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We report a non-perturbative study of the effect of different types of shear flows on the evolution

of vorticity and particle density fluctuations in interchange turbulence. For the same shear strength,

the transport of density is less reduced by streamers than by zonal flows, with zonal flows leading

to oscillation death. In the inviscid limit, vorticity (density) grows (decays) as a power law due to

the streamer or zonal flow and exponentially due to the combined effect of the zonal flow and

streamer with the same sign of shear. The zonal flow and streamer with the opposite sign of shear

lead to oscillation at multiple frequencies. Published by AIP Publishing.

https://doi.org/10.1063/1.5006287

Shear flows play a primary role in turbulence regulation

and transport quenching in a variety of systems.1–10 This

effect is particularly important in magnetically confined fusion

plasmas (see, e.g., Refs. 1 and 6–10) as shear flows tend to be

stable. Since the discovery of the low-to-high (L-H) transi-

tion,11 a great effort has been devoted to elucidating the

detailed dynamics involved in the formation of transport bar-

riers by different shear flows in different models.

In the case of coherent shearing by mean E�B flows,

the transport of passive scalar fields was shown to be reduced

as X�1, where X is the mean shearing rate.10 However, a sig-

nificant reduction in particle (heat) transport was found in

the simple interchange (ion-temperature gradient) turbulence

model.12 This result was based on the framework where the

feedback of the velocity on density fluctuation was not

included, but instead was treated as a source of free energy

and thus as a part of a stochastic noise that drives the density

fluctuation. The coupling between density and velocity fluc-

tuations through this feedback however causes not only the

excitation of waves (e.g., gravity waves) or instability,

depending on the relative direction of the background den-

sity gradient and the effective gravity, but also very peculiar

dynamics, as we will show.

In this Brief Communications (BC), we report the

effects of shear flows on the evolution of the vorticity and

particle density fluctuations in interchange turbulence by

treating the coupling between the vorticity and particle den-

sity fluctuation consistently. To elucidate the effects of dif-

ferent types of shear flows, we consider (i) zonal flows, (ii)

streamers, and (iii) combined zonal flows and streamers.

Streamers13 are radially elongated convective cells (i.e.,

poloidally localized, radial flows) and thus can directly con-

tribute to radial transport by advection. Also, unlike zonal

flows, streamers can be excited by a linear instability. On the

other hand, streamers can lead to turbulence quenching due

to shear, as zonal flows. While the generation of streamers

has been studied in different (drift, interchange, RT, etc.)

models,13,14 much less work was done on the effect of

streamer shear on turbulence suppression and time-

variability. For instance, the effect of zonal flow and

streamer shears on turbulence is simply assumed to be simi-

lar.15 To highlight the different effects of shear flows, we

focus on the initial value problem.

Model: In the interchange turbulence model with cold

ions [which is similar to the classical Rayleigh-B�enard con-

vection problem (e.g., Ref. 5)], we consider the quasi-linear

evolution of flute-like perturbations of particle density q and

vorticity dx¼r� v in the two dimensional (2D) x–y plane.12

Here, x and y represent the local radial and poloidal directions,

respectively, perpendicular to a magnetic field B ¼ B0ẑ;

hvi ¼ hdxi ¼ hqi ¼ 0, where the angular brackets denote the

average. By taking the effective gravity in the radial direction

as g ¼ gx̂ (due to magnetic curvature), we have

@tdxþ U � rdx ¼ �g@yq=qm þ �r2dx ; (1)

@tqþ U � rq ¼ �vx@xq0 þ Dr2q : (2)

Here, qm is the constant background density, q0(x) is the mean

background density, and q is the fluctuation. u¼ vþU is the

total velocity, consisting of fluctuation v ¼ �ðc=B0Þr/� ẑ

and the mean flow U. We take U to be either zonal flows only

U¼ (0,�xAz), streamers onlyU¼ (�yAs, 0), or combined zonal

flows and streamers U¼ (�yAs, �xAz). D and � capture the

coherent nonlinear interaction (i.e., “eddy diffusivity and

viscosity”) and molecular dissipation. Unlike the previous

work12 where the source of free energy vx@xq0 in Eq. (2) was

treated as a part of the noise, we investigate the consequence of

the coupling between dx and q through the buoyancy by solving

Eqs. (1) and (2) simultaneously. We recall that this coupling

term determines the stability, giving rise to stable or unstable

gravity waves depending on whether
@q0
@x > 0 (density increasing

in the direction of gravity) or
@q0
@x < 0, respectively. In this BC,

we focus on the stable case with �¼D; similar results would fol-

low in the unstable case.

In order to capture the effect of distortion of an eddy

(i.e., wind-up) by U non-perturbatively, we employ the time-

dependent wavenumber k

qðx; tÞ ¼ eqðk; tÞ exp fiðkxðtÞxþ kyðtÞyÞg (3)
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and similarly for v and dx. Plugging Eq. (3) in Eqs. (1) and

(2), we find that we can eliminate the advection term by U if

ð@tkÞ � xþ U � k ¼ 0, which is

@tkxðtÞ ¼ Azky; @tkyðtÞ ¼ Askx (4)

for U¼ (–yAs, –xAz). By using Eqs. (3) and (4), we recast

Eqs. (1) and (2) as follows:

@tx̂ ¼ kyû; (5)

@tû ¼ � kyN
2

k2x þ k2y
x̂: (6)

Here, eu ¼ � ig
qm
eq; x̂ðtÞ ¼ e�QðtÞfdx; û ¼ e�QðtÞeu, and QðtÞ

¼
Ð t
0
dt1 ½kxðt1Þ2 þ kyðt1Þ2�; N2 ¼ g

qm

@q0
@x is the square of the

buoyancy frequency.

Zonal flow only: To understand the effect of the cou-

pling between eq and fdx, we start with the case of zonal flow

only U¼ (0, �xAz), in which case Eq. (4) becomes

kxðtÞ ¼ kxð0Þ þ kyð0ÞAzt; kyðtÞ ¼ kyð0Þ: (7)

In terms of s¼ kx/ky¼Azt and a ¼ j N
Az
j, Eqs. (5) and (6) lead to

@ssx̂ þ a2

1þ s2
x̂ ¼ 0: (8)

In the limit of jNj � Az � �k2y (a� 1), we look for a WKB

solution of the form x̂ðsÞ � exp ½1
d

Ð
ds1ðw0 þ dw1 þ � � �Þ�,

where d� 1 is a small parameter. Plugging this in Eq. (8)

gives us d ¼ a�1 � 1; w0ðs1Þ ¼ 6ið1þ s21Þ
�1=2

and w1ðs1Þ
¼ s1

2ð1þs2
1
Þ, and thus,

x̂ðsÞ � ð1þ s2Þ1=4e6iahðtÞ (9)

to O(a�1). Here, hðtÞ ¼ sinh�1ðsÞ, and again s ¼ kxðtÞ=ky
¼ Azt. By using Eq. (5), eu ¼ � ig

qm
eq, and û ¼ e�Qeu and by

assuming the initial condition fdxðt ¼ 0Þ ¼ 0, we find

fdxðtÞ ¼ �i
gky

qmjNj
1þ s0½ �1=4 1þ s2½ �1=4 sin ðHðtÞÞ

� e��Q1ðtÞeqð0Þ; (10)

eqðtÞ ¼ 1þ s20
� �1=4

1þ s2½ �3=4
s

2a
sin ðHðtÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
cos ðHðtÞÞ

� �

� e��QðtÞeqð0Þ; (11)

where s0 ¼ sðt ¼ 0Þ ¼ kxð0Þ=ky; HðtÞ ¼ a½hðtÞ � hð0Þ� ¼
a½sinh�1ðsðtÞÞ � sinh�1ðs0Þ� and Q1ðtÞ ¼ 1

3Azky
ðkxðtÞ3

�kxð0Þ3Þ þ k2y t. The Q1(t) term dominates with leading order

� 1
3
�k2yA

2
z t
3 for � 6¼ 0 as shearing enhances the dissipation

over the molecular value. Consequences of this enhanced

dissipation are discussed in Ref. 16. Furthermore, Eqs. (10)

and (11) show that in the inviscid case, x̂ / s
1
2 / t

1
2, while

û / t�
1
2 for larger t. This tendency is seen in Figs. 1 and 2

obtained from numerical solutions of Eqs. (1) and (2).

Figures 1 and 2 also show that the growth/decay increases

with Az, consistent with Eqs. (10) and (11).

The density fluctuations decay due to the fact that evx
¼ iky

k2xþk2y

fdx decreases with time. For zonal flow, ky is

constant and k2x þ k2y grows quadratically with time, faster

than x̂2 / t, so buoyancy diminishes with time. This fol-

lows from the total fluctuating energy

E ¼ jx̂j2
k2x þ k2y

þ jûj2

jNj2
(12)

being an adiabatic invariant.

Streamers only: For the streamer only U¼ (�yAs, 0),

Eq. (4) gives

kxðtÞ ¼ kxð0Þ; kyðtÞ ¼ kyð0Þ þ kxð0ÞAst: (13)

Finding a WKB solution turned out to be tricky in

this case. Briefly, we rewrite Eqs. (5) and (6) in terms of

y ¼ 1
2
lnð1þ s2Þ and look for a WKB solution in terms of y.

The solution which satisfies x̂ðt ¼ 0Þ ¼ 0 can be found to

O(a�1) as

FIG. 1. For zonal flow, x̂ grows in time, whilst buoyancy force is reduced

and û eventually dies out: kx(0)¼ 10, ky(0)¼ 10, N2¼ 1000, and Az¼ 2.

FIG. 2. For zonal flow, x̂ grows as a power law in time. This growth is

more exaggerated as the shearing factor Az increases; û decays as a power

law in time, with the shearing factor amplifying this decay: kx(0)¼ 1,

ky(0)¼ 1, and N2¼ 200.
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fdxðtÞ ¼ i
gkx

qmjNj
1þ s0½ �1=4 1þ s2½ �1=4e��Q2ðtÞeqð0Þ

� �sin ðRðtÞÞ þ cos ðRðtÞÞ
2a

WðtÞ
� �

; (14)

eqðtÞ ¼ 1þ s20
� �1=4

1þ s2½ �1=4
cos ðRðtÞÞ þ 1

2a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s20

p sin ðRðtÞÞ
" #

� e��Q2ðtÞeqð0Þ; (15)

where RðtÞ ¼ a½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s20

p
�; WðtÞ ¼ ð1þ s20Þ

�1
2

�ð1þ s2Þ�1
2, and Q2ðtÞ ¼ 1

3Askx
ðkyðtÞ3 � kyð0Þ3Þ þ k2x t:

In the inviscid case, Eqs. (14) and (15) show that

x̂ / s
1
2 / t

1
2, while û / t�

1
2 for large t, similar to the case of

zonal flow only. We confirm this by numerical simulations

shown in Figs. 3 and 4. However, the transport of particles

hqvxi in the zonal flow and streamer is different since vx ¼
iky

k2xþk2y
/ t�2 and t�1 for large t in zonal flow and streamer

cases, respectively. That is, the transport of particle is less

reduced by streamers than zonal flows.

Another marked difference between the streamer and

zonal flow cases is the frequency xf at which the fluctuations

oscillate. For streamers, the frequency remains roughly con-

stant, whilst it always decays in the zonal flow case. This is

basically because xf ¼ jNj
ffiffiffiffiffiffiffiffiffi
k2y

k2xþk2y

r
when �¼D¼ 0. For zonal

flows, kx grows, whilst ky is constant, leading to the so-called

oscillation death whereby xf decreases towards zero as time

progresses. We can see clearly in Fig. 2 that the shearing rate

Az is responsible for the decrease in xf. In the streamer case,

ky grows instead, whilst kx remains constant in time. Hence,

xf approaches the constant value jNj, as observed in Figs. 3

and 4. This behavior can also be inferred from Eqs. (10),

(11), (14), and (15).

Combined zonal flows and streamers: For U¼ (–yAs,

–xAz), Eq. (4) gives us €kx ¼ AsAzkx, a solution depending on

the sign of A2¼AsAz. To elucidate their effect, we focus on

the case where jAzj ¼ jAsj ¼ jAj.

When A2< 0, k rotates since

kxðtÞ ¼ K cos ðjAjtþ nÞ; kyðtÞ ¼ K sin ðjAjtþ nÞ; (16)

where K2 ¼ kxðtÞ2 þ kyðtÞ2 ¼ kxð0Þ2 þ kyð0Þ2 and tan n

¼ kyð0Þ
kxð0Þ. In this case, we can show that E in Eq. (12) is now

exactly conserved, enabling us to find an exact solution

fdxðtÞ ¼ F sin

����
N

A

���� sin jAjtþ nð Þ þ G

" #
e��K2t; (17)

where F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fdxð0Þ2 þ K2

N2 euð0Þ2
q

and G ¼ sin�1

ðedxð0Þ
F

Þ � j N
A
j sin ðnÞ. Comparing this with the previous cases,

there is no net energy transfer between fdx and eu on a long

time scale; both fluctuations oscillate with constant ampli-

tudes as demonstrated in Fig. 5. Furthermore, Eq. (17)

FIG. 3. For streamers, x̂ grows in magnitude, whilst û decays, similarly to

the zonal flow case. xf approaches a constant value: kx(0)¼ 0.1, ky(0)¼ 0.1,

N2¼ 2, and As¼ 30.

FIG. 4. For streamers, x̂ and û follow power laws in time, similar to the

zonal flow case: kx(0)¼ 1, ky(0)¼ 1, and N2¼ 0.15.

FIG. 5. For combined zonal flow and streamers with the opposite sign of

shear, the amplitudes of both x̂ and û do not change: kx(0)¼ 1, ky(0)¼ 1,

N2¼ 1000, and As¼ 1¼ –Az.
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manifests the oscillation frequency xf at the integer multi-

ples of A; sin ðsin ðAtÞÞ involves the frequency nA for all

integer n (see Fig. 5).

In comparison, for A2> 0, we have

kxðtÞ ¼ PcoshðAtþ vÞ; kyðtÞ ¼ PsinhðAtþ vÞ; (18)

where A> 0, P2 ¼ kxðtÞ2 � kyðtÞ2 ¼ kxð0Þ2 � kyð0Þ2; and

tanhv ¼ kyð0Þ
kxð0Þ. Equation (18) leads to exponentially increasing

and decreasing wave numbers in the two orthogonal direc-

tions (see Ref. 16). For At� 1, an inviscid solution is found

to be x̂ / ect, where c ¼ A
2
½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� and a ¼ jNj

A
. Thus,

x̂ ðûÞ grows (decays) exponentially in time for all a [see Eq.

(12)], with the imaginary part of c giving xf ! jNj
2
for a � 1

(consistent with the expectation from xf ¼ jNj kyffiffiffiffiffiffiffiffiffi
k2xþk2y

p ! jNj
2

as kx � ky / eAt). This prediction is confirmed by numerical

solutions of Eqs. (1) and (2) shown in Fig. 6.

In summary, we elucidated the effects of zonal flows

and streamers on the evolution of the vorticity and density

fluctuations in interchange turbulence. In the inviscid limit,

vorticity (density) grows (decays) as a power law t
1
2 t�

1
2ð Þ due

to streamers or zonal flows. However, due to the anisotropic

stretching of wave numbers, the transport of density is less

reduced by streamers than by zonal flows, with zonal flows

leading to oscillation death (reduced oscillation frequency).

This highlights different effects of zonal flows and streamers

on turbulence regulation. Furthermore, the combined zonal

flow and streamer induce oscillations at one frequency with

exponentially growing (decaying) amplitude of vorticity

(density) or at multiple integer frequencies with constant

amplitude, depending on the relative sign of shear. Different

effects of shear flows, in particular, oscillation death by

zonal flows, are likely to persist in forced turbulence, which

will be addressed in detail in a future extended work.
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