)-module, we seek a contradiction. Then it contains a proper submodule, say \(M\). Since \(aU_1\) is essential in \(\tau C - U_1\), the intersection \(U_1 = U_1 \cap M\) is a nonzero. The left ideal \(I' = U_1 \oplus U_2 \oplus \cdots \oplus U_n \oplus a\) of \(R\) is an essential ideal such that \(\tau C - I'\) is a proper left ideal of \(\tau Q\) (by the choice of \(M\)) but, by statement 2, \(I' \cap \tau C \neq \emptyset\), and so \(\tau C - I' \simeq Q\), a contradiction.

3(a) The second equality in the statement (a) is obvious. Let \(R\) be the RHS of the second equality in the statement (a). To prove that the first equality holds it remains to show that \(\tau C = R\).

(i) \(\tau C \subseteq R\): Let \(c \in C\). Clearly, \(c \in \tau C(R, a)\). If \(\tau a = 0\) for some elements \(\tau = r + a \in R/a\) then \(\tau = 0\) since \(R/a \subseteq \tau Q\) and \(\tau\) is a unit of the ring \(\tau R\). So, \(\tau R/a\) is an injection. Then \(c \in R\).

(ii) \(\tau C \supseteq R\): If \(c \in \tau C\) then \(c \in \tau C\) as the map \(-c_R\) respects the filtration \(0 \subseteq a \subseteq R\).

The equality \(\tau C = \sigma^{-1}(\tau Q') \cap (\tau C(R, a))\) follows from the equality \(\tau C = \pi^{-1}(C_{R/a}) \cap (\tau C(R, a))\) and the statement 3(b): \(\tau C = \pi^{-1}(C_{R/a}) \cap (\tau C(R, a)) = \pi^{-1}(R/a \cap (\tau Q') \cap (\tau C(R, a)) = \sigma^{-1}(\tau Q') \cap (\tau C(R, a))\).

3(b) Since \(\tau Q\) is a semisimple Artinian ring, \(C_{R/a} = C_{R/a} \cap R = R/a \cap (\tau Q')\).

2. By statement 1, \(\pi(\tau C) \in \mathrm{Den}(R/a, 0)\) and \(\pi(\tau C) \cap (R/a) \simeq (\tau Q R)\) a semisimple Artinian ring, hence, \(\pi(\tau C) \subseteq S(R)\) and \(Q(R) \simeq (\tau Q)\) is a semisimple Artinian ring. Then \(Q(R) \simeq \tau Q_{s, \pi}(R)\) is a semisimple Artinian ring (Theorem 2.2).
5. Since ‘Q is a left Artinian ring, ‘C−1I is an ideal of the ring ‘Q for all ideals I of R. Let m be a maximal ideal of ‘Q. Then σ−1(m) is a prime ideal of the ring R: if IJ ⊆ σ−1(m) for some ideals I and J of the ring R. We may assume that a ⊆ I and a ⊆ J. Then ‘C−1I ⇒ ‘C−1J ⊆ ‘C−1σ−1(m) = m, and so one of the ideals ‘C−1I or ‘C−1J belongs to m. Say, ‘C−1I ⊆ m. Then I ⊆ σ−1(‘C−1I) ⊆ σ−1(m). Now, n ⊆ ∩m∈Max(R) σ−1(m), and so ‘C−1n ⊆ ∩m∈Max(R) ‘C−1σ−1(m) = ∩m∈Max(R)m = 0, i.e. n ⊆ a. □

Let X be a non-empty subset of a ring R. The right ideal r.ann(X) := \{r ∈ R | xr = 0\} is called the right annihilator of X. Right ideals of this kind are called right annihilator ideals of R.

**Proof of Theorem 1.2.** Let Q = Q_{l.cl}(R). Then R ⊆ Q.

(1 ⇒ 2) (i) udim(RR) < ∞: Since RR is an essential submodule of RQ, udim(RR) = udim(RQ) = udim(QQ) < ∞.

(ii) The ring R is a semiprime ring: Let I be an ideal of R. Since Q is a left Artinian ring, ‘C−1I is an ideal of Q. If I is a nilpotent ideal then so is ‘C−1I (since (‘C−1I)^t = ‘C−1I^t for all t ≥ 1). Then ‘C−1I = 0, i.e. I = 0. Therefore, the ring R is a semiprime ring.

(iii) ‘C_U ≠ ∅ for all uniform left ideals U of R: The left ideal M = QU = ‘C−1U of Q is a simple left Q-submodule of Q and Q = M ⊕ N for some left Q-submodule N of Q. Then 1 = e_1 + e_2 where e_1 ∈ M and e_2 ∈ N are idempotents of the ring Q. Notice that M = Qe_1 = Me_1 and e_1M = e_1Qe_1 ∼ End_Q(M) is a division ring. So, for each nonzero element a ∈ e_1M, the nonzero Q-module homomorphism -a : M → M, x → xa, of the simple Q-module M is an automorphism. Notice that ue_1 = u for all elements u ∈ U. In particular, Ue_1 = U. The ring R is semiprime and U ≠ 0. By (ii), 0 ≠ U^2 = (Ue_1)^2 = Ue_1Ue_1, and so e_1Ue_1 ≠ 0. Fix a nonzero element a = e_1ue_1 = e_1u in Ue_1 where u ∈ U. The map -a_M : M → M, m → ma, is a bijection. Hence, the map -a_U : U → U, u → u'a = u'e_1ue_1 = u'ue_1u, is an injection, and so u ∈ ‘C_U.

(iv) The ring R satisfies the a.c.c. on right annihilators: Let X be a non-empty subset of R. Then r.ann_R(X) = R ∩ r.ann_Q(X). Since Q satisfies the a.c.c. on right annihilators, so does R.

(2 ⇒ 3) This implication is obvious.

(3 ⇒ 2) In view of Theorem 2.3.(2), it suffices to show that a = 0. By the assumption, the set K := \{ker(c_{R'}) | c ∈ ‘C\} satisfies the a.c.c.. Let b := ker(c_{R'}) be the maximal element in K.

Clearly, b ⊆ a. We claim that b = a. Otherwise, fix an element a ∈ b’b and an element c’ ∈ ‘C such that c’b = 0. Since ‘C ∈ Ore_Q(R) (Theorem 2.3.(1)), c’b = rc for some elements c’ ∈ ‘C and r ∈ R. Then c_1 := c’b ∈ K and ker(c_1) ∩ K = aR ⊆ K, a contradiction. Therefore, b = a. The left ideal ac is a nilpotent ideal (ac · ac = 0). The ring R is a semiprime ring, so ac = 0. Then a = 0 since c ∈ ‘C.

(2 ⇒ 4 ⇒ 3) These implications are obvious. □

The next corollary gives sufficient conditions for a right Noetherian ring to have a semisimple left quotient ring.

**Corollary 2.4** Let R be a semiprime, right Noetherian ring with udim(RR) < ∞ and ‘C_U ≠ ∅ for all uniform left ideals U of R. Then Q_{l.cl}(R) is a semisimple Artinian ring.

**Proof.** The corollary follows from Theorem 1.2. □

**Lemma 2.5** Suppose that S, T ∈ Den(R) and S ⊆ T. Then the map \( \varphi : S^{-1}R \to S^{-1}T, s^{-1}r \mapsto s^{-1}r, \) is a ring homomorphism (where s ∈ S and r ∈ R).

1. \( \varphi \) is a monomorphism iff \( \text{ass}_R(S) = \text{ass}_R(T) \).
2. \( \varphi \) is a epimorphism iff for each \( t \in T \) there exists an element \( r \in R \) such that \( rt \in S + \text{ass}_R(T) \).
3. \( \varphi \) is an isomorphism iff \( \text{ass}_R(S) = \text{ass}_R(T) \) and for each element \( t \in T \) there exists an element \( r \in R \) such that \( rt \in S \).
4. If, in addition, \( T \subseteq ‘C_R \), then \( \varphi \) is an isomorphism iff \( \text{ass}_R(S) = \text{ass}_R(T) \) and for each element \( t \in T \) there exists an element \( r \in ‘C_R \) such that \( rt \in S \).
Proof. 1. Statement 1 is obvious.

2. \( \varphi \) is a epimorphism iff for each element \( t \in T, t^{-1} \in \text{im}(\varphi) \) iff \( t^{-1} = s^{-1}r \) for some elements \( s \in S \) and \( r \in R \) iff \( rt - s \in \text{ass}_R(T) \) iff \( rt \in S + \text{ass}_R(T) \).

3. Statement 3 follows from statements 1 and 2 and the fact that an element \( a \in R \) belongs to \( \text{ass}_R(S) \) iff \( sa = 0 \) for some element \( s \in S \).

4. Statement 4 follows from statement 3 and the inclusions \( \ker(rt) \supseteq \ker(r) \) and \( S \subseteq T \subseteq \mathcal{C}_R \).

\[ \square \]

Proof of Theorem 1.1. (3 \( \Rightarrow \) 1) (i) \( \mathcal{C} \in \text{Den}_1(R, 0) \): Since \( \mathcal{C} \subseteq \mathcal{C}_R \), it suffices to show that \( \mathcal{C} \in \text{Ore}_1(R) \).

Given elements \( s \in \mathcal{C} \) and \( a \in R \).

Then \( as^{-1} = c^{-1}b \in \text{Q}_{1,cl}(R) \) for some elements \( \mathcal{C} \) and \( b \in R \), and so \( ca = bs \). The set \( \mathcal{C} \) is dense in \( \mathcal{C}_R \).

So, \( s_1c \in \mathcal{C} \) for some element \( s_1 \in R \).

Now, \( s_1c \cdot a = s_1bs \). This means that \( \mathcal{C} \in \text{Ore}_1(R) \).

(ii) \( \mathcal{C}^{-1}R = \text{Q}_{1,cl}(R) \): The equality follows from Lemma 2.5.4 in view of (i) and the fact that \( \mathcal{C} \) is dense in \( \mathcal{C}_R \).

(iii) \( \mathcal{C} \in \text{Ore}_1(R) \): Given elements \( s \in \mathcal{C} \) and \( r \in R \). By (i), \( s_1r \equiv r_1s \mod a \) for some elements \( s_1 \in \mathcal{C} \) and \( r_1 \in R \).

Since \( s_1r - r_1s \in a \), we can find an element \( s_2 \in \mathcal{C} \) such that \( s_2(s_1r - r_1s) = 0 \), and so \( s_2a = a \).

(iv) \( \mathcal{C} \in \text{Den}_1(R, a) \): By (iii), \( \text{ass}_R(\mathcal{C} = a \). Since every element of \( \mathcal{C} \) is left regular, the statement (iv) follows.

(v) \( Q \simeq \mathcal{C}^{-1}R \) (obvious).

By (ii) and (v), \( Q \simeq \text{Q}_{1,cl}(R) \) is a semisimple Artinian ring.

(2 \( \Rightarrow \) 1) (i) \( \mathcal{C} \cap I \neq \emptyset \) for all essential left ideals \( I \) of \( R \). By the assumptions (c), (d) and Theorem 2.3.4.(i), \( \mathcal{C} \cap I \neq \emptyset \). Fix an element \( c \in \mathcal{C} \cap I \). Since \( \mathcal{C} \) is dense in \( \mathcal{C}_R \), se \( \mathcal{C} \cap I \) for some element \( s \in R \).

(ii) \( \mathcal{C} \in \text{Ore}_1(R, 0) \): In view of (ii), let us show that \( \text{ass}_R(\mathcal{C} = 0 \). If \( \mathcal{C} = 0 \) for some elements \( \mathcal{C} \) and \( r \in R \) (where \( r = c + a \in \mathcal{C} \) and \( r = r + a \in R \)) then \( cr \in a \). Hence, \( c_e r = 0 \) for some element \( c_e \in \mathcal{C} \), and so \( r \in a \) and \( r = 0 \). Therefore, \( \text{ass}_R(\mathcal{C} = 0 \). It remains to show that if \( \mathcal{C} = 0 \) for some elements \( \mathcal{C} \) and \( r \in R \) then \( r = 0 \), i.e. \( r \in a \). Clearly, \( r \in a \), hence \( c_e r = 0 \) for some element \( c_e \in \mathcal{C} \).

(iii) \( \mathcal{C} \in \text{Den}_1(R, 0) \): In view of (i), let us show that \( \text{ass}_R(\mathcal{C} = 0 \). If \( \mathcal{C} = 0 \) for some elements \( \mathcal{C} \) and \( r \in R \) then \( r = c + a \in \mathcal{C} \) and \( r = r + a \in R \).

(iii) \( \mathcal{C} \in \text{Den}_1(R, a) \): By (iii), \( \text{ass}_R(\mathcal{C} = a \). Since every element of \( \mathcal{C} \) is left regular, the statement (v) follows.

(vi) \( Q \simeq \mathcal{C}^{-1}R \) (obvious).

(vii) \( \mathcal{C} := \mathcal{C}^{-1}R \) is a semisimple Artinian ring. Since \( \text{udim}(\mathcal{C}_R) < \infty \), we can fix an essential direct sum \( I = \oplus_{i=1}^n U_i \) of uniform left ideals \( U_i \) of the ring \( R \).

By (i), \( I \cap \mathcal{C} \neq \emptyset \). Hence, the \( \mathcal{C} \)-module \( R/I \) is \( \mathcal{C} \)-torsion.

Therefore, \( Q \simeq \oplus_{i=1}^n \mathcal{C}^{-1}U_i \), an isomorphism of \( \mathcal{C} \)-modules. It suffices to show that each \( \mathcal{C} \)-module \( V_i = \mathcal{C}^{-1}U_i \) is simple. Suppose that, say \( V_1 \) is not, we seek a contradiction. Then it contains a proper \( \mathcal{C} \)-submodule, say \( M \).

By (iii), \( R U_1 \) is an essential submodule of \( R V_1 \), the intersection \( U_1' = U_1 \cap M \) is nonzero and \( \mathcal{C}^{-1}U_1' = M \).

The left ideal \( J = U_1' \oplus U_2 \oplus \cdots \oplus U_n \) of \( R \) is an essential left ideal such that \( \mathcal{C}^{-1}J = M \oplus V_2 \oplus \cdots \oplus V_n \) is a proper left ideal of the ring \( \mathcal{C} \).

By (i), \( J \cap \mathcal{C} = 0 \), and so \( \mathcal{C}^{-1}J = \mathcal{C}^{-1}Q \), a contradiction.

(2 \( \Rightarrow \) 3) We continue the proof of the implication (2 \( \Rightarrow \) 1).

(viii) \( \mathcal{C} \in \text{Ore}_1(R) \) is a semisimple Artinian ring. This follows from (iii) and (vii).

(ix) \( \mathcal{C} \) is dense in \( \mathcal{C}_R \): In view of the statements (iii) and (vii), this follows from Lemma 2.5.3.

(1 \( \Rightarrow \) 3) (a) \( \mathcal{C} \in \text{Den}_1(R, 0) \) and \( Q \simeq \mathcal{C}^{-1}R \) (since \( \mathcal{C} \in \text{Den}_1(R, a) \)).
(β) $'Q \simeq Q_{l,cl}(R)$ is a semisimple Artinian ring (by (α) and the simplicity of the ring $'Q \simeq \mathcal{C}^{-1}R$).

(γ) a is a semiprime ideal of R (by (β)).

(δ) $\mathcal{C}$ is dense in $\mathcal{C}_{\mathfrak{r}}$. By the statements (α) and (β), $\mathcal{C}^{-1}R \simeq Q_{l,cl}(R)$. Now, the statement (δ) follows from Lemma 2.5.(3).

(3 ⇒ 2) Recall that (1 ⇒ 3).

(a) a is a semiprime ideal of R (this is given).

(b) $\mathcal{C}$ is dense in $\mathcal{C}_{\mathfrak{r}}$. Repeat the proof of the above statement (δ) bearing in mind that the statements (α) and (β) hold in view of the equivalence (1 ⇒ 3).

(c) $\text{udim}(\mathfrak{r}R) < \infty$: This follows from the fact that $Q_{l,cl}(R)$ is a semisimple Artinian ring.

(d) $\mathcal{C}V \neq \emptyset$ for all uniform left ideals V of R (by Theorem 1.2.(2), since $Q_{l,cl}(R)$ is a semisimple Artinian ring). $\square$

**Corollary 2.6** We keep the notation of Theorem 1.1. If $'Q$ is a semisimple Artinian ring then $\mathfrak{n} \subseteq a$ (where $\mathfrak{n}$ is the prime radical of R).

**Proof.** Repeat the proof of statement 5 of Theorem 2.3. $\square$

**Proof of Theorem 1.3.** (1 ⇒ 2) The first three conditions are obvious and the fourth holds by Theorem 1.2.

(2 ⇒ 1) This implication follows from Theorem 1.1 and we keep its notation. Since $'C_{\mathfrak{r}} = C_{\mathfrak{r}}$, $\mathfrak{a} = 0$ and all the conditions (a) - (d) in Theorem 1.1.(2) hold, the ring $'Q = Q_{l,cl}(R)$ is a semisimple Artinian ring, by Theorem 1.1. $\square$

**The left singular ideal of R over a.** For a ring R, the set $\zeta(R) := \{r \in R | Ir = 0 \text{ for some essential left ideal } I \text{ of } R\}$ is called the left singular ideal of R. It is an ideal of R. Let a be an ideal of R. The set $\zeta(R, a) := \{r \in R | Ir = 0 \text{ for some essential left ideal } I \text{ of } R \text{ such that } a \subseteq I\}$ is called the left singular ideal of R over a. It is an ideal of R. Clearly, $\zeta(R, 0) = \zeta(R)$ and $\zeta(R, a)$ is a right ideal of the ring R.

**Lemma 2.7** For all ideals a of a ring R, the right ideal $\zeta(R, a)$ is an ideal of the ring R.

**Proof.** Let $r \in \zeta := \zeta(R, a)$ and $Ir = 0$ for some essential left ideal I of R such that $a \subseteq I$. Let $r' \in R$. The map $f := \cdot r' : R \rightarrow R$, $x \mapsto xr'$, is an $R$-homomorphism. Then $f^{-1}(I) := \{a \in R | ar' \in I\}$ is an essential left ideal of R that contains the ideal a. Moreover, $f^{-1}(I) \cdot r'r \subseteq Ir = 0$, and so $r'r \in \zeta$. Therefore, $\zeta$ is an ideal of R. $\square$

**Proposition 2.8** Let R be a ring such that $'Q_{l,cl}(R)$ is a semisimple Artinian ring and $a := \text{ass}_R('C_{\mathfrak{r}})$. Then $\zeta(R, a) \subseteq a$.

**Proof.** We keep the notation of Theorem 1.1. Let $r \in \zeta := \zeta(R, a)$. We have to show that $r \in a$. Fix an essential left ideal I of R such that $Ir = 0$ and $a \subseteq I$. Consider the set S of all left ideals J of R such that $J \subseteq I$ and $a \cap J = 0$. By Zorn’s Lemma, let J be a maximal element in S. Then the left ideal $a + J = a \oplus J$ is an essential R-submodule of I, hence it is also an essential left ideal of R (since I is an essential left ideal of R).

Claim: $J := \pi(J)$ is an essential left ideal of $\mathcal{R}$.

Suppose that this is not true. Then $J \cap \mathfrak{r}R' = 0$ for some nonzero element $r' = r + a \in \mathcal{R}$ where $r' \in R$. The left ideal $a \oplus J$ of $\mathcal{R}$ is essential. So, $(a \oplus J) \cap \mathcal{R}r \neq 0$. Let $r''r' = a + j$ be a nonzero element in the intersection for some elements $r'' \in \mathcal{R}$, $a \in a$ and $j \in J$. Then $ca = 0$ for some element $c \in \mathcal{C}$, and so $cr''r' = cj \neq 0$ (otherwise, $cj = 0$, and so $j \in a \cap J = 0$, a contradiction). Now, $cj \in J'(0)$, and so $0 \neq cr''r' = cj \in \mathfrak{r}R \cap J = 0$, a contradiction. So, $J$ is an essential left ideal of the ring $\mathcal{R}$. This finishes the proof of the Claim.

Recall that $Ir = 0$ and $J \subseteq I$. In particular, $Jr = 0$, and so $Jr = 0$ and $r \in \zeta(\mathcal{R})$. By Theorem 1.1, $'Q := 'Q_{l,cl}(\mathcal{R})$ is a semisimple Artinian ring. Then $\zeta(\mathcal{R}) = 0$, by [9, Theorem 2.3.6]. Therefore, $r = 0$. This means that $r \in a$, as required. $\square$
3 Semisimplicity criteria for the ring \( 'Q_{l,cl}(R) \)

In this section, proofs are given of several semisimplicity criteria for the ring \( 'Q_{l,cl}(R) \) (Theorem 3.1, Theorem 3.3, Theorem 3.4 and Theorem 3.5). It is shown that the left localization radical \( l_R \) of a ring \( R \) is contained in the ideal \( a = \text{ass}_R('C) \) provided \( 'Q_{l,cl}(R) \) is a semisimple Artinian ring (Corollary 3.2). Theorem 3.6 gives sufficient conditions for semisimplicity of \( 'Q_{l,cl}(R) \) provided the ring \( R/n \) is left Goldie (where \( n \) is the prime radical of the ring \( R \)).

For a ring \( R \), let \( 'C = 'C_R \) and \( 'M := \max\text{Den}_1(R, 'C) := \{S \in \max\text{Den}_1(R) | 'C \subseteq S \} \). The first semisimplicity criterion for \( 'Q_{l,cl}(R) \) is given via the set \( 'M \) of maximal left denominator sets of \( R \) that contain the set \( 'C_R \) of left regular elements of \( R \).

**Theorem 3.1** Let \( R \) be a ring, \( 'C = 'C_R \), \( a = \text{ass}_R('C) \) and \( 'M = \{S \in \max\text{Den}_1(R) | 'C \subseteq S \} \). The following statements are equivalent.

1. \( 'Q_{l,cl}(R) \) is a semisimple Artinian ring.
2. \( 'M \) is a finite nonempty set, \( \bigcap_{S \in 'M} \text{ass}_R(S) = a \), for each \( S \in 'M \), the ring \( S^{-1}R \) is a simple Artinian ring and the set \( \overline{C} \) is a dense subset of \( C_R/a \) in \( R/a \).

Let \( \overline{R} = R/a \) and \( \pi : R \to \overline{R} \), \( r \mapsto \overline{r} = r + a \). If one of the equivalent conditions holds then

(a) the map \( 'M \to \overline{M} := \max\text{Den}_1(\overline{R}), S \mapsto \overline{S} := \pi(S) \), is a bijection with inverse \( T \mapsto T' := \pi^{-1}(T) \).

(b) For all \( S \in 'M \), \( a \subseteq \text{ass}_R(S) \) and \( \pi(\text{ass}_R(S)) = \text{ass}_\overline{R}(\overline{S}) \). For all \( T \in \overline{M} \), \( \pi^{-1}(\text{ass}_\overline{R}(\overline{T})) = \text{ass}_R(\pi^{-1}(T)) \).

(c) For all \( S \in 'M \), \( S^{-1}R \simeq \overline{S}^{-1}\overline{R} \) is a simple Artinian ring.

(d) \( 'Q_{l,cl}(R) \simeq \bigcap_{S \in 'M} S^{-1}R \simeq \bigcap_{S \in 'M} \overline{S}^{-1}\overline{R} \simeq \prod_{T \in 'M} T^{-1}\overline{R} \simeq 'Q_{l,cl}(\overline{R}) \) (semisimple Artinian rings).

**Proof.** (1 \( \Rightarrow \) (a) - (d)) To prove the implication, first, we prove statements (i)-(vii) below and from which then the statements (a)-(d) are deduced.

By Theorem 1.1, \( a \) is a semi-prime ideal of the ring \( R \), \( 'C \in \text{Den}_1(\overline{R}, 0) \) and \( 'Q_{l,cl}(R) \simeq 'C^{-1}\overline{R} \) is a semisimple Artinian ring.

(i) \( 'C \subseteq T \) for all \( T \in \overline{M} \): Recall that \( S_l(\overline{R}) \) is the largest left Ore set of \( \overline{R} \) that consists of regular elements of the ring \( \overline{R} \). Hence,

\[ 'C \subseteq S_l(\overline{R}) \subseteq T, \]

for all \( T \in \overline{M} \), by [4, Proposition 2.10.(1)].

(ii) For all \( T \in \overline{M} \), \( T' := \pi^{-1}(T) \in \text{Den}_1(R) \). If \( 'C \subseteq \text{ass}_R(T) \) and \( T'^{-1}R \simeq T^{-1}\overline{R} \). Since \( 'C \in \text{Den}_1(R, a) \) and \( 'C \subseteq \pi^{-1}(\overline{T}) \subseteq \pi^{-1}(T) = T' \) (by (i)), the result follows from [6, Lemma 2.11].

(iii) Given distinct \( T_1, T_2 \in \overline{M} \), then \( T_1 \neq T_2 \). Suppose that \( T_1' = T_2' \). Then, \( T_1 = \pi(T_1') = \pi(T_2') = T_2 \), a contradiction.

(iv) For all \( T \in \overline{M} \), \( T' \in 'M \): By (ii), \( T' \in \text{Den}_1(R) \). Then \( T' \subseteq S \) for some \( S \in \max\text{Den}_1(R) \).

Then \( S \in 'M \), since

\[ 'C \subseteq \pi^{-1}(\overline{C}) \subseteq \pi^{-1}(T) = T' \subseteq S. \]

Now, \( T = \pi(T') \subseteq \pi(S) = \overline{S} \). Since \( S \in 'M \), we have \( 'C \subseteq S \) and so \( a \subseteq \text{ass}_R(S) \). Therefore, \( \overline{S} \in \text{Den}_1(R, \text{ass}_R(S)/a) \), and so \( \overline{S} \subseteq T_1 \) for some \( T_1 \in \overline{M} \). Then \( T \subseteq \overline{S} \subseteq T_1 \), hence \( T = T_1 \) (since \( T, T_1 \in \overline{M} \)) and \( T = \overline{S} \). Now, \( T' = \pi^{-1}(T) = \pi^{-1}(\overline{S}) \supseteq S \supseteq T' \). Therefore, \( T' = S \in 'M \).

(v) For all \( S \in 'M \), \( S + a = S \) and \( S = \pi^{-1}(\overline{S}) \). For an arbitrary ring \( A \) and its maximal left denominator set \( S', S' + \text{ass}_A(S') = S' \), by [6, Corollary 2.12]. Since \( a \subseteq \text{ass}_R(S) \), we have \( S + a = S \), hence \( S = \pi^{-1}(\overline{S}) \).
(vi) For all \( S \in \mathcal{M}, \overline{S} \in \overline{\mathcal{M}} \): Since \( a \subseteq \text{ass}_R(S), \overline{S} \in \text{Den}_1(\overline{R}, \text{ass}_R(S)/a) \). Therefore, \( \overline{S} \subseteq T \) for some \( T \in \overline{\mathcal{M}} \). Now,
\[
S = \pi^{-1}(\overline{S}) \subseteq \pi^{-1}(T) = T' \in ' \mathcal{M},
\]
by (iv). Therefore, \( S = T' \), and so \( \overline{S} = T = T' \in \overline{\mathcal{M}} \).

Now, we are ready to prove the statements (a) - (d).

(a) By (iv) and (vi), the maps \( ' \mathcal{M} \to \overline{\mathcal{M}}, S \mapsto \overline{S}, \) and \( \overline{\mathcal{M}} \to ' \mathcal{M}, T \mapsto T' := \pi^{-1}(T), \) are well-defined. They are inverses of one another since \( S \to \overline{S} \to \pi^{-1}(\overline{S}) = S \) (by (vi)); and \( T \to T' \to \pi(T') = T \) (since \( \pi \) is a surjection).

(b) Let \( S \in ' \mathcal{M} \). Then \( \mathcal{C} \subseteq S \), and so \( a \subseteq \text{ass}_R(S) \). Therefore, \( \overline{S} \in \text{Den}_1(\overline{R}, \text{ass}_R(S)/a) \), and so \( \pi(\text{ass}_R(S)) = \text{ass}_{\overline{\mathcal{M}}}(\overline{S}). \)

If \( T \in \overline{\mathcal{M}} \) then \( T' \in ' \mathcal{M} \) (by the statement (a)), and so \( T = \pi(T') \in \text{Den}_1(\overline{R}, \text{ass}_R(T')/a) \). It follows that \( \pi^{-1}(\text{ass}_{\overline{\mathcal{M}}}(T)/a) = \text{ass}_R(T') \) (since \( a \subseteq \text{ass}_R(T') \)).

(c) By the statement (a), for all \( S \in ' \mathcal{M}, \overline{S} \in \overline{\mathcal{M}} \) and \( S^{-1}R \cong \overline{S}^{-1}\overline{R} \). Since \( \overline{S} \in \overline{\mathcal{M}} \), the ring \( \overline{S}^{-1}\overline{R} \) is a simple Artinian ring, by [4, Theorem 3.1] (since \( Q_{l,cl}(\overline{R}) \cong Q \) is a semisimple Artinian ring).

(d)
\[
'Q \simeq Q_{l,cl}(\overline{R}) \quad \text{(Theorem 1.1)}
\]
\[
\simeq \prod_{T \in \overline{\mathcal{M}}} T^{-1}\overline{R} \quad \text{([4, Theorem 3.1])}
\]
\[
\simeq \prod_{S \in ' \mathcal{M}} S^{-1}\overline{R} \quad \text{(the statement (a))}
\]
\[
\simeq \prod_{S \in ' \mathcal{M}} S^{-1}R \quad \text{(the statement (c))}.
\]

(1 \( \Rightarrow \) 2) Recall that \( 1 \Rightarrow (a) - (d) \) and statement 2 follows from the statements (a)-(d). In more detail,

(i) \( 1 \leq ' \mathcal{M} < \infty \): By the statement (a), \( ' \mathcal{M} = \overline{\mathcal{M}} \) and \( \overline{\mathcal{M}} \) is a finite set, by [4, Theorem 3.1].

(ii) \( \bigcap_{S \in ' \mathcal{M}} \text{ass}_R(S) = a \): By the statement (b), \( a \subseteq \text{ass}_R(S) \) for all \( S \in ' \mathcal{M} \), and so \( a \subseteq a' := \bigcap_{S \in ' \mathcal{M}} \text{ass}_R(S). \) We have to show that \( a = a' \), that is \( a'/a = 0 \). Now,
\[
a'/a = \bigcap_{S \in ' \mathcal{M}} \text{ass}_R(S)/a = \bigcap_{S \in ' \mathcal{M}} \pi(\text{ass}_R(S)) = \bigcap_{S \in ' \mathcal{M}} \text{ass}_{\overline{\mathcal{M}}}(\overline{S}) = 0,
\]
by [4, Theorem 3.1], since \( Q_{l,cl}(\overline{R}) \) is a semisimple Artinian ring (by the statement (d)).

(iii) For each \( S \in ' \mathcal{M}, S^{-1}R \) is a simple Artinian ring (by the statement (c)).

(iv) The set \( \mathcal{C} \) is a dense subset of \( \overline{\mathcal{C}} \) (by Theorem 1.1).

(2 \( \Rightarrow \) 1) It suffices to show that the conditions of Theorem 1.1.(3) hold. Since \( a = \bigcap_{S \in ' \mathcal{M}} \text{ass}_R(S), \) the map
\[
R/a \to \bigoplus_{S \in ' \mathcal{M}} S^{-1}R, \quad r + a \mapsto (r^{(r_1)}, \ldots, r^{(r_1)}),
\]
is an injection and the direct product is a semisimple Artinian ring. By [4, Theorem 6.2], \( Q_{l,cl}(R/a) \) is a semisimple Artinian ring. In particular, the ideal \( a \) is a semiprime ideal of \( R \). Now, by Theorem 1.1.(3), \( 'Q \) is a semisimple Artinian ring. \( \square \)

For a ring \( R \), the ideal \( \text{I}_R := \bigcap_{S \in \text{max Den}_1(R)} \text{ass}_R(S) \) is called the left localization radical of \( R \), [2].

**Corollary 3.2** Let \( R \) be a ring such that \( Q_{l,cl}(R) \) is a semisimple Artinian ring. Then \( \text{I}_R \subseteq a \) (where \( \text{I}_R \) is the left localization radical of \( R \) and \( a = \text{ass}_R('C_R) \)).
Proof. \( I_R = \bigcap_{S \in \text{max.Den}(R)} \text{ass}_R(S) \subseteq \bigcap_{S \in \mathcal{M}} \text{ass}_R(S) = a, \) by Theorem 3.1. \( \square \)

Let \( R \) be a ring and \( I \) be an ideal of \( R \). We denote by \( \text{Min}_R(I) \) the set of minimal prime ideals over \( I \). The map \( \text{Min}_R(I) \to \text{Min}(R/I), p \mapsto p/I, \) is a bijection with the inverse \( q \mapsto \pi_I^{-1}(q) \) where \( \pi_I : R \to R/I, r \mapsto r + I \).

The second semisimplicity criterion for \( 'Q_{l,cl}(R) \) is given via the minimal primes over \( a = \text{ass}_R('C_R) \). It also gives an explicit description of the elements of the set \( '\mathcal{M} \) (see Theorem 3.1 for a definition of \( '\mathcal{M} \)).

**Theorem 3.3** Let \( R \) be a ring, \( 'C = 'C_R \) and \( a = \text{ass}_R('C) \). We keep the notation of Theorem 3.1.

1. \( 'Q_{l,cl}(R) \) is a semisimple Artinian ring.
2. (a) \( a \) is semiprime ideal of \( R \) and the set \( \text{Min}_R(a) \) is a finite set.
   
   (b) For each \( p \in \text{Min}_R(a) \), the set \( S_p := \{ c \in R \mid c + p \in C_R/I \} \) is a left denominator set of the ring \( R \) with \( \text{ass}_R(S_p) = p \).
   
   (c) For each \( p \in \text{Min}_R(a) \), the ring \( S_p^{-1} R \) is a simple Artinian ring.
   
   (d) The set \( \mathcal{C} := \{ c + a \mid c \in 'C \} \) is a dense subset of \( C_{R/a} \).

Let \( \overline{R} = R/a \) and \( \pi : R \to \overline{R}, r \mapsto r + a \). If one of the equivalent conditions holds then

(i) \( '\mathcal{M} = \{ S_p \mid p \in \text{Min}_R(a) \} \) and \( \text{ass}_R(S_p) = p \).

(ii) \( '\overline{\mathcal{M}} = \{ S_{\overline{p}} \mid \overline{p} \in \text{Min}(\overline{R}) \} \) where \( S_{\overline{p}} := \{ \overline{r} \in \overline{R} \mid \overline{r} + \overline{p} \in \overline{C}_{R/\overline{R}} \} \) and \( \text{ass}_{\overline{R}}(S_{\overline{p}}) = \overline{p} \).

(iii) For all \( p \in \text{Min}_R(a) \), \( S_p^{-1} R \simeq S_p^{-1} \overline{R} \) is a simple Artinian ring.

(iv) \( 'Q_{l,cl}(R) \simeq \prod_{p \in \text{Min}_R(a)} S_p^{-1} R \simeq \prod_{\overline{p} \in \text{Min}(\overline{R})} S_{\overline{p}}^{-1} \overline{R} \simeq 'Q_{l,cl}(\overline{R}) \) (semisimple Artinian rings).

Proof. (1 \( \Rightarrow \) 2). By the assumption, \( 'Q \) is a semisimple Artinian ring. By Theorem 1.1, \( a \) is semiprime ideal of \( R \), the set \( '\mathcal{C} \) is dense in \( \overline{C_R} \) (this is the condition (d)) and the ring \( 'Q_{l,cl}(\overline{R}) \) is a semisimple Artinian ring.

By [4, Theorem 4.1], \( \text{Min}(\overline{R}) \) is a finite set, \( '\overline{\mathcal{M}} = \{ S_{\overline{p}} \mid \overline{p} \in \text{Min}(\overline{R}) \} \), \( \text{ass}_{\overline{R}}(S_{\overline{p}}) = \overline{p} \) and \( S_{\overline{p}}^{-1} \overline{R} \) is a simple Artinian ring for all \( \overline{p} \in \text{Min}(\overline{R}) \). By Theorem 3.1, \( |\text{Min}(a)| = |\text{Min}(\overline{R})| < \infty \), \( '\mathcal{M} = \{ S_p \mid p \in \text{Min}_R(a) \} \), \( \text{ass}_R(S_p) = p \) and \( S_p^{-1} R \simeq S_p^{-1} \overline{R} \) is a simple Artinian ring for all \( p \in \text{Min}_R(a) \). Therefore, the properties (a)-(d) hold.

(2 \( \Rightarrow \) 1) It suffices to show that the conditions of statement 3 of Theorem 1.1 hold.

By the statement (a), the ideal \( a \) is a semiprime ideal of \( R \). By the statements (a) and (c), the map

\[ R/a \to \prod_{p \in \text{Min}_R(a)} S_p^{-1} R, \quad r + a \mapsto \left( \frac{r}{1}, \ldots, \frac{r}{1} \right), \]

is a ring monomorphism. The direct product above is a semisimple Artinian ring, by the statement (c). By [4, Theorem 6.2], the ring \( 'Q_{l,cl}(\overline{R}) \) is a semisimple Artinian ring. By Theorem 1.1, \( 'Q \) is a semisimple Artinian ring. So, the implication (2 \( \Rightarrow \) 1) holds.

Now, the statements (i)-(iv) follow from Theorem 3.1. \( \square \)

A ring \( R \) is called left Goldie if it satisfies the a.c.c. on left annihilators and \( \text{udim}(R) < \infty \). The third semisimplicity criterion for \( 'Q_{l,cl}(R) \) reveals its ‘local nature’ and is given via the rings \( R/p \) where \( p \in \text{Min}(a) \).

**Theorem 3.4** We keep the notation of Theorem 3.3. The following statements are equivalent.

1. \( 'Q_{l,cl}(R) \) is a semisimple Artinian ring.

2. (a) \( a \) is a semiprime ideal of \( R \) and the set \( \text{Min}_R(a) \) is finite.
   
   (b) For each \( p \in \text{Min}_R(a) \), the ring \( R/p \) is a left Goldie ring.
(c) The set $\mathcal{U}$ is a dense subset of $C_{\mathcal{P}}$.

Proof. $(1 \Rightarrow 2)$ Suppose that the ring $'Q = \mathcal{Q}_{l,c,l}(R)$ is a semisimple Artinian ring. By Theorem 3.3, the conditions (a) and (c) hold, and for each $p \in \operatorname{Min}(R)$, the rings $S_p^{-1} R$ are simple Artinian rings (the statement (iii) of Theorem 3.3). Let $\pi_p : R \twoheadrightarrow R/p$, $r \mapsto r + p$. Then $\pi_p(S_p) \in \operatorname{Den}(R/p, 0)$ (since $\operatorname{ass}(S_p) = p$, the statement (i) of Theorem 3.3) and $\pi_p(S_p)^{-1} (R/p) \simeq S_p^{-1} R$ is a simple Artinian ring. Then, $\mathcal{Q}_{l,c,l}(R/p) \simeq \pi_p(S_p)^{-1} (R/p)$ is a simple Artinian ring. So, the statement (b) holds.

$(2 \Rightarrow 1)$ Suppose that the conditions (a)-(c) hold. The conditions (a) and (b) means that the ring $R = R/a$ is a semiprime ring with $|\operatorname{Min}(R)| = |\operatorname{Min}(a)| < \infty$. By [4, Theorem 5.1], $\mathcal{Q}_{l,c,l}(R/a)$ is a semisimple Artinian ring. By Theorem 1.1, $'Q$ is a semisimple Artinian ring. □

The fourth semisimplicity criterion for $\mathcal{Q}_{l,c,l}(R)$ is useful in applications as usually there are plenty of ‘nice’ left denominator sets.

**Theorem 3.5** We keep the notation of Theorem 3.4. The following statements are equivalent.

1. $\mathcal{Q}_{l,c,l}(R)$ is a semisimple Artinian ring.

2. There are left denominator sets $S_1, \ldots, S_n$ of the ring $R$ such that

   (a) the rings $S_i^{-1} R$ are simple Artinian rings,

   (b) $a = \bigcap_{i=1}^n \operatorname{ass}(S_i)$, and

   (c) $\mathcal{U}$ is a dense subset of $C_{\mathcal{P}}$.

Proof. $(1 \Rightarrow 2)$ By Theorem 3.1, it suffices to take $\mathcal{M} = \{S_1, \ldots, S_n\}$. 

$(2 \Rightarrow 1)$ Suppose that the conditions (a)-(c) hold. By the conditions (a) and (b), the map

$$R/a \rightarrow \prod_{i=1}^n S_i^{-1} R, \quad r + a \mapsto (r_1, \ldots, r_n),$$

is a ring monomorphism. The direct product above is a semisimple Artinian ring, by the statement (c). By [4, Theorem 6.2], the ring $\mathcal{Q}_{l,c,l}(R)$ is a semisimple Artinian ring. So, the conditions of Theorem 1.1.(3) hold, and so $\mathcal{Q}_{l,c,l}(R)$ is a semisimple Artinian ring, by Theorem 1.1. □

**Sufficient conditions for semisimplicity of $\mathcal{Q}_{l,c,l}(R)$ when $R/n$ is a left Goldie ring.**

Let $R$ be a ring and $I$ be its ideal. Let $\operatorname{Min}(R/I) := \{p \in \operatorname{Min}(R) \mid p \supseteq I\}$. An important case for applications is the one when the ring $R/n$ is a left Goldie ring, and therefore $\mathcal{Q}_{l,c,l}(R/n)$ is a semisimple Artinian ring. In this case, the next theorem gives sufficient conditions for semisimplicity of the ring $\mathcal{Q}_{l,c,l}(R)$.

**Theorem 3.6** Let $R$ be a ring, $C = C_R$ and $a = \operatorname{ass}(C')$. Suppose that the ring $\mathcal{Q}_{l,c,l}(R/n)$ is a semisimple Artinian ring such that $a = \bigcap_{i=1}^n p_i$ for some $p_1, \ldots, p_n \in \operatorname{Min}(R)$. If the set $\mathcal{U} := \{c + a \mid c \in C_R\}$ is dense in $C_{R/a}$ then $\mathcal{Q}_{l,c,l}(R)$ is a semisimple Artinian ring, $\operatorname{Min}(R)(a) = \{p_1, \ldots, p_n\}$ and $\mathcal{Q}_{l,c,l}(R/n) \simeq \prod_{i=1}^n S_{p_i}^{-1} R$ where $S_{p_i}^{-1} R$ are simple Artinian rings and $S_{p_i} := \{c \in R \mid c + p_i \in C_{R/p_i}\}$. The map

$$R/a \simeq (R/n)/\prod_{i=1}^n p_i \rightarrow \prod_{i=1}^n S_{p_i}^{-1} (R/n), \quad r + a \mapsto (r_1, \ldots, r_n),$$

is a monomorphism and the direct product is a semisimple Artinian ring. Since $a/n = \bigcap_{i=1}^n p_i$, the conditions (a)-(c) of Theorem 3.5 hold (where $S_i = S_{p_i}$), and so $\mathcal{Q}_{l,c,l}(R)$ is semisimple Artinian ring (by Theorem 3.5). The rest follows from Theorem 3.3. □
4 The left regular left quotient ring of a ring and its semisimplicity criteria

The aim of this section is to prove Theorem 4.3 and to establish some relations between the rings $Q_l(R)$ and $Q_l(R)$ (Lemma 4.2, Proposition 4.4 and Corollary 4.5). In particular, to show that the rings $Q_l(R)$ and $Q_l(R)$ are $R$-isomorphic iff $S_l(R) = S_l(R)$ (Proposition 4.4.4). At the end of the section, some applications are given for the algebras of polynomial integro-differential operators.

The left regular left quotient ring $Q_l(R)$ of a ring $R$. Let $R$ be a ring. Its opposite ring $R^{op}$ is a ring such that $R^{op} = R$ (as additive groups) but the multiplication in $R^{op}$ is given by the rule $a \cdot b = ba$. Recall that $C_R$ and $C_{R}^{op}$ are the sets of left and right regular elements of the ring $R$, respectively, and $S_l(R)$ and $S_r(R)$ are the largest left and right Ore sets of $R$ that consists of regular elements of $R$.

Lemma 4.1 Let $R$ be a ring.

1. In the set $C_R$ there exists the largest (w.r.t. inclusion) left denominator set of $R$, denoted by $S_l(R)$. The set $S_l(R)$ is the largest (w.r.t. inclusion) right denominator set of $R$ in $C_R$.

2. In the set $C_{R}^{op}$ there exists the largest (w.r.t. inclusion) right denominator set of $R$, denoted by $S_r(R)$. The set $S_l(R)$ is the largest (w.r.t. inclusion) left denominator set of $R$ in $C_{R}^{op}$.

Proof. 1. If $S$ and $T$ are left denominator sets of the ring $R$ such that $S,T \subseteq C_R$. The submonoid, denoted by $ST$, of $C_R$ that is generated by $S$ and $T$ does not contain 0. By [6, Lemma 2.4.(2)], $ST$ is a left denominator set of $R$. Hence, the set $S_l(R)$ exists and is the union of all left denominator sets of $R$ in $C_R$.

If $D$ is a right denominator set of $R$ in $C_R$, then $ass_R(D) = 0$, and so $D \subseteq C_R$. Therefore, $S_l(R)$ is the largest right denominator set of $R$ in $C_R$.

2. Statement 2 follows from statement 1 (by applying statement 1 to the opposite ring $R^{op}$ of $R$).

Definition. The set $S_l(R)$ is called the largest left regular left denominator set of $R$ and the ring $Q_l(R) := S_l(R)^{-1}R$ is called the left regular left quotient ring of $R$. Similarly, the set $S_r(R)$ is called the largest right regular right denominator set of $R$ and the ring $Q_r(R) := R_{S_r(R)}^{-1}$ is called the right regular right quotient ring of $R$.

If $S_l(R) = C_R$ then $Q_l(R) = Q_{l,cl}(R)$. If $S_r(R) = C_R$ then $Q_r(R) = Q_{r,cl}(R)$.

The next lemma shows that if the ring $Q_l(R)$ is a left Artinian ring (respectively, semisimple Artinian) ring then so is the ring $Q_l(R)$. The reverse implication is usually wrong. For example, in the case of the algebra $A_1 = K(x, \frac{d}{dx})$ of the polynomial integro-differential operators over a field $K$ of characteristic zero, the ring $Q_l(A_1)$ is neither left nor right Noetherian ring and not a domain (see [2]) but the ring $Q_l(A_1)$ is a division ring and $Q_l(A_1) = \mathbb{Q}_{l,cl}(A_1)$ (Theorem 6.5.1).

Lemma 4.2 Let $R$ be a ring.

1. If the ring $Q_l(R)$ is a left Artinian ring then $S_l(R) = C_R = C_{R}^{op} = S_l(R)$ and $Q_l(R) = Q_{l,cl}(R) = Q_{l,cl}(R) = Q_l(R)$ is a left Artinian ring.

2. If the ring $Q_l(R)$ is a semisimple Artinian ring then $S_l(R) = C_R = C_{R}^{op} = S_l(R)$ and $Q_l(R) = Q_{l,cl}(R) = Q_{l,cl}(R) = Q_l(R)$ is a semisimple Artinian ring.

Proof. 1. If $Q_l(R)$ is a left Artinian ring then $C_R \subseteq Q_l(R)^{*}$. By [2, Theorem 2.8.(1)], $S_l(R) = R \cap Q_l(R)^{*}$. By intersecting with $R$ the following inclusions of subsets of the ring $Q_l(R)$, $S_l(R) \subseteq C_R \subseteq C_{R}^{op} \subseteq Q_l(R)^{*}$, and $S_l(R) \subseteq S_l(R) \subseteq C_R \subseteq Q_l(R)^{*}$, we obtain the inclusions $S_l(R) \subseteq C_R \subseteq C_{R}^{op} \subseteq S_l(R)$ and $S_l(R) \subseteq S_l(R) \subseteq C_R \subseteq Q_l(R)^{*}$. Therefore, $S_l(R) = C_R = C_{R}^{op} = S_l(R)$ and $Q_l(R) = Q_{l,cl}(R) = Q_{l,cl}(R) = Q_l(R)$ is a semisimple Artinian ring.

2. Statement 2 follows from statement 1. \(\Box\)
Semisimplicity criteria for the ring \( 'Q_l(R) \). In general, the question of existence of the ring \( 'Q_{l,cl}(R) \) is a difficult one. In general, the ring \( 'Q_{l,cl}(R) \) does not exist but the ring \( 'Q_l(R) \) always does. If the ring \( 'Q_{l,cl}(R) \) exists then \( 'Q_{l,cl}(R) = 'Q_l(R) \). The next theorem states that if the ring \( 'Q_l(R) \) is a left Artinian ring or a semisimple Artinian ring then so is the ring \( 'Q_{l,cl}(R) \), and vice versa.

**Theorem 4.3** Let \( R \) be a ring. Then

1. \( 'Q_l(R) \) is a left Artinian ring iff \( 'Q_{l,cl}(R) \) is a left Artinian ring. If one of the equivalent conditions holds then \( 'S_l(R) = 'C_R \) and \( 'Q_l(R) = 'Q_{l,cl}(R) \).

2. \( 'Q_l(R) \) is a semisimple Artinian ring iff \( 'Q_{l,cl}(R) \) is a semisimple Artinian ring. If one of the equivalent conditions holds then \( 'S_l(R) = 'C_R \) and \( 'Q_l(R) = 'Q_{l,cl}(R) \).

**Proof.** 1. \((\Rightarrow)\) Let \( 'S := 'S_l(R), 'a := \text{ass}_R('S) \) and \( \pi : R \to R/'a, r \mapsto \pi := r + 'a. \)

   \( 'S \in C_R \). Suppose that \( \pi^k = 0 \) for some elements \( r \in R \) and \( c \in 'C_R. \) We have to show that \( r \in 'a. \) The element \( a := rc \) belongs to the ideal \( 'a. \) Then \( 0 = sa = src \) for some element \( s \in 'S, \) and so \( sr = 0 \) (since \( c \in 'C_R)). \) Therefore, \( r \in 'a. \)

   \( r \in 'a. \)

   \( i) \) \( 'S \subseteq 'C_R. \) Suppose that \( \pi^k = 0 \) for some elements \( r \in R \) and \( c \in 'C_R. \) We have to show that \( r \in 'a. \) The element \( a := r = 0. \) Then \( 0 = sa = src \) for some element \( s \in 'S, \) and \( 0 = sr = 0 \) for some elements \( s' \in 'S. \) So, \( s' \cdot r = s'a \cdot c \) where \( s' \in 'S \subseteq 'C_R. \) and the statement (iv) follows.

   \( iv) \) \( 'S \in C_R \). Let \( c \in 'C_R \) and \( r \in R. \) By the statements (i) and (ii), \( 'S \subseteq 'C_R. \) Hence, \( \pi \in 'C_R/a. \) By the assumption, the ring \( 'Q_l(R) \) is a left Artinian ring. Hence, \( 'Q_{l,cl}(R/a) \) is an Artinian ring and the elements of the set \( 'C_R/a \) are units in the ring \( 'Q_l(R). \) In particular, the element \( \pi \) is so. So, \( \pi^{-1} = \pi \) for some elements \( s \in 'S \) and \( a \in R. \) Then \( sr - ac = 0 \) for some elements \( s' \in 'S. \) So, \( s' \cdot r = s'a \cdot c \) where \( s' \in 'S \subseteq 'C_R. \) and the statement (iv) follows.

   \( v) \) \( 'S \in C_R \). This follows from the statements (iii) and (iv).

   \( vi) \) \( 'S \subseteq 'C_R \) by the maximality of \( 'S \) and so \( 'Q_l(R) = 'Q_{l,cl}(R) \) is a left Artinian ring.

   \( (\Leftarrow) \) This implication is obvious. 2. Statement 2 follows from statement 1. □

In view of Theorem 4.3, all the semisimplicity criteria for the ring \( 'Q_{l,cl}(R) \) are also semisimplicity criteria for the ring \( 'Q_l(R), \) and vice versa.

**The canonical homomorphism** \( \phi : 'Q_l(R) \to 'Q_l(R) \). The next proposition shows that there is a canonical ring homomorphism \( \phi : 'Q_l(R) \to 'Q_l(R) \) and gives a criterion for \( \phi \) to be an isomorphism.

**Proposition 4.4** Let \( R \) be a ring. Then

1. \( 'S_l(R) \subseteq 'S_l(R) \subseteq 'C_R, \) and so \( \text{ass}_R('S_l(R)) \subseteq \text{ass}_R('S_l(R)) \subseteq \text{ass}_R('C_R). \)

2. The map \( \phi : 'Q_l(R) \to 'Q_l(R), s\leftrightarrow r \) is a ring \( R \)-homomorphism with kernel \( 'S_l(R) = \text{ass}_R('S_l(R)). \)

3. \( \phi \) is an isomorphism iff \( 'a = 0 \) iff \( 'S_l(R) = 'S_l(R). \)

4. The rings \( 'Q_l(R) \) and \( 'Q_l(R) \) are \( R \)-isomorphic iff one of the equivalent conditions of statement 3 holds.

**Proof.** 1. Notice that \( 'S_l(R) \subseteq 'C_R \subseteq 'C_R. \) By Lemma 4.1.(1), \( 'S_l(R) \subseteq 'S_l(R) \subseteq 'C_R. \)

2. Statement 2 follows from statement 1: By statement 1, the map \( \phi \) is well-defined. If \( \phi(s\leftrightarrow r) = 0 \) then \( s = 0 \) in \( 'Q_l(R), \) and so \( r = 'a, \) i.e. \( \ker(\phi) = 'S_l(R) \) is well-defined.

3. \( \phi \) is an isomorphism iff \( \ker(\phi) = 0 \) and \( \phi \) is a surjection iff \( 'a = 0 \) (since \( 'S_l(R) \subseteq 'C_R. \) and \( \phi \) is a surjection iff \( 'S_l(R) = 'S_l(R) \) and \( \phi \) is a surjection if \( 'S_l(R) = 'S_l(R) \) if \( 'a = 0. \)

4. We have to show that \( (3 \Rightarrow 4) \). The implication \( (3 \Rightarrow 4) \) is obvious. Conversely, suppose that \( \phi : 'Q_l(R) \to 'Q_l(R) \) is an \( R \)-isomorphism \( (\phi(q) = r\phi(q) \) for all \( r \in R \) and \( q \in 'Q_l(R). \) Then \( R \subseteq 'Q_l(R) \) and \( 'a \subseteq \ker(\phi) = 0, \) i.e. \( 'a = 0. \) So, statement 3 holds. □

The next corollary shows that if \( 'S_l(R) \neq 'S_l(R) \) then the ring \( 'Q_l(R) \) is not left Artinian.
Corollary 4.5  1. Let $R$ be a ring such that $S_l(R) \neq \mathcal{C}_R$, or, equivalently, 'a := ass_R(S_l(R)) \neq 0$ (Proposition 4.4.(3)). Then $Q_l(R)$ is not a left Artinian ring. In particular, $Q_l(R)$ is not a semisimple Artinian ring.

2. If, in addition, the ring $R$ is a $K$-algebra over a field $K$ then, for all algebras $A$, $Q_l(R \otimes A)$ is not a left Artinian ring. In particular, $Q_l(R \otimes A)$ is not a semisimple Artinian ring.

Proof. 1. Suppose that the ring $Q_l(R)$ is a left Artinian ring. Then, by Lemma 4.2.(1), $S_l(R) = \mathcal{C}_R$, and so 'a = 0, a contradiction.

2. Clearly, $\mathcal{C}_R \subseteq \mathcal{C}_{R \otimes A}$. Hence, $S_l(R) \subseteq S_{R \otimes A}$ (by Lemma 4.1.(1)), and so 0 $\neq$ 'a = ass$_R(S_l(R)) \subseteq$ ass$_{R \otimes A}(S_{R \otimes A})$. By statement 1, $Q_l(R \otimes A)$ is not a left Artinian ring. □

Applications to the algebras of polynomial integro-differential operators. Let $K$ be a field of characteristic zero, $K[x]$ be a polynomial algebra in a single variable $x$, $\partial := \frac{d}{dx}$ and $\int : K[x] \rightarrow K[x], x^n \mapsto \frac{x^{n+1}}{n+1}$ for all $n \geq 0$ be the integration. The following subalgebras of End$_K(K[x])$, $A_1 = K(x, \partial)$ and $I_1 = K(x, \partial, \int)$, are called the first Weyl algebra and the algebra of polynomial integro-differential operators, respectively. By definition, $A_n := A_1^{\otimes n}$ is called the $n$'th Weyl algebra and $I_n := I_1^{\otimes n}$ is called the algebra of polynomial integro-differential operators. The Weyl algebra $A_n$ is a Noetherian domain, and so $Q_{l,cl}(A_n)$ is a division ring. For the algebra $I_n$, neither the ring $Q_{r,cl}(I_n)$ nor the ring $Q_{r,cl}(I_n)$ exists (Lemma 4.8.(1)). The rings $Q_l(I_n)$ and $Q_r(I_n)$ are neither left nor right Noetherian and not domains (Lemma 4.8.(2)).

As an easy application of Corollary 4.5 we have the next result. A more strong result of that kind is Lemma 4.8 where different arguments are used in its proof.

Corollary 4.6 For all $n \geq 1$, the rings $Q_l(I_n)$ (resp., $Q_r(I_n)$) are not left (resp., right) Artinian. Moreover, for all algebras $A$, the rings $Q_l(I_n \otimes A)$ (resp., $Q_r(I_n \otimes A)$) are not left (resp., right) Artinian.

Proof. The ring $I_n$ is isomorphic to its opposite ring $[2]$. In view of this fact and Corollary 4.5, it suffices to show that $S_l(I_n)$ (resp., $S_r(I_n)$) is a left denominator set of the algebra $I_n$ (see [2]) with ass$_l(S_l)$ (resp., ass$_r(S_r)$) $\neq 0$ since $\partial \cdot (1 - \int \partial) = \partial - \int \partial = \partial - 1 \cdot \partial = 0$. Clearly, $\partial \in C_\mathbb{C}$ since $\partial \int = 1$. Then, $\partial \in S_l(I_n) \setminus S_l(I_n)$, as required. □

By Proposition 4.4, the ring homomorphism $\phi$ is the composition of the following ring homomorphisms:

$$\phi : Q_l(R) \xrightarrow{\pi'} \overline{Q} := Q_l(R)/S_l(R)^{-1}a \rightarrow Q_l(R) \simeq T^{-1}\overline{Q}$$

where $\pi'(a) = a + S_l(R)^{-1}a$, and $T \in \text{Den}_l(\overline{Q})$ is the multiplicative subset of $\overline{Q}$ generated by the group of units $\overline{Q}^*$ of the ring $\overline{Q}$ and the set $\pi'(S_l(R))$.

Corollary 4.7 Let $R$ be a ring. Suppose that $\mathcal{P}$ is a property of rings that is preserved by left localizations and passing to factor ring. If the ring $Q_l(R)$ satisfies the property $\mathcal{P}$ then so does the ring $Q_l^r(R)$. In particular, if the ring $Q_l(R)$ is a semisimple (respectively, left Artinian; left Noetherian) then so is the ring $Q_l^r(R)$.

Proof. The corollary follows from (1). □

The next lemma gives plenty of examples of algebras for which neither left nor right classical quotient ring exists. This is true for the algebras $I_n$.

Lemma 4.8 Let $A$ be an algebra over $K$.

1. The set $C_{l,cl}A$ of regular elements of the algebra $I_n \otimes A$ is neither a left nor right Ore set. Therefore, the rings $Q_{l,cl}(I_n \otimes A)$ and $Q_{r,cl}(I_n \otimes A)$ do not exist.

2. The algebras $Q_l(I_n \otimes A)$ contain infinite direct sums of nonzero left ideals and so they are not left Noetherian algebras. Similarly, the algebras $Q_r(I_n \otimes A)$ contain infinite direct sums of nonzero right ideals and so they are not right Noetherian algebras.
Proof. 1. Clearly, \( I_n \otimes A = I_1 \otimes I_{n-1} \otimes A \) and \( C_{I_1} \subseteq C_{I_0 \otimes A} \). Let \( e_{00} := 1 - \emptyset \). The element \( a := 1 + \int \emptyset \) belongs to the set \( C_{I_1} \), \( e_{00} \cap I_1 a = 0 \) and \( e_{00} \cap a I_1 = 0 \), see the proof of [1, Theorem 9.7]. Hence, \( a \in C_{I_0 \otimes A} \) and \( (I_1 \otimes A) e_{00} \cap (I_1 \otimes A) a = (I_1 \otimes I_{n-1} \otimes A) e_{00} \cap (I_1 \otimes I_{n-1} \otimes A) a = (I_1 \otimes I_1 a) \otimes I_{n-1} \otimes A = 0 \), and similarly \( e_{00} (I_1 \otimes A) \cap a (I_1 \otimes A) = 0 \). This means that \( C_{I_0 \otimes A} \notin \text{Ore}_Q(I_1 \otimes A) \cup \text{Ore}_Q(I_1 \otimes A) \).

2. The algebra \( I_n \) contains infinite direct sums of nonzero left ideals [1], hence so do the algebras \( I_n \otimes A \), and statement 2 follows. □

5 Properties of \( S_{l}(R) \) and \( Q_{l,cl}(R) \)

In this section, some properties of \( S_{l}(R) \) and \( Q_{l,cl}(R) \) are established (Theorem 5.3). The main motive is to develop practical tools for finding the ring \( Q_{l,cl}(R) \). A key idea is that in order to find \( Q_{l,cl}(R) \) there is no need to know explicitly the set \( S_{l}(R) \). It suffices to replace \( S_{l}(R) \) with another left denominator set that yields the same result, see Theorem 5.3. (5). Further developing this idea sufficient conditions are found for the ring \( Q_{l,cl}(R) \) to be isomorphic to \( Q_{l,cl}(R/\text{ass}_R(S_{l}(R))) \) (Theorem 5.4).

Lemma 5.1 Let \( R \) be a ring, \( S \) be a multiplicative subset of \( C_R \) such that \( a' := \text{ass}_R(S) \) is an ideal, \( \pi' : R \rightarrow \overline{R} := R/a' \), \( r \rightarrow r + a' \). If \( \pi'(S) \in \text{Ore}_Q(\overline{R}) \) then \( S \in \text{Den}_l(R,a') \).

Proof. Since \( S \subseteq C_R \), it suffices to show that \( S \in \text{Ore}_Q(R) \). Given \( s \in S \) and \( r \in R \). Then \( \overline{r} s \overline{s} = \overline{s} \overline{r} s \) for some elements \( s_1 \in S \) and \( r_1 \in R \) (since \( \pi'(S) \in \text{Ore}_Q(\overline{R}) \)). Then \( s_1 r - r_1 s \in a' \) and so \( s_2 (s_1 r - r_1 s) = 0 \) for some elements \( s_2 \in S \), and we are done (since \( s_2 s_1 \cdot r = s_2 r \cdot s \)). □

Proposition 5.2 Let \( R \) be a ring, \( S \) be a multiplicative subset of \( C_R \) such that \( a' := \text{ass}_R(S) \) is an ideal of \( R \), \( \pi' : R \rightarrow \overline{R} := R/a', r \rightarrow r + a' \). We keep the notation of Theorem 3.1. Then

1. \( S \subseteq \{ c \in R \mid c_{a'} \text{ and } c_{R/a'} \text{ are injections} \} \). If, in addition, \( S \subseteq C_R \) then \( C_R = \{ c \in R \mid c_{a'} \text{ and } c_{R/a'} \text{ are injections} \} \) (where \( a = \text{ass}_R(C_R) \) is an ideal of \( R \), by the assumption).

2. \( \pi'(S) \subseteq C_{\overline{R}} \). In particular, \( \pi'(C_R) \subseteq C_{\overline{R}} \) provided \( a \) is an ideal of \( R \).

3. \( S \subseteq \{ c \in R \mid \pi'(c) \in C_{\overline{R}}, c_{a'} \text{ is an injection} \} \). If \( a \) is an ideal of \( R \) then \( C_R = \{ c \in R \mid \pi'(c) \subseteq C_{\overline{R}}, c_{a'} \text{ is an injection} \} \).

4. \( S \in \text{Den}_l(R,a') \) iff \( \pi'(S) \in \text{Den}_l(\overline{R},0) \) iff \( \pi'(S) \in \text{Ore}_Q(\overline{R}) \) iff \( S \in \text{Ore}_Q(R) \).

5. If \( a \) is an ideal of \( R \) then \( C_R \in \text{Den}_l(R,a) \) iff \( \pi'(C_R) \in \text{Den}_l(\overline{R},0) \) iff \( \pi'(C_R) \in \text{Ore}_Q(\overline{R}) \) iff \( C_R \in \text{Ore}_Q(R) \).

Proof. 1. Clearly, \( T := \{ c \in R \mid c_{a'} \text{ and } c_{R/a'} \text{ are injections} \} \subseteq C_R \). Given \( c \in S \). In order to show that \( S \subseteq T \), we have to prove that \( s \in T \). Since \( c \in S \subseteq C_R \), the map \( c_{a'} \) is an injection. It remains to show that \( c_{R/a'} = \text{ass}_R(S) \) is also an injection. If \( \overline{s} r = 0 \), then \( r c \in a' \), and so \( s r c = 0 \) for some \( s \in S \). Then \( s r c = 0 \) (since \( c \in S \subseteq C_R \)), and so \( s r c = 0 \), i.e. \( r c = 0 \). Therefore, \( s \in T \).

If \( S = C_R \) then \( C_R = C_R = T \) (since \( T \subseteq C_R \)).

2. By statement 1, \( \pi'(S) \subseteq C_{\overline{R}} \). To prove that the inclusion \( \pi'(S) \subseteq C_{\overline{R}} \) holds it remains to show that each element \( \pi'(s) \subseteq C_{\overline{R}} \) (where \( s \in S \) is a right regular element of the ring \( \overline{R} \)). Suppose that \( \overline{s} r = 0 \) for some element \( r \in R \). Then \( s r c = 0 \), and so \( s r c = 0 \) for some element \( t \in S \). This implies that \( r c = 0 \), i.e. \( r c = 0 \), and so \( s r c = 0 \), i.e. \( s r c = 0 \). Therefore, \( \pi'(S) \subseteq C_{\overline{R}} \). So, \( \pi'(S) \subseteq \text{Den}_l(\overline{R},0) \) iff \( \pi'(S) \subseteq \text{Ore}_Q(\overline{R}) \). It remains to show that the first ‘iff’ holds.

Suppose that \( S \in \text{Den}_l(R,a') \). Then \( \pi'(S) \subseteq \text{Den}_l(\overline{R},0) \).

Suppose that \( \pi'(S) \subseteq \text{Den}_l(\overline{R},0) \). By Lemma 5.1, \( S \in \text{Den}_l(R,a') \).
5. Statement 5 is a particular case of statement 4 where $S = 'C_R$. □

For a ring $R$, let $\text{Ass}(R) := \{\text{ass}_R(S) \mid S \in \text{Den}_l(R), S \subseteq 'C_R\}$. The set $(\text{Ass}(R), \subseteq)$ is a poset.

**Theorem 5.3** Let $R$ be a ring and $'a := \text{ass}_R(S_l(R))$. Then

1. $'S_l(R) = 'C_R \cap (S_l(R) + 'a)$.
2. $'a$ is the largest element in $\text{Ass}(R)$.
3. $'S_l(R)$ is the largest element (w.r.t. inclusion) in the set $\{S \in \text{Den}_l(R) \mid S = 'C_R \cap (S + \text{ass}_R(S))\}$.
4. $'S_l(R) + 'a \in \text{Den}_l(R, 'a)$.
5. $Q_l(R) \simeq (S_l(R) + 'a)^{-1}R$.

**Proof.** Let $'S = 'S_l(R)$ and $T := 'C_R \cap (S_l(R) + 'a)$. Clearly, $'S \subseteq T$. In order to prove that $'S \supseteq T$, it suffices to show that $T \in \text{Den}_l(R)$ (since $T \subseteq 'C_R$ and by maximality of $'S$ (Lemma 4.1.1), $'S \supseteq T$). By the very definition, $T$ is a multiplicative set in $R$ such that $'\pi(T) = '\pi('S)$ where $'\pi : R \to R/'a$, $r \mapsto \pi := r + 'a$. Since $T \subseteq 'C_R$, $T \in \text{Den}_l(R)$ if $T \in \text{Ore}_l(R)$ (i.e., $T \in \text{ass}_R(T)$). Then $T \in \text{ass}_R(T')$ for some elements $s \in 'S$ and $r_1 \in R$. Then $sr - r_1t \in 'a$, and so $s'(sr - r_1t) = 0$ for some element $s' \in 'S$, i.e., $s's \cdot r = s'r \cdot t$ where $s's \in 'S \subseteq T$. Therefore, $T \in \text{Ore}_l(R)$.

2. Statement 2 follows from the maximality of $'S$ (Lemma 4.1.1).

3. Every element $S \in \text{Den}_l(R)$ such that $S = 'C_R \cap (S + \text{ass}_R(S))$ consists of left regular elements, hence $S \subseteq 'S$. Now, statement 3 follows from statement 1.

4. Let $T' := 'S_l(R) + 'a$. Then $'\pi(T') = '\pi('S)$, and so the set $T'$ is a multiplicative set of $R$.

(i) $T' \in \text{Ore}_l(R)$: Given elements $t \in T'$ and $r \in R$. Then $T \in '\pi(T') \subseteq '\pi('S)$, since $'\pi('S) \subseteq 'C_R$ and $r_1 \in R$. Then $sr - r_1t \in 'a$, and so $s'(sr - r_1t) = 0$ for some element $s' \in 'S$, i.e., $s's \cdot r = s'r \cdot t$ where $s's \in 'S \subseteq T'$. Therefore, $T' \in \text{Ore}_l(R)$.

(ii) $\text{ass}_R(T') = 'a$: The inclusion $'S \subseteq T'$ implies the inclusion $'a \subseteq b : = \text{ass}_R(T')$. If $b \in R$, i.e., $tr = 0$ for some element $t = s + a \in T'$ where $s \in 'S$ and $a \in 'a$. Fix an element $s' \in 'S$ such that $s'a = 0$. Then $0 = s'tr = (s + a)t = s'sr$, and so $r \in 'a$ since $s's \in 'S$.

(iii) $T' \in \text{Den}_l(R)$: We have to show that if $rt = 0$ for some elements $r \in R$ and $t \in T'$ then $r \in 'a$. The element $t \in T'$ is a sum $s + a$ where $s \in 'S$ and $a \in 'a$. Then the equality $0 = rt = r(s + a)$ can be written as $rs = -ra \in 'a$. Hence, $s'r s = 0$ for some element $s' \in 'S$, and so $s'r = 0$ (since $s \in 'S \subseteq 'C_R$). Therefore, $r \in 'a$ (as $s' \in 'S$).

5. By statement 4, $Q_l(R) \simeq '\pi('S)^{-1}R/'a = '\pi('S + 'a)^{-1}R/'a \simeq ('S + 'a)^{-1}R$. □

**Sufficient conditions for** $Q_l(R) \simeq Q_l(R/\text{ass}_R('C_R))$. The next theorem gives sufficient conditions for the ring $Q_l(R)$ to be isomorphic to the ring $Q_l(R/\text{ass}_R('C_R))$.

**Theorem 5.4** Let $R$ be a ring, $'C = 'C_R$ and $a = \text{ass}_R('C)$. Suppose that $a$ is an ideal of the ring $R$, the set $'C := \pi('C)$ is a dense subset of $'C_R$ in $R/\pi := R/\pi$, $r \mapsto \pi := r + 'a$, and $'C_R \subseteq \text{Den}_l(R)$.

1. $'C \subseteq \text{Den}_l(R, 'a)$ and $'C_R \subseteq \text{Den}_l(R/\pi, 0)$.
2. $\pi^{-1}(C_R) \subseteq \text{Den}_l(R, 'a)$ and $'C_R \subseteq \pi^{-1}(C_R)$.
3. $Q_l(R) \simeq 'C^{-1}R \simeq \pi^{-1}(C_R)^{-1}R \simeq Q_l(R/\pi)$.

**Remark.** If $a$ is an ideal of the ring $R$ then $'C \subseteq 'C_R$, by Proposition 5.2.2(2).

**Proof.** 1. (i) $'C \subseteq \text{Ore}_l(R)$: Clearly, $'C$ is a multiplicative set of $R$. Given elements $c \in 'C$ and $r \in R$. We have to find elements $c' \in 'C$ and $r' \in R$ such that $c'r = r'c$. By the assumption,
\[ C_\pi \in \text{Ore}(\mathbb{R}). \] So, let \( \tilde{C} := Q_{1,cl}(\mathbb{R}) \). Since \( \tilde{C} \subseteq C_{\pi} \), we have \( \tau_{\pi}^{-1} = \tau^{-1} \tau_1 \) for some elements \( \tau = s + a \in C_{\pi} \) (where \( a \in \mathbb{R} \)) and \( \tau_1 \in R \). We can write \( \tau_1 = \tau_1 \tau_1 \). By the assumption, the set \( \tilde{C} \) is a dense subset of \( C_{\pi} \). Fix an element \( \tau_2 \in \mathbb{R} \) (where \( \tau_2 \in \mathbb{R} \)) such that \( \tau_1 := \tau_2 \tau_1 \) for some element \( c_1 \in \tilde{C} \). Then the equality \( \tau_2 \tau_1 \tau = \tau_2 \tau_1 \tau \) can be written as \( \tau_1 \tau = \tau_2 \tau_1 \). Hence, \( e_1 \tau = r_2 \tau_1 \tau \in \mathbb{R} \), and so there exists an element \( c_2 \in \tilde{C} \) such that \( c_2(e_1 \tau - r_2 \tau_1 \tau) = 0 \). Notice that \( c' := c_2 c_1 \in \tilde{C} \), and \( r' := c_2 r_1 \tau \in \mathbb{R} \) and \( \tilde{r} = r' e \).

(ii) \( \tilde{C} \in \text{Den}(\mathbb{R}, a) \): The inclusion follows from Lemma 5.1 and (i).

By (ii) \( \tilde{C} \in \text{Den}(\mathbb{R}, 0) \) and \( \langle Q_{1,cl}(R) \rangle \approx \tilde{C}^{-1} \mathbb{R} \).

By statement 2, \( \pi^{-1}(C_{\pi})^{-1} R \approx C_{\pi}^{-1} \mathbb{R} = \tilde{Q}_1 \). By the assumption, the set \( \tilde{C} \) is dense in \( C_{\pi} \).

By statement 1, \( \mathbb{C} \in \text{Den}(\mathbb{R}, 0) \). Hence, \( \mathbb{C} \approx \mathbb{C}^{-1} \mathbb{R} \approx Q_{1,cl}(R) \). □

## 6 The classical left regular left quotient ring of the algebra of polynomial integro-differential operators \( \mathbb{I}_1 \)

The aim of this section is to find for the algebra of polynomial integro-differential operators \( \mathbb{I}_1 \) its classical left regular left quotient ring \( \langle \mathbb{Q}_{1,cl}(\mathbb{I}_1) \rangle \) and classical right regular right quotient ring \( \langle \mathbb{Q}_{1,cl}(\mathbb{I}_1) \rangle \), and to show that both of them are canonically isomorphic to the classical quotient ring of the Weyl algebra \( \mathbb{A}_1 \) (Theorem 6.5). The sets \( \mathbb{C}_{1} \) and \( \mathbb{C}'_{1} \) are described in Theorem 6.7. The algebra \( \mathbb{A}_1 \) is a Noetherian domain so \( \mathbb{Q}(\mathbb{A}_1) := \mathbb{Q}_{1,cl}(\mathbb{A}_1) \approx \mathbb{Q}_{1,cl}(\mathbb{A}_1) \). The key idea in the proof is to use Theorem 6.5. The most difficult part is to verify that the set \( \tilde{C} \) is dense in \( C_{\pi} \) (see, Corollary 6.4).

We start this section with collecting necessary facts about the algebra \( \mathbb{I}_1 \) that are used in the proofs (their proofs are given in [1]).

### The algebra \( \mathbb{I}_1 \) of polynomial integro-differential operators

Let us recall some of the properties of the algebra \( \mathbb{I}_1 \). Let \( K \) be a field of characteristic zero, \( P_1 = K[x] \) and \( E_1 = \text{End}_K(P_1) \) be the algebra of all \( K \)-linear maps from \( P_1 \) to \( P_1 \). Recall that the algebra \( \mathbb{I}_1 \) of polynomial integro-differential operators is the subalgebra of \( E_1 \) generated by the elements \( x, \partial = \frac{dx}{dt} \) and \( f \). The algebra \( \mathbb{I}_1 \) contains the Weyl algebra \( \mathbb{A}_1 := K[x, \partial] \). The algebra \( \mathbb{A}_1 \) is a Noetherian domain but the algebra \( \mathbb{I}_1 \) is neither left nor right Noetherian domain. Moreover, it contains infinite direct sums of nonzero left and right ideals. Neither left nor right classical quotient ring exits (Lemma 4.8.1)). The largest left quotient ring \( \mathbb{Q}(\mathbb{I}_1) \) and the largest right quotient ring \( \mathbb{Q}(\mathbb{I}_1) \) are neither left nor right Noetherian rings (Lemma 4.8.2)).

The algebra \( \mathbb{I}_1 \) admits a simple proper ideal \( F = \mathbb{I}_{a_1,j \in \mathbb{N} K} \), where \( a_{ij} = j \partial f - f^{j+1} j^{j+1} \) and \( K[\{ j \}_{j \in \mathbb{N}} K[\partial] = K[\{ j \}_{j \in \mathbb{N}} K[\partial] \approx K[\{ j \}_{j \in \mathbb{N}} K[\partial] \). The factor algebra \( \mathbb{I}_1 / F \) is isomorphic to the algebra \( \mathbb{I}_{1,0} \) which is a localization of the Weyl algebra \( \mathbb{A}_1 \) at the powers of the element \( \partial \). Each element \( a \in \mathbb{I}_1 \) is a unique sum

\[
\sum_{i>0} a_{i,j} \partial^j + a_0 + \left( \int_{a_{i,j}} a_i + \int_{a_{i,j}} e_{i,j} \right)
\]

where \( a_k \in K[\partial] \), \( H := \partial x \) and \( \lambda_{ij} \in K \). Since \( \partial \int = 1 \), we have the equalities \( \partial e_{i,j} = e_{i-1,j} \), \( e_{i,j} \partial = e_{i,j+1} \partial \), \( e_{i,j} \partial = e_{i,j+1} \partial \), and \( e_{i,j} \partial = e_{i,j-1} \partial \) (where \( e_{i,j} := 0 \) and \( e_{i,-1} := 0 \)). The algebra \( \mathbb{I}_1 \) is generated by the elements \( \partial, H := \partial x \) and \( f \) (since \( x = \int H \) that satisfy the defining relations:

\[
\partial \int = 1, \quad [H, \partial] = -\partial, \quad H(1 - \int \partial) = (1 - \int \partial)H = 1 - \int \partial.
\]

Since the algebra \( \mathbb{I}_1 / F \) is a domain, \( \mathbb{C}_{1,0} = \{ a \in \mathbb{I}_1 / \ker(a_F) = 0 \} \) where \( a_F : F \rightarrow F, f \rightarrow fa \). The right \( \mathbb{I}_1 \)-module \( F \) is the direct sum \( \oplus_{i \in \mathbb{N}} K[\partial] \) of isomorphic right \( \mathbb{I}_1 \)-modules. The right \( \mathbb{I}_1 \)-module \( e_{00} K[\partial] \) is a free right \( K[\partial] \)-module of rank 1. When we identify the right \( K[\partial] \)-modules \( e_{00} K[\partial] \) and \( P_1 := K[\partial] \), the right \( \mathbb{I}_1 \)-module structure on the polynomial algebra \( P_1 \) is given by
the rule: For \( i \geq 0, \partial^i \cdot \partial = \partial^{i+1}, \partial^i \cdot f = \partial^{i-1} (i \geq 1) \) and \( 1 \cdot f = 0, \partial^i \cdot H = \partial^i (i + 1) \). So, 
\[ 'C_i = \{ a \in I_1 | \ker(a_{F_1}) = 0 \}. \]

The algebra \( I_1 \) admits the involution \( * \) over the field \( K \): \( \partial^* = f, f^* = \partial \) and \( H^* = H \), i.e. it is a \( K \)-algebra anti-isomorphism \( (ab)^* = b^* a^* \) such that \( a^{**} = a \). Therefore, the algebra \( I_1 \) is self-dual, i.e. it is isomorphic to its opposite algebra \( I_1^{op} \). As a result, the left and right properties of the algebra \( I_1 \) are the same. Clearly, \( e_{ij} = e_{ji} \) for all \( i, j \in \mathbb{N} \), and so \( F^* = F \).

**Lemma 6.1** Suppose that \( T \in \text{Den}_1(R) \) and \( S \) be a multiplicative set of \( R \) such that \( S \subseteq T \), \( \text{ass}_R(S) = \text{ass}_R(T) \), and for each element \( t \in T \) there exists an element \( r \in R \) such that \( rt \in S + \text{ass}_R(T) \). Then \( S \in \text{Den}_1(R) \) and \( S^{-1}R \simeq T^{-1}R \).

**Proof.** (i) \( S \in \text{Ore}_1(R) \): Given elements \( s \in S \) and \( r \in R \). We have to show that \( sr = r's \) for some elements \( s' \in S \) and \( r' \in R \). Since \( T \in \text{Ore}_1(R) \) and \( s \in S \subseteq T \), \( tr = r_1s \) for some elements \( t \in T \) and \( r_1 \in R \). By the assumption, \( r_2t = s_1 + a \) for some elements \( r_2 \in R \), \( s_1 \in S \) and \( a \in a := \text{ass}_R(T) \). Since \( \text{ass}_R(S) = a, s_2a = 0 \) for some \( s_2 \in S \), and so \( s_2r_2t = s_2s_1 \in S \). Now, \( s_2s_1 \cdot r = s_2r_2 \cdot r = s_2 \cdot r s = s_2s_1 \cdot s \). It suffices to take \( s' = s_2s_1 \) and \( r' = s_2r_2 \cdot s \).

(ii) \( S \in \text{Den}_1(R, a) \): Suppose that \( rs = 0 \) for some elements \( r \in R \) and \( S \). Then \( r \in a = \text{ass}_R(S) \) since \( s \in T \). Now, by (i), \( S \in \text{Den}_1(R, a) \).

(iii) \( S^{-1}R \simeq T^{-1}R \) (by Lemma 2.5(3)). \( \square \)

Let \( \Delta_1 \) be the subalgebra of the Weyl algebra \( A_1 \) generated by the elements \( H \) and \( \partial \). The algebra \( \Delta_1 \) is isomorphic to the skew Laurent polynomial ring \( K[H][\partial, \sigma^{-1}] \) where \( \sigma(H) = H - 1 \). Let \( A^0_1 := A_1 \{ 0 \}, A^0_{1, \theta} := A_{1, \theta} \{ 0 \} \) and \( \Delta^0_1 := \Delta_1 \{ 0 \} \).

**Lemma 6.2** For each element \( a \in I_1 \backslash F \), there is a natural number \( i \) such that \( \partial^i a \in \Delta^0_1 \).

**Proof.** By (2), \( \partial^i a \in \Delta^0_1 + F \) for some \( i \). Since \( F = \cup_{j \geq 1} \ker(\partial^i_1 \cdot) \) (where \( \partial^i_1 \cdot : I_1 \rightarrow I_1, u \mapsto \partial^i u \)) and \( \partial^i_1 \Delta^0_1 \subseteq \Delta^0_1 \), we can enlarge the natural number \( i \) such that \( \partial^i a \in \Delta^0_1 \). \( \square \)

The next proposition is the key step in finding the rings \( Q_{1, \theta}(A_1) \) and \( Q_{r, \theta}(I_1) \).

**Proposition 6.3** Let \( \mathcal{C} := 'C_1, \pi : I_1 \rightarrow I_1 / F \cong A_{1, \theta}, r \mapsto r + F, \) and \( S = \pi^{-1}(A^0_{1, \theta}) = I_1 \backslash F \). Then

1. \( S \in \text{Den}_1(I_1, F) \) and \( S^{-1}I_1 \simeq Q(A_1) \).
2. \( \Delta^0_1 \in \text{Den}_1(I_1, F) \) and \( \Delta^0_1^{-1}I_1 \simeq S^{-1}I_1 \).
3. \( '\Delta^0_1 := 'C_1 \cap \Delta^0_1 \in \text{Den}_1(I_1, F) \) and \( '\Delta^0_1^{-1}I_1 \simeq \Delta^0_1^{-1}I_1 \).

Therefore, \( \Delta^0_1^{-1}I_1 \simeq \Delta^0_1^{-1}I_1 \simeq S^{-1}I_1 \simeq Q(A_1) \).

**Proof.** 1. Since \( S_0 := \{ \partial^i | i \in \mathbb{N} \} \subseteq \text{Den}_1(I_1, F) \) and \( S_0 \subseteq S \), we have the inclusion \( F = \text{ass}(S_0) \subseteq \text{ass}(S) \). In fact, \( F = \text{ass}(S) \) since the algebra \( I_1 / F \) is a domain. Then \( S \in \text{Den}_1(I_1, F) \), since \( \pi(S) = A^0_{1, \theta} \subseteq \text{Den}(A_{1, \theta}, 0) \). \( S_0 \subseteq S \) and \( S_0 \in \text{Den}_1(I_1, F) \). Now, it is obvious that \( S^{-1}I_1 \simeq \pi(S)^{-1}(I_1 / F) \simeq (A^0_{1, \theta})^{-1}A_{1, \theta} \cong Q(A_1) \).

2. The inclusion \( S_0 \subseteq \Delta^0_1 \) implies that \( F = \text{ass}(S_0) \subseteq \text{ass}(\Delta^0_1) \). The factor algebra \( I_1 / F \) is a domain and \( \pi|_{\Delta^0_1} : \Delta^0_1 \rightarrow \Delta^0_1 \) is a bijection, hence \( \text{ass}(\Delta^0_1) \subseteq F \), and so \( \text{ass}(\Delta^0_1) = F \). By Lemma 6.2, the multiplicative set \( \Delta^0_1 \) is dense in \( S \subseteq F \). By Lemma 6.1, \( \Delta^0_1 \in \text{Den}_1(I_1, F) \) and \( (\Delta^0_1)^{-1}I_1 \simeq S^{-1}I_1 \).

3. The inclusion \( S_0 \subseteq \Delta^0_1 \) implies that \( F = \text{ass}(S_0) \subseteq \text{ass}(\Delta^0_1) \). The factor algebra \( I_1 / F \) is a domain and \( \pi|_{\Delta^0_1} : \Delta^0_1 \rightarrow \Delta^0_1 \) is a bijection, hence \( \text{ass}(\Delta^0_1) \subseteq F \), and so \( \text{ass}(\Delta^0_1) = F \). By [10], for every nonzero element \( a \) of \( A_1 \), \( \ker(a_{F^1}) \) is a finite dimensional vector space. In particular, this is the case for all elements \( a \in \Delta^0_1 \) (since \( \Delta^0_1 \subseteq A^0_1 \)). Since \( r_{\geq 1}K[\partial \partial^d F^d = 0 \) for each element \( a \in \Delta^0_1 \), we have \( \ker(a_{F_1}) \cap \ker(\partial F_1) = 0 \) for some \( i = i(a) \geq 1 \), i.e. \( \ker(\partial^i a_{F^1}) = 0 \). Therefore, \( \partial^i a \in 'C_1 \cap \Delta^0_1 \) (since \( F_1 \simeq K[\partial ^{[0]}]) \). So, \( '\Delta^0_1 \) is dense in \( \Delta^0_1 \) and \( \text{ass}(\Delta^0_1) = F \). By Lemma 6.1, \( '\Delta^0_1 \in \text{Den}_1(I_1, F) \) and \( (\Delta^0_1)^{-1}I_1 \simeq (\Delta^0_1)^{-1}I_1 \). \( \square \)
Corollary 6.4 For each element \( a \in I_1 \setminus F \) there is a natural number \( i \) such that \( \partial^i a \in \Delta^0_i \).

Proof. This was proven in the proof of Theorem 6.3. \( \square \)

Theorem 6.5 1. \( \mathcal{Q}_{I,cl}(I_1) \simeq Q(A_1) \) is a division ring and \( \text{ass}(\mathcal{C}_{I_1}) = F \).

2. \( \mathcal{Q}_{I,cl}(I_1) \simeq Q(A_1) \) is a division ring and \( \text{ass}(\mathcal{C}_{I_1}) = F \).

Proof. 1. By Proposition 6.3,(3), \( \Delta^0_i \in \text{Den}_0(I_1, F) \). Since \( \Delta^0_i \subseteq \mathcal{C} = \mathcal{C}_1 \) and the algebra \( I_1 / F \) is a domain, we must have \( \text{ass}(\mathcal{C}) = F = \text{ass}(\Delta^0_i) \). The ideal \( F \) is a prime ideal since \( I_1 / F \) is a domain. By Corollary 6.4, the set \( \mathcal{C} := \pi(\mathcal{C}) \) is dense in \( C_{I_1 / F} = A_1^0 \). By Theorem 1.1,(3), \( \mathcal{Q}_{I,cl}(I_1) \simeq Q(A_1) \).

2. Applying the involution \( * \) to statement 1 and using the fact that \( A_1^* \cong A_1 \) we obtain statement 2: \( \mathcal{Q}_{I,cl}(I_1) \simeq Q(A_1) \cong Q(A_1) \). \( \square \)

Proposition 6.6 Let \( S = I_1 \setminus F \). Then

1. \( S \in \text{Den}_0(I_1, F) \) and \( I_1 S^{-1} \simeq Q(A_1) \).

2. \( \nabla^0_1 \subseteq \text{Den}_0(I_1, F) \) and \( I_1 \nabla^0_1 \simeq I_1 S^{-1} \).

3. \( \nabla^1_1 := \mathcal{C}_1 \cap \nabla^0_1 \subseteq \text{Den}_0(I_1, F) \) and \( I_n \nabla^1_1 \simeq I_1 \nabla^0_1 \).

Therefore, \( I_n \nabla^1_1 \simeq I_1 \nabla^0_1 \simeq I_1 S^{-1} \simeq Q(A_1) \).

Descriptions of the sets \( \mathcal{C}_{I_1} \) and \( \mathcal{C}_{I_1}^* \). We are going to give explicit descriptions of the sets \( \mathcal{C}_{I_1} \) and \( \mathcal{C}_{I_1}^* \) (Theorem 6.7). They have a sophisticated structure. Let \( \Gamma := \{ a = a_0 + \sum_{i \geq 1} a_i + f \mid a_0 \neq 0 \}, a_i \in K[H], f \in F \} \). In the proof of Theorem 6.7,(1), it is shown that \( \mathcal{C}_{I_1} \subseteq \cup_{i \geq 1} \partial^i \Gamma \) and, for each element \( a \in I_1 \), \( \partial^i a \in \mathcal{C}_{I_1} \) for some \( i = i(a) \geq 0 \). Then map

\[ d : \Gamma \to N, \quad a \mapsto d(a) := \min \{ i \in N \mid \partial^i a \in \mathcal{C}_{I_1} \} \]  (3)

is called the \textit{left regularity degree function} and the natural number \( d(a) \) is called the \textit{left regularity degree} of \( a \). For each element \( a \in \Gamma \), \( d(a) \) can be found in finitely many steps, see the proof of Theorem 6.7,(1) where the explicit expression (4) is given for \( d(a) \).

Theorem 6.7 1. \( \mathcal{C}_{I_1} = \{ \partial^{d(a) + i} a \mid i \in N, a \in \Gamma \} \).

2. \( \mathcal{C}_{I_1}^* = \mathcal{C}_{I_1}^* \).

Before giving a proof of Theorem 6.7, we introduce some definitions. For each element \( a = a_0 + \sum_{i \geq 1} a_i + f \in \Gamma \), the elements \( l(a) := a_0 + a_F := f \) are called the \textit{leading term} and the \textit{F-term} of \( a \), respectively. The size \( s(f) \) of the element \( f \) is equal to \(-1\) if \( f = 0 \), and to \( \min \{ m \in N \mid f \in a_m^i \} \) otherwise. Then \( s(a) := s(a_F) \) is called the size of \( a \). Let \( R(a_0) := \{ i \in N \mid a_0(i + 1) = 0 \} \), the set of roots of the polynomial \( a_0(H + 1) \) that are natural numbers. Let \( r(a) \) be the maximal element in the set \( R(a) := \{ i \in R(a_0) \mid i > s(a) \} \). If \( R(a) = 0 \) then \( r(a) := 0 \).

For each element \( a \in I_1 \), let \( K_{\partial a} := \text{ker}(\partial^i a_F) \). 

Proof of Theorem 6.7. Let \( \mathcal{C} := \mathcal{C}_{I_1} \), \( P' = P'_1 \) and \( P_{\leq i} := \bigoplus_{j=0}^i K \partial^j \) for all \( j \geq 0 \). Similarly, the vector space \( P_{\leq i} \) is defined.

1. (i) \( \mathcal{C} \subseteq \cup_{j \geq 0} \partial^j \Gamma \): Let \( a \in \mathcal{C} \). The element \( a \) is a unique sum (2). It suffices to show that there is \( i \leq 0 \) such that \( a_i \neq 0 \) (since then \( a = \partial^i \gamma \) where \( j = \min \{ i \leq 0 \mid a_i \neq 0 \} \) and \( \gamma \in \Gamma \); this follows from the equalities \( \partial^0 \int = 1 \) and \( \partial^k F = F \) for all \( k \geq 1 \)). Suppose that \( a_i = 0 \) for all
\(i\leq 0\), i.e. \(a = \sum_{i\geq 1} f_i a_i + f\) where \(f = aP\). Fix a natural number \(n\) such that \(n > s(a)\). Then \(a : P_{\leq n} \to P_{\leq n-1}\). 

Till the end of the proof let \(a = a_0 + \sum_{i\geq 1} f_i a_i + f \in \Gamma\). For all \(i \geq s(a)\), \(aP_{\leq i} \subseteq P_{\leq i}\) and 
\[
\partial^i : a \equiv a_0(i + 1) \mod P_{\leq i-1}.
\]
Now, the statement (ii) is obvious. 

(ii) \(\mathcal{T} := \Gamma \cap C = \{a \in \Gamma | r(a) = 0\text{ and } \ker(aP_{\leq s(a)}) = 0\}\). For each element \(T\), we set 
\[d(a) := 0.\text{ Clearly, } \partial^i a \subseteq \mathcal{C}\text{ for all } a \in \mathcal{T}\text{ and } i \geq 0.\]

Till the end of the proof we assume that \(\mathcal{T} = \Gamma\). By the statement (ii), there are two cases: 

(a) \(r(a) \neq 0\text{ (i.e. } R(a) \neq 0\), and 

(b) \(r(a) = 0\text{ (i.e. } R(a) = 0\) and \(\ker(aP_{\leq s(a)}) \neq 0\).

In the case (a), \(K_a \subseteq P_{\leq r(a)}\), and so \(\partial^i s \in \mathcal{C}\) for all \(i > r(a)\). In the case (b), \(K_a \subseteq P_{\leq s(a)}\), and so \(\partial^i s \in \mathcal{C}\) for all \(i > s(a)\). This proves that the function \(d\) is well-defined (see (3)) and that 

\[\mathcal{C}_i = \{\partial^{i+1} a \mid i \in \mathbb{N}, a \in \Gamma\},\text{ in view of the statements (i) and (ii). Then} \]

\[
d(a) = \begin{cases} 
\min\{i \mid 0 \leq i \leq r(a) + 1, K_a \cap (\bigoplus_{j=i}^{r(a)+1} K\partial^j) = 0\} & \text{in the case (a),} \\
\min\{i \mid 0 \leq i \leq s(a) + 1, K_a \cap (\bigoplus_{j=i}^{s(a)+1} K\partial^j) = 0\} & \text{in the case (b).}
\end{cases}
\]

2. Statement 2 is obvious. □

References


Department of Pure Mathematics
University of Sheffield
Hicks Building
Sheffield S3 7RH
UK
email: v.bavula@sheffield.ac.uk