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Abstract

Continuous advances in imaging technologies enable ever more comprehen-
sive phenotyping of human anatomy and physiology. Concomitant reduction
of imaging costs has resulted in widespread use of imaging in large clinical tri-
als and population imaging studies. Magnetic Resonance Imaging (MRI), in
particular, offers one-stop-shop multidimensional biomarkers of cardiovascular
physiology and pathology. A wide range of analysis methods offer sophisticated
cardiac image assessment and quantification for clinical and research studies.
However, most methods have only been evaluated on relatively small databases
often not accessible for open and fair benchmarking. Consequently, published
performance indices are not directly comparable across studies and their trans-
lation and scalability to large clinical trials or population imaging cohorts is
uncertain. Most existing techniques still rely on considerable manual inter-
vention for the initialization and quality control of the segmentation process,
becoming prohibitive when dealing with thousands of images.

The contributions of this paper are three-fold. First, we propose a fully
automatic method for initializing cardiac MRI segmentation, by using image
features and random forests regression to predict an initial position of the heart
and key anatomical landmarks in an MRI volume. In processing a full imaging
database, the technique predicts the optimal corrective displacements and po-
sitions in relation to the initial rough intersections of the long and short axis
images. Second, we introduce for the first time a quality control measure ca-
pable of identifying incorrect cardiac segmentations with no visual assessment.
The method uses statistical, pattern and fractal descriptors in a random forest
classifier to detect failures to be corrected or removed from subsequent statis-
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tical analysis. Finally, we validate these new techniques within a full pipeline
for cardiac segmentation applicable to large-scale cardiac MRI databases. The
results obtained based on over 1200 cases from the Cardiac Atlas Project show
the promise of fully automatic initialization and quality control for population
studies.

Keywords: Cardiac segmentation, statistical shape models, magnetic
resonance imaging, large-scale studies, automatic image segmentation

1. Introduction

Continuous advances in imaging technology, which enable ever more compre-
hensive phenotyping of human anatomy and physiology and concomitant reduc-
tion of imaging costs, have resulted in widespread use of imaging in large clinical
trials and population imaging studies (Murdoch and Detsky, 2013). There has5

been an emergence of large-scale population imaging databases (Rueckert et al.,
2016), opening up challenges and opportunities for the understanding of disease
phenotypes, and for the delivery of precision imaging (Frangi et al., 2016). In
the area of cardiovascular imaging, for example, the exploitation of large-scale
population image data is expected to influence the characterization of cardiovas-10

cular phenotypes like never before (Suinesiaputra et al., 2015). This, however,
calls for developing of new techniques for cardiac image analysis that can handle
the scale and variability associated with large imaging studies (Medrano-Gracia
et al., 2015).

Among existing imaging techniques, cardiovascular Magnetic Resonance15

Imaging (MRI) has established itself as the one-stop-shop approach for non-
invasive examination of cardiac morphology and function (Ponikowski et al.,
2016). To enable high throughput analysis of imaging data automatically and
reliably, a first step is the delineation of the myocardial boundaries followed by
the estimation of various cardiac functional indices (Peng et al., 2016). However,20

practical problems arise when dealing with large MRI studies. Manual expert
input becomes unfeasible and there is a need for fast and scalable methods
to parse image data under large variability of anatomy, physiology and image
quality.

In the existing literature, a wide range of approaches for automatic and25

semi-automatic cardiac MRI segmentation methods have been proposed (some
reviews have been published (Frangi et al., 2001; Petitjean and Dacher, 2011;
Tavakoli and Amini, 2013; Peng et al., 2016). These methods include a wide
range of techniques including image-based classification (Jolly, 2006; Katouzian
et al., 2006; Lu et al., 2009b; Cousty et al., 2010), pixel classification (Lynch30

et al., 2006; Pednekar et al., 2006; Nambakhsh et al., 2013), deformable mod-
els (Berbari et al., 2007; Billet et al., 2009; Cordero-Grande et al., 2011; Queirós
et al., 2015), cardiac atlases (Lorenzo-Valdés et al., 2004; Lötjönen et al., 2004;
Bai et al., 2015), statistical models (van Assen et al., 2006; Ordas et al., 2007;
Zhu et al., 2010; Lu et al., 2011; Grosgeorge et al., 2011; Zhang et al., 2010),35
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Table 1: Summary of state of the art methods for automatic and semi-automatic LV segmentation with large databases.

Reference (year) Views # Datasets # Phases Pathologies Interaction Method

Lin et al. (2006) SA Cine 330 25 CAD, PAD, MI none Combination of temporal Fourier analysis
with contour detection

Zhu et al. (2007) SA Cine 225 1 n/a none Deformable model with intensity and vol-
ume constraint of myocardium

Lu et al. (2011) SA Cine 100 20 n/a none Joint LV-RV model combined both spatial
and temporal context

Jolly et al. (2012) SA Cine 100† 20 CAD none Combined deformable registration method
with gray level based shortest path seg-
mentation algorithm

Margeta et al. (2012) SA Cine 100† 20 CAD none Supervised voxel-wise classification with
layered spatio-temporal forests

Eslami et al. (2013) SA Cine 104 18-25 N, DCM,
HCM, MI, HF

manual seeds Segmentation by retrieval with guided ran-
dom walks

Tsadok et al. (2013) LA Cine 126⋄ 1 CAD manual mitral
valve landmarks

Combination of a shortest path algorithm
and a non-rigid registration

Lu et al. (2013) SA Cine 133 20 N, HCM, MI,
HF

none Combination of optimal thresholding, fast
Fourier transform and multiple seeds re-
gion growing

n/a = not available; CAD = Coronary Artery Disease, PAD = peripheral arterial disease, MI = myocardial infarction
N = Normal, DCM = dilated cardiomyopathy, HCM = hypertrophic cardiomypathy, HF = heart failure
† STACOM’11 Challenge (Suinesiaputra et al., 2012); ⋄ 100 from DETERMINE database (Kadish et al., 2009)
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and learning-based approaches (Margeta et al., 2012; Eslami et al., 2013; Tsadok
et al., 2013; Avendi et al., 2016).

Most published methods have been developed and validated typically using
a few dozen image datasets and image databases not openly accessible. Con-
sequently, published performance indeces are not directly comparable across40

studies and, more important, they have questionable translation and scalability
as a measure of usability and performance in large clinical trials or population
imaging cohorts. Most existing techniques still rely on considerable manual
intervention of some sort either during initialization or correction of cardiac im-
age segmentation. The quality control of the segmentation process and results45

is also manual or visual, which becomes prohibitive when dealing with hun-
dreds or thousands of image volumes. One problem is solved by segmentation
challenges on publicly available image databases and evaluation protocols and
measures (Medrano-Gracia et al., 2015). Two relevant challenges for LV segmen-
tation, for instance, are the 2009 challenge (Radau et al., 2009) organized during50

the MICCAI Conference; or the 2011 challenge (Suinesiaputra et al., 2014) or-
ganized as part of the STACOM Workshop, also during MICCAI. These two
challenges, however, were tested only on 30 and 100 cardiac MRI datasets for
which manual annotations were provided as ground-truth. Given the small size
of the datasets used for testing, whether the reported results can be generalized55

to larger cohorts remains highly questionable. A summary of the methods for
semi-automatic and automatic LV segmentation in MRI using a large database
(more than 100 datasets) of the last decade can be found in Table 1.

Existing tools often rely on manual user intervention for the initializa-
tion (Eslami et al., 2013) of image segmentation or definition of key anatomical60

landmarks (Tsadok et al., 2013). This approach becomes unfeasible when deal-
ing with hundreds or thousands of MRI studies. Very few works deal with the au-
tomatic detection of key ventricular landmarks in large size databases (Medrano-
Gracia et al., 2015). A list of automatic landmark detection methods is provided
in Table 2, with sizes varying between 80 and 338 datasets. Zheng et al. (2009),65

who restrict their work to long-axis (LA) images, evaluate their landmark de-
tection method with 163 cases by using a marginal space learning approach.
As an indication of the difficulty of the task, only two participants submitted
their results in the Landmark Detection Challenge of STACOM 2012. The first
technique by Mahapatra (2013) required prior image segmentation, which is70

generally unavailable. Lu and Jolly (2013) proposed context modeling for LV
landmark detection based on Lu et al. (2009a) and Lu et al. (2010). Both are
supervised methods relying on large datasets with manually annotated ground
truth for training (Medrano-Gracia et al., 2015).

A final limitation of existing approaches to analyze cardiac MRI data is75

their reliance on visual verification of the segmentation results. It is impor-
tant to identify/remove grossly incorrect segmentations before they are used to
derive anatomical or functional image biomarkers (e.g. ejection fraction, left
ventricular volume, wall thickness, etc.). This also becomes impractical in large
population imaging studies and needs to be automated. Ideally, one would80

want a method that automatically initializes the segmentation process and that
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Table 2: Automatic Landmark Detection Methods in cardiac MRI.

Reference (year) Views # Datasets # Phases Landmark Method

Lu et al. (2009a) LA Cine 116 1 Apex and MV Joint context based approach under a
learning-based object detection frame-
work

Zheng et al. (2009) LA Cine 163 1 Apex and MV Marginal Space Learning and
Component-Based Voting

Lu et al. (2010) SA / LA Cine 188 (LA) 1 RVI, MV, Apex and RVL Context Modeling
338 (SA)

Mahapatra (2013) SA / LA Cine 80† 1 RVI, BACA and MV Morphological operators and Random
Forests with low level features

Lu and Jolly (2013) SA / LA Cine 100† 1 RVI, BACA and MV Joint context based approach

MV = Mitral valve points ; RVI = RV insert points ; RVL = RV lateral point; BACA = Base-to-apex central axis points
† Data from CAP as part of the STACOM Challenge 2012 (Fonseca et al., 2011)
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subsequently scores the quality of the segmentation results.
The contributions of this paper are three-fold. First, we propose a fully

automatic method for initializing cardiac MRI segmentation, by using image
features and random forests regression to predict an initial position of the heart85

and key anatomical landmarks in an MRI volume. In processing a full imaging
database, the technique predicts the optimal corrective displacements and po-
sitions in relation to the initial rough intersections of the long and short axis
images. Secondl, we introduce a measure capable of identifying incorrect or
failed segmentations without the need for any visual assessment. To the best of90

our knowledge, this is the first technique proposed for automatic quality control
of cardiac MRI segmentation, which remains a user-dependent task (Slomka
et al., 2017). The method uses statistical, pattern and fractal descriptors in a
random forest classifier to detect failures to be corrected or removed from sub-
sequent statistical analysis. Finally, we integrate these new techniques within95

a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI
databases. Specifically, we illustrate the capability of the pipeline with a previ-
ously published Active Shape Model (ASM) cardiac segmentation method.

To evaluate the proposed framework, we use MRI datasets obtained from the
Cardiac Atlas Project (CAP) (Fonseca et al., 2011). To the best of our knowl-100

edge, this is the first attempt to parse more than 1200 cardiac MRI datasets
from both normal and abnormal cases using a fully automatic pipeline.

2. Method

2.1. Overview

Our automatic MRI segmentation framework has three main compo-105

nents: regression-based organ detection, model-based organ segmentation, and
classification-based quality control. We illustrate them schematically in Fig. 1.

The goal of the proposed initialization is to estimate, with no user inter-
action, the location of the left ventricle (LV) and key anatomical landmarks
(basal and apical points). From these points, it is possible to compute the ini-110

tial position, height and size of the heart that feed the subsequent segmentation
algorithm. The basic idea behind the proposed technique is to learn a regressor
to model the displacements from arbitrary incorrect positions to the correct lo-
calization of ventricular axes and anatomical landmarks. More specifically, we
start with a rough estimation of the pose of the heart based on the positions of115

the short- and long-axis images. We then refine this position by predicting via
regression the displacements of the ventricular axis at each short-axis slice to
a more suitable position. The same strategy is used for the detection of other
landmarks such as the apex and mitral valve points.

To build the pose correction regression model, the training phase is illus-120

trated in Fig. 2. The idea is to generate synthetic displacements by sampling
arbitrary positions around the ground truth (e.g. ventricle’s center and the
correct positions of the salient anatomical landmarks). Therefore, instead of
learning the appearance around a particular landmark, we learn the features
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Figure 1: Pipeline of the LV automatic segmentation. The first step is a key landmark
detector, which is used to obtain an initial shape. A 3D-ASM segmentation step provides the
final delineation of the ventricular boundaries. A quality control step indicates the confidence
of the obtained results.
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related to the corrections from arbitrary locations. Based on the characteristic125

appearance around an initial position (e.g. the middle of the image or a loca-
tion known to fall within the blood pool), the regression model will propose a
positional correction.

After the initialization, a segmentation method is applied to obtain the final
delineation of the ventricular boundaries. The segmentation is performed based130

on a sparse ASM paradigm (SPASM) (van Assen et al., 2006), which uses sta-
tistical shape models (SSMs) of the heart to encode prior statistical knowledge
about cardiac shape and MRI intensity in a training set.

In view of using the proposed image segmentation methodology in population
imaging, visual inspection of the segmentation results is as unpractical as the135

segmentation itself. Hence, we wish to endow the segmentation method with a
mechanism of self-verification. This is highly desirable and could open the way
to self-correcting segmentation methods. The training set is built by creating
synthetic displacements and deformations from the ground truth left ventricle
segmentation to learn a mapping between the appearance of correct and failed140

segmentations.
All the steps are explained in the next section and shown in Fig. 1.

2.2. Automatic Key Landmark Detection

2.2.1. Landmark Set Definition

To enable automatic initialization, an accurate identification of key anatom-145

ical landmarks is an essential step in cardiac MRI segmentation, as these points
will estimate the initial pose, scale and rotation of the model. Generally, as
shown in Table 2, relevant landmark points include the mitral valve hinge points
(defining the base line position), the apex and the central axis position, which
are often used to initialize the segmentation process (Tobon-Gomez et al., 2012;150

Tsadok et al., 2013; Piazzese et al., 2016). These points are usually defined
manually, which is impractical for large population studies.

In cardiac MRI, the mitral valve (located between the left atrium and the
LV) is shown in long axis (LA) view, because it contains both the atrium and
LV. The line connecting the mitral valve hinge points is the base plane, which155

defines the border of LV at base. The left ventricular apex is at the bottom of
the LV, opposite the base of the heart. The central axis location, which is not
an actual anatomical feature, is defined in this paper at the centroid of the LV
cavity on each SA slice. The axis location will be exploited to define the LV
position for the models.160

In this work, all these key anatomical landmarks, as well as the LV axis
points on each SA slice are identified automatically as described in the following
subsections.

2.2.2. Coarse LV Localization

As an initial step in the automatic initialization, we identify the location165

of the LV through a rough estimation of its axis. We do this by estimating
the intersection between the long axis (LA) and short axis (SA) slices of each
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CMR study. The main MRI planes used for cardiac function (Kramer et al.,
2013) typically include three long axis (LA) views (horizontal long axis − HLA,
vertical long axis − VLA, and left ventricular outflow tract − LVOT), and a170

complete short axis (SA) stack covering the LV and RV. The series of SA views
are generated starting from the LV base at the level of the mitral valve, all
the way down to the apex. The VLA is orthogonal to the SA axis and passes
approximately through the apex and center of the mitral valve. The HLA is
aligned orthogonally to the VLA, also passing through the apex and center of175

the mitral valve. In this paper, the intersection between the HLA, the VLA and
the SA images is exploited to obtain a rough estimation of LV position. Fig. 3
illustrates the intersection of the two LA images and the SA images, providing
a point on each SA image and a set of points on the LA images. However, the
result is approximate due to scanning inaccuracies and changes in breath-hold180

positions, which lead to mis-registration between slices. The next step tries to
refine the pose estimation and to obtain a more accurate estimation of the LV
axis to increase the robustness of the later LV segmentation.

2.2.3. Key Landmarks Detection

To refine the location of the LV axis, and to identify the positions of the185

key anatomical landmarks of the LV, we use a regressor that refines the local-
ization of key LV landmark points using image features that characterize the
local appearance of these landmarks as detected in SA/LA views. The land-
mark regressors are trained by creating a large synthetic training set of random
displacements that emulate localization errors from the ground-truth. The re-190

gressors learn the mapping between these offsets and the known ground-truth
positions using Random Forests (RF). The main steps in the landmark detection
are illustrated in Fig. 1.

Training Set Generation. To train the landmark regressors, we first emulate
displacements errors as random displacements from the ground-truth landmark195

positions available from expert annotations. Specifically, each landmark is per-
turbed randomly from its correct position denoted as the vector di . To each
displacements, we associate image features fi sampled from their neighborhood
of the simulated erroneous position. Let us denote all these pairs in the training
sets as Pi = (fi,di). In our case, the displacements are generated as random200

vectors with a norm between 2 and 15 mm with uniform angular distribution.
Then the goal is to learn a mapping function M from fi, the image feature
space (around the incorrect position), to di, the displacement vector space that
would correct the position estimate. The main steps of the training are shown
in Fig. 2.205

Random Forests Regressor. In this paper, we use the well-known Random For-
est (RF) (Breiman, 2001) to compute a regression model for landmark detection.
RFs are widely considered as one of the most robust classifiers and regressors.
The algorithm is based on decision trees ensembles exploiting two mechanisms:
building a tree ensemble via bagging with replacement, whereby any example210
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Figure 2: In each training dataset, we sample a patch around the landmark (e.g. centroid
of the LV) and we produce arbitrary displacements from the real position provided by the
manual annotation of the expert. We then calculate image features from the patches and we
learn a mapping function from the feature space to the displacement space.

(a) (b) (c)

Figure 3: The intersection of the two LA and the SA images (a) provides rough positions for
the LV, which is shown as a point on each SA image (b) and a set of points on the LA images
(c).

selected from the training set can be used again; and random feature selection
at each tree node, i.e. random selection of a small fraction of features and split-
ting using the best feature from the current set. During training, the RF model
calculates a response variable by creating different regression trees (the forest of
trees) and then processing each object to be modeled down each tree. Once the215

RF is trained, it is treated as a complete ensemble of base learning trees. Each
leaf contains a distribution for the continuous output variable/s. Leaves are
associated with different degrees of confidence. To perform the regression, each
learner produces a prediction individually and then predictions of all learners in
the ensemble are combined to generate a prediction of the ensemble. The num-220

ber of trees can be adapted to find the desired trade-off between accuracy and
computational efficiency of the detection process. In this paper, we constructed
a RF with 50 trees with a maximum decision depth of 15; values were selected
based on experiments (see Results section).

Predictive Landmark Correction. Once the displacement regression model is225

trained, given a new slice, we sample a patch around the initial rough position
zs obtained as described in Sec. 2.2.2 from the intersection of the LA and SA
planes. From this patch, we calculate an image feature vector fs. Then through
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the trained mapping M , we can calculate a predicted displacement d′

s = M(f ′s),
and then zs + d′

s becomes the prediction of the correct landmark position. We230

use a distinct displacement regression model for each landmark described in
Sec. 2.2.3.

Feature Extraction. The last step of the automatic initialization defines the
imaging features fi. Using raw image intensities directly, as in deep learning,
is an option. However, we have designed more specialized image features that235

explicitly relate to the orientation and extent of deformation required to cor-
rect landmark positions. While deep learning overcomes the need for feature
handcrafting, it does so at the expense of handcrafting the network architecture
that could be equally arbitrary and less directly associated to the nature of the
problem. In this work, we have used two complementary descriptors, i.e. the240

Histogram of Oriented Gradients (HOG) and Gabor Filters (GFs). This choice
is motivated by the need for descriptors that can predict both the extent and
orientation of the displacements.

• Histogram of Oriented Gradients (HOG)– The HOG descriptor (Dalal and
Triggs, 2005) is a local statistic of the orientations of the image gradients,245

thus describing the local appearance. It is characterized by its invariance
to rotation and illumination changes. Moreover, its computation tech-
nique is simple and fast. The main idea behind this descriptor is that
local object appearance and shape can often be characterized rather well
by the distribution of local intensity gradients or edge directions. The250

HOG feature divides the patch into many cells, with each cell location
(x, y), represented through its unsigned gradient orientation angle θ and
gradient magnitude ρ. A histogram counts the occurrences of pixels ori-
entations given by their gradients, i.e. each cell (x, y) votes according to
its magnitude into the bin corresponding to its gradient orientation. The255

final HOG descriptor is then built as a combination of these histograms.
The local histograms are contrast-normalized by calculating a measure of
the intensity across different regions and then using this value to normalize
all cells.

• Gabor Filters– The Gabor filter (Gabor, 1946) is an established texture
descriptor in image analysis. It is applied to extract features by analyzing
the frequency domain of the image. A GF is basically a Gaussian func-
tion modulated by complex sinusoidal of frequency and orientation. It
can filter both in the spatial and frequency domains and can be extended
to many dimensions. These filters are more desirable since they provide
for finer characterization of different textures. In this paper, we applied a
two-dimensional (2D) Gabor filter since the data sets collected are sparse
collections of 2D images. Two-dimensional Gabor filter banks decompose
an image into feature maps related to different scales and orientations,
capturing visual properties such as spatial localization, orientation selec-
tivity, and spatial frequency. The 2D GF consists of a complex exponential
centered at a frequency and modulated by a Gaussian envelope. To obtain
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the Gabor-filtered image Ig of an image I the 2D convolution operation is
performed:

Ig(x, y) = G(x, y, σx, σy, ω, θ) ∗ I(x, y), (1)

where G is the Gabor function, and σx and σy are the standard deviations260

of the Gaussian envelope along the x and y axes. The parameters ω and
θ are, respectively, the central frequency and the rotation of the Gabor
filter. The values of these parameters σx, σy, ω, θ are chosen empirically
based on tests. In this paper, the Gabor features are extracted by applying
Gabor filters with three scales and four orientations.265

In summary, the feature variables for each patch are thus obtained as fi =
{fHOG, fGF }, denoting HOG and GF, respectively.

2.3. Three-dimensional Model-based Cardiac Segmentation

The cardiac segmentation of the LV is performed with a modified 3D-SPASM
segmentation method (van Assen et al., 2006). The essential components of an270

standard ASM (Cootes et al., 1995) scheme are a Point Distribution Model
(PDM), an Intensity Appearance Model (IAM), and a model matching algo-
rithm. We use Principal Component Analysis for the PDM, normalized intensity
gradient, like in standard ASM, for the IAM, and an adapted fitting algorithm,
SPASM, for 3D model to sparse image matching.275

2.3.1. Shape Model

The point distribution model (PDM) is a statistical template of the organ
of interest represented by corresponding anatomical points or nodes. In our
case, the PDM is a surface mesh representing the LV, which includes endocar-
dial and epicardial surfaces. The PDM is built during training by applying
Principal Component Analysis to a set of aligned shapes (Cootes et al., 1995)
and maintaining eigenvectors corresponding to a predefined percentage of shape
variability. The learned shape variability can be modeled as:

x̂ = x̄+Φb, (2)

where x̂ is a vector representing the shape, x̄ is the mean shape, Φ is the eigen-
vector matrix and b is a vector of scaling values for each principal component.
By modifying b, different shapes can be defined.

2.3.2. Intensity Model280

The IAM learns the appearance around the boundaries of the target organ.
The IAM is created at each heart mesh node by sampling the intensity around
each node over the image training set. In our case, the IAM models the inten-
sity distribution that characterizes the myocardial boundaries. This is done by
sampling a 1D profile of gray-level values for each node along the perpendiculars285

to the boundary. During training, from voxels sampled for each node i, a mean
grey level profile ḡi and its corresponding covariance matrix Sgi

are estimated
and stored. We have used a region-based approach for appearance modeling,

12



i.e., all grey-level profiles of the nodes of the same regions (using a 17-segment
model (Cerqueira et al., 2002)) are combined, which leads to models that encode290

larger variability.

2.3.3. Model Initialization

To determine the initial translation, rotation and scaling of the shape model,
we rely on the anatomical landmarks computed in Sec. 2.2.

These landmarks are used (i) to suitably place the initial shape inside the295

image volume (translation), (ii) to scale the initial shape to the image dataset
(scaling) based on the LV apex-to-base distance along the axis of the heart; and
(iii) to define the initial orientation of the heart based on the relative position
of the valve (rotation). We estimate these initial pose parameters by registering
the obtained landmarks to their corresponding points on the mean shape x̄. We300

then obtain the initial shape x0.

2.3.4. Matching Algorithm

The last element of the segmentation process is the matching algorithm,
with the role of deforming the mesh to match the image data I. Our approach
is based on the sparse fitting method SPASM (van Assen et al., 2006). The305

ASM segmentation searches for optimal boundary points, with the best match
between candidate boundary points and a model of intensity features subject
to global anatomical statistical constraints (Cootes et al., 1995).

Our algorithm, which is based on the SPASM technique (van Assen et al.,
2006), first finds the intersections of the shape with the imaging planes, which
could be in any arbitrary orientation in 3D space. These model-plane inter-
sections generate a stack of 2D contours. Each node in these contours is used
to compute the closest boundary point in the image plane it belongs to. The
candidate boundary point, or feature point, yi is estimated by searching along a
normal profile to the original model surface at the contour point. Our algorithm
uses an intensity model where each candidate point is obtained by selecting the
minimal Mahalanobis distance between the sampled profiles gi(yi)) and the
mean profiles ḡi of the intensity model IAM as:

argmin
yi

(d2i (ḡi,gi(yi))). (3)

The Mahalanobis distance is computed as:

d2i (gi, ḡi) = (gi − ḡi)
TS−1

gi
(gi − ḡi), (4)

where gi represents the grey-level profile for node i.
The obtained the feature points (y1, ...,yn) operate as deformation forces

propagated to neighboring nodes with a weighting function, normalized by a
Gaussian kernel as

w(λ, ω) = e
−

||λ−ω||2

2σ2
p , (5)

where (||λ− ω||2) is the geodesic distance between source and receiving nodes,310

and σp is the width of the normalizing Gaussian kernel.
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Finally, the deformed mesh obtained after propagations is used to obtain a
valid shape based on the reference shape model PDM. The parameter vector
b controlling model deformation is calculated by computing an adjustment re-
garding the previous iteration that best fit the shape to the PDM. The allowed315

shape instances are limited by the statistical shape description from the training
set.

The mesh is deformed for several iterations until the best-fit location is
found.

2.4. Segmentation Quality Control320

Incorrect segmentation results sometimes are inevitable when processing
large population studies due to varying image quality, sub-optimal segmenta-
tion parameters or other algorithmic failures. Therefore, when dealing with
large amounts of data, it is desirable to have pipeline self-verification capabil-
ities to automatically detect incorrect results either to reprocess them, or to325

disregard them altogether from later data analysis.
In this paper, the automated segmentation quality control uses an

anatomically-motivated definition of correct vs. incorrect LV delineations. In-
dependently of its shape and size, the LV in our CMR studies is expected to
have a set of geometrical and appearance characteristics:330

• The blood pool has bright MRI contrast.

• The myocardium has dark MRI contrast.

• The blood pool has a quasi-circular shape in SA.

• The myocardial wall thickness changes smoothly.

Similar to Sec. 2.2, we use a database of manual ground-truth segmentations335

alongside a set of incorrect segmentations generated under controlled conditions
to develop a quality control system based on a statistical model of the appear-
ance and geometry of the LV. We learn intensity features associated to these
anatomical regions (blood pool and myocardium), distinguishing between in-
correct and accurate segmentations using the ground-truth segmentations as a340

reference.

2.4.1. Blood Pool and Myocardial Feature Description

Based on the previous premises, we define statistical features computed di-
rectly on image intensity values of the blood pool and myocardium. In the
MRI sequences of the databases used in our experiments, the average intensity345

is expected to be higher in the blood pool and lower in the myocardial region.
The dispersion of the intensity values shown by the standard and absolute devi-
ations is related to texture regularity. Other statistical moment-based features
we consider in this work are skewness and kurtosis, which account for higher
order information of the intensity probability distribution inside the LV regions.350

For the statistical descriptors, image intensity ranges were normalized to enable
comparison across subjects using a max-min normalization strategy.
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Table 3: A summary of the image feature descriptors and their type.

Descriptor Type

Mean Statistical

Standard deviation Statistical

Absolute deviation Statistical

Skewness Statistical

Kurtosis Statistical

Energy Pattern/GLCM

Entropy Pattern/GLCM

Contrast Pattern/GLCM

Homogeneity Pattern/GLCM

Fractal dimension mean Fractal dimension

Fractal dimension standard deviation Fractal dimension

Fractal dimension lacunarity Fractal dimension

In order to study the gray-scale spatial patterns, we compute gray level co-
occurrence matrices (GLCM’s) (Haralick et al., 1973). GLCM’s characterize the
texture of an image by calculating how often pairs of pixels with specific values355

and in a specified spatial relationship occur in an image, creating a GLCM,
and then extracting statistical measures from this matrix. We generate several
GLCM’s using four orientations with 1 pixel of distance between the pixel of
interest and its neighbor, comprising the 4-connected pixels. Statistics on the
summation of these four matrices are then used to provide information about360

the regularity of patterns occurring (as the energy or the entropy) and some
information about the patterns themselves (contrast and homogeneity). Inho-
mogeneous patches have high first order entropy, while a homogeneous one has
a low entropy. The final measures of patterns complexity used are based on the
fractal dimension (FD) of the image, which measures a ratio of the change in365

detail to the change in scale. While the run length features could work in only
one dimension at a time, the FD works in two dimensions. Using a differential
box-counting approach (Bisoi and Mishra, 2001), the FD at each pixel in a slice
is computed, resulting in the FD image, and these are aggregated in the mean,
standard deviation, and lacunarity (how densely the fractal fills the space).370

A summary of the image feature descriptors used can be found in Table 3.
We extract these descriptors from the blood pool fBP

i and the myocardium fMi
regions separately. The feature vector is composed by both vectors, as fi =
fBP
i , fMi . These features are expected to differ between correct and incorrect
segmentations according to the previous assumptions, and they can be used375

to automatically and robustly evaluate the quality of the end segmentations in
population samples.
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2.4.2. Training Set Generation

In order to create a training set to learn to discriminate between correct and
incorrect segmentation results, we proceed similarly to Sec. 2.2.3. We generate380

training samples by producing correct and incorrect segmentations as perturba-
tions about the manual ground truth.

There are two main types of possible failures in the LV segmentation: incor-
rect positioning of the initial shape due to a failure in the initialization and large
contour errors due to a segmentation failure. To generate training samples, we385

try to reproduce these two failures. On the one hand, we translate the contours
to reproduce incorrect initializations and, on the other hand, we deform the
contours to reproduce incorrect segmentations.

To generate exemplars of correct segmentations, we translate the contours
arbitrarily using a random vector v with uniform distribution and norm under390

3 mm. To generate exemplars of incorrect segmentations, we do the same but
with random perturbations with norms in the range between 6 and 10 mm.
Incorrect segmentations also include deformed contours. To deform the seg-
mentation contours and create incorrect segmentation contours, we fit a spline
to the gold-standard contours and then we randomly perturb the control points395

introducing a displacement with a norm in the range between 3 and 6 mm.
These values were chosen empirically based on observations in the experiments.
Once the generation of the training samples is finalized, we estimate the feature
descriptors for the original and generated exemplars.

2.4.3. Classification of Correct and Incorrect Segmentations400

Similar to the automatic initialization, we use a RF classifier (Breiman, 2001)
to perform the detection of incorrect segmentations. Given the training labeled
database, the RF classifier builds a set of classification trees, which predicts the
class label (correct or incorrect) of a sample using a set of features. During
training, each branch node of a tree learns features and threshold that results in405

the best split of the training samples into its child nodes. The splitting process
continues recursively until the maximum tree depth is reached. At this time, a
leaf node is created and the class distribution of the training samples reaching
the leaf node is used to predict the class label of unseen samples. The final
classification is based on the majority votes from individually developed tree410

classifiers in the forest. More details on RF can be found in (Breiman, 2001).
In this paper, the random forests for quality control were constructed with 100
trees, with each tree having a maximum depth of 15.

3. Data Description

3.1. Images415

Validation is performed using more than 1200 MRI datasets obtained from
the Cardiac Atlas Project (CAP) (Fonseca et al., 2011) (see Table 4). CAP
is a web-accessible resource (www.cardiacatlas.org), which provides a resource
for cardiac image data sharing and atlas-based shape analysis for population
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studies. The datasets used in this work are part of two cohorts: asymptomatic420

volunteers (AV) and patients with myocardial infarction (MI). Imaging protocols
are described in (Zhang et al., 2014).

3.1.1. Population Set 1 - asymptomatic volunteers (AV)

The AV group used fast gradient-recalled echo (GRE) imaging with 10-12
short-axis slices with typical parameters: 6 mm thickness, 4 mm gap, field of425

view 360-400 mm, 256 × 160 matrix, flip angle 20◦, TE 3-5 ms, TR 8-10 ms,
and pixel size from 1.4 to 2.5 mm/pixel depending on patient size.

3.1.2. Population Set 2 - patients with myocardial infarction (MI)

The MI group used retrospectively gated SSFP cine imaging with typical
short-axis slice parameters either a 6 mm slice thickness with 4 mm gap or430

8 mm slice thickness with 2 mm gap and a field of view 360-400 mm. Image
size was ranging from 138 × 192 to 512 × 512 pixels and pixel size from 0.7-
2.5 mm/pixel depending on the patient.

For both groups, sufficient short-axis slices were expected to be acquired to
cover the whole heart, and long-axis slices in the four chamber, two chamber435

and LV outflow tract views.

3.2. Ground Truth

To evaluate the segmentation results, manual contours were also provided
by the Cardiac Atlas Project. To evaluate the landmark detection algorithm,
landmarks were manually marked for 500 patients by using the interactive medi-440

cal image processing software GIMIAS v.1.6 (www.gimias.org) (Larrabide et al.,
2009).

3.3. Data Preprocessing

Prior to any analysis, from the data provided by the Cardiac Atlas Project,
we have discarded incomplete datasets, which included:445

• sets with incomplete or inconsistent DICOM tags,

• sets with inconsistent SA image geometry (different image dimensions of
slices in a stack)

• sets with missing data (SA or LA series),

• sets with missing manual contours.450

A summary of the data used in this work is shown in Table 4.

4. Results

The performance of the landmark detection framework has been evaluated
on a subset of group AV, described in Table 4. The segmentation framework
has been evaluated in two groups. To study the robustness of the presented455

method, we did the training exclusively on images from group AV and tested
them on part of AV and, also, on an independent dataset, the group MI.
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Table 4: Data available for evaluation.

Complete Datasets∗ + Manual Contours Manual Landmarks

Asymptomatic (AV) 1055 cases

(855 test + 200 train)

500 cases

(300 test + 200 train)

Myocardial infarction (MI) 193 cases

(all test)

-

∗Complete datasets include SA slices covering the whole heart, 2-chamber and 4-chamber
LA view slices with all required DICOM tags.

4.1. Landmark Detection Evaluation

To enable automatic initialization, we have detected four landmarks includ-
ing the mitral valve hinge points (left and right), the apex and the central axis460

position, which are described in Sec. 2.2.1. There are 500 cases with manual
landmarks from the AV group, as described in the data section. To evaluate the
landmark detection, we conducted Monte Carlo Cross-Validation also known
as repeated random sub-sampling cross-validation, which consists of repeated
rounds of validation conducted on a fixed dataset (Shao, 1993). In each valida-465

tion round, we randomly split the dataset into training (200 sets) and validation
(300 sets) data. Ten validation rounds were performed and the automatic land-
marks were compared with the manual ones using the Euclidean distance.

We tested the performance of the Random Forest (RF) regression as a func-
tion of the number of trees based on a fixed depth of 15. Our results are shown470

in Fig. 4, which indicate that stable error rates for the RF are achieved from 50
trees, which is the value fixed in the remaining experiments.

Figure 4: Performance results of increasing the number of trees in the forest for landmark
detection.
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Figure 5: Cumulative error distribution curves for each landmark detection.

The statistics of the landmark detection error for each landmark are sum-
marized in Table 5, which includes the median, average, and standard deviation
(SD) values. In the case of the LV central axis, the LV centroid position is com-475

puted on each SA slice defining the axis, the result on Table 5 is the average
distance error. It can be seen that the median errors vary between 2.19 mm for
the ventricular axis to 6.69 mm for the more challenging mitral valve points.
To have an indication of the relative distribution of the errors in the sample,
cumulative percentages corresponding to the percentage of test images for which480

the error is less than a specific value are produced and shown in Fig 5. The
percentage values show that more than 90 percent of the landmarks are identi-
fied within 1.5 cm error. Specifically, the central axis is detected with an error
less than a 5 mm in more than 90% of the cases. In these experiments, we
have not discarded the cases finally detected as ’fails’ by the final automated485

segmentation quality control.

Table 5: Point-to-point (P2P) distance error statistics in landmark detection (subset
of group AV).

Median (mm) Mean (mm) SD (mm)

LV Central axis 2.19 2.47 1.48

Apex 4.56 5.60 4.13

Mitral Valve Right 5.19 6.57 4.90

Mitral Valve Left 6.69 7.76 5.08
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4.2. Quality Control Evaluation

The performance of the proposed segmentation quality control method is
evaluated using both data groups, AV and MI. For quantitative evaluation,
the accuracy, sensitivity and specificity of the detection were calculated. The490

performance measurement metrics used is defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
,

Sensitivity =
TP

TP + FP
,

Specificity =
TN

TN + FN
,

where TP (true positive) represents the number of times the classifier guessed
a correct positive value; TN (true negative) is the number of times the classifier
correctly guessed a negative value; FP (false positive) is the number of times
the classifier predicted a positive value, but the correct value was negative; and495

FN (false negative) is the inverse of FP. In this failure detection problem, TP
has been defined as the case with less than a certain segmentation error and FN
with a larger error. We tested the performance of the classifier as a function of
the threshold defined as a wrong segmentation. We have considered as failed
segmentations those with an error over 4 mm regarding the ground truth.500

The results are summarized in Table 6, indicating over 96% accuracy for
the quality control. The obtained results are consistent for both groups. To
assess the performance of the quality control, it was evaluated as a function of
the different texture descriptors and their combinations as shown in Table 6.
Statistical descriptors perform with better accuracy and sensitivity than pat-505

tern and fractal descriptors but have low specificity. Combining statistical and
pattern descriptors improves the accuracy, sensitivity and specificity measures
to over 0.90, while combining all three types of descriptors further enhances the
overall performance to over 0.96.

Finally, during the development of the framework, we evaluated various ma-510

chine learning and classification approaches to optimize the quality control. We
found SVM (Cortes and Vapnik, 1995) and RF to perform the best for our
application, with RF producing the best results as shown in Table 7.

4.3. Fully Automatic Segmentation Errors

The anatomical landmarks detected in the previous section are then used to515

initialize the 3D SPASM model, which provides a 3D final segmentation mesh.
For evaluation, 2D contours are obtained for each slice by using the intersection
between the mesh and the SA slices. To show the flexibility and robustness
of the technique to different databases, we have evaluated our method using
the AV and MI cases. We calculated for accuracy evaluation the point-to-point520

(P2P) errors between the manual and the automatic segmentations. We report
the results of segmenting the cases described in Sec. 3, which are summarized
in Table 4.
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Table 6: Performance of segmentation quality control using different feature types.

Group AV Group MI

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Statistical 0.87 0.88 0.75 0.90 0.95 0.66

Fractal 0.58 0.53 0.88 0.63 0.59 0.83

Pattern 0.72 0.69 0.92 0.55 0.46 1

Statistical + Fractal 0.88 0.89 0.80 0.92 0.95 0.73

Statistical + Pattern 0.92 0.91 0.95 0.89 0.89 0.9

Fractal + Pattern 0.74 0.71 0.92 0.79 0.75 1

All 0.96 0.96 0.95 0.96 0.98 0.93

Table 7: Performance of segmentation quality control using a Support Vector Machine
(SVM) or a Random Forest (RF) classifier.

Accuracy Sensitivity Specificity

SVM
Group AV 0.90 0.91 0.88

Group MI 0.93 0.94 0.90

RF
Group AV 0.96 0.96 0.95

Group MI 0.96 0.98 0.93

To assess the validity of our approach, the results of the segmentation using
our algorithm are compared against the manual contours of the LV. P2P seg-525

mentation error statistics are given in Table 8, including the median, average,
and standard deviation errors for the initialization step and the final segmenta-
tion (with and without quality control of segmentation). Over the full test set,
Table 8 shows that the proposed method has a final median error of 2.51 mm and
2.82 mm, respectively, for endocardial and epicardial segmentations for group530

AV and 2.41 mm and 2.47 mm for group MI. The mean and the median of
the segmentation with the failures included are different, probably due to some
failed initializations. Thanks to the automatic quality control, these cases are
identified and discarded. We have also included in the table the errors for the
initialization step, indicating a median error around 4 mm for both databases,535

then refined by the segmentation step. Fig. 6 shows the effect of the quality
control, most cases have less than 4 mm error after discarding failures.

To specifically evaluate the relevance of the automatic initialization, Table 9
presents the point-to-point segmentation errors obtained by using (1) manual
initialization (available for 300 cases) vs. (2) the proposed automatic initializa-540

tion. The errors are relatively similar, and slightly better by using automatic
initialization after segmentation quality control, showing the accuracy and rel-
evance of our method. The mean and median of the results for manual initial-
ization are even closer, showing that maximum errors have less influence than
in the case of the automatic initialization. This is indicative of the importance545

of an automatic quality control in automatic image segmentation.
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Table 8: P2P error statistics for automatic image segmentation.

Before Automatic Quality Control After Automatic Quality Control

Initialization Segmentation Initialization Segmentation

Median Mean SD Median Mean SD Median Mean SD Median Mean SD

mm mm mm mm mm mm mm mm mm mm mm mm

Group AV
Endocardium 3.81 4.32 1.88 2.60 3.14 1.83 3.77 4.08 1.42 2.51 2.55 0.41

Epicardium 4.16 4.75 1.94 2.95 3.47 1.74 4.05 4.40 1.53 2.82 2.89 0.53

Group MI
Endocardium 3.92 4.42 1.82 2.53 3.46 3.03 3.72 3.92 1.12 2.41 2.33 0.56

Epicardium 4.23 4.63 1.92 2.59 3.63 3.06 3.78 3.94 1.18 2.47 2.46 0.51
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Table 9: P2P error statistics for automatic image segmentation in the subset of group AV (manual versus automatic initialization).

Before Automatic Quality Control After Automatic Quality Control

Segmentation with manual init Segmentation with auto init Segmentation with manual init Segmentation with auto init

Median Mean SD Median Mean SD Median Mean SD Median Mean SD

mm mm mm mm mm mm mm mm mm mm mm mm

Endocardium 2.62 2.87 1.33 2.63 3.28 1.81 2.58 2.58 0.34 2.51 2.57 0.35

Epicardium 3.03 3.27 1.18 3.12 3.60 1.62 2.98 2.99 0.49 2.92 2.96 0.50
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Figure 6: Cumulative error distribution curves for myocardial segmentation error, before and
after the quality control.

4.4. Illustrative Results

Fig. 7 shows three examples of segmentation and landmark detection results
for AV group. First and second columns show the landmarks detected by our
method (red) with the manually defined points (green). The final segmentation550

results are also shown, both the automatic (red) and the manual (green) delin-
eations. The satisfactory quantitative analysis (Tables 5 and 8) are confirmed
with our visual analysis. Larger errors are produced in the mitral valve and the
central axis is detected with lower error. The segmentation of the endocardium
is performed slightly better than the epicardium. This can be explained by the555

high variability of the surrounding tissues and the lack of contrast on some parts
of the boundary, while the endocardium only interfaces with the myocardium.
The errors on the endocardium are produced mainly around the papillary mus-
cles.

Fig. 8 shows four examples of segmentation results from the MI database.560

The first thing to observe is the high variability of the images in appearance
and shape between them and, also, compared to the AV examples. Although
we have trained our method with sets from group AV, similar results have been
obtained.

Fig. 9 shows four examples of wrong segmentation results for both databases.565

These cases were detected as failures by the quality control and discarded from
the final evaluation results. Note that the main problem is that the RV is
considered part of the LV.
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(a) (b) (c)

Figure 7: Examples of landmark detection and segmentation results for AV datasets: land-
mark detection, (a) mitral valve points, apex and (b) the central axis and (c) the automatic
segmentation contours with manual contours. Our method is marked as red and the ground
truth as green.

(a) (b) (c) (d)

Figure 8: Examples of segmentation results for MI datasets, the automatic segmentation
contours with manual contours. Our method is marked as red and the ground truth as green.
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(a) (b) (c) (d)

Figure 9: Examples of discarded segmentation results, thanks to the quality control, for groups
(a,b) MI and (c,d) AV. Automatic segmentation contours are shown with manual contours,
our method is marked as red and the ground truth as green.

5. Discussion and Conclusion

We described and validated a fully automatic approach to perform the ana-570

lysis of cardiac MRI in large MRI studies, which cannot be processed through
user interaction. The technique combines an RF-based landmark detector, a
3D-SPASM segmentation algorithm and an anatomically-driven classifier for
automated segmentation quality control. Different to existing techniques, our
method predicts the correction of the initial ventricular axis and anatomical575

landmarks by using a pose correction regression model. Subsequently, the land-
marks are used to initialize a three-dimensional LV segmentation based on ASM
search. After segmentation, a quality control scores the quality of the segmen-
tations and discards failures from later data analytics.

The novelty of the technique lies in using a regression/classification approach580

based on large-scale synthetic examples of correct and incorrect LV characteris-
tics. It is easy to implement by using RFs and feature descriptors widely used in
medical image analysis, and thus are well-suited for cardiovascular population
studies. A complete validation based on two large-scale public databases, groups
AV and MI, demonstrates the potential of our fully automatic segmentation for585

large-scale populations. To the best of our knowledge, this is the first attempt
to parse more than 1200 MRI datasets from both normal and abnormal cases
using a fully automatic pipeline.

The algorithm demonstrated good computational performance; the average
running time to produce all the anatomical landmarks is 6.87 s per subject590

and the full segmentation procedure with the score takes on average 28 s per
subject. All experiments were performed using MATLAB (The Mathworks Inc.,
Nantucket, MA) with non-optimized code running on a 2.4 GHz Windows PC
with 8 GB of RAM.

We believe that the concept behind our approach (i.e. using artificial false595

examples and patch/texture-based regression) can be applied to other problems
in cardiac MRI analysis. For example, automatic correction of slice misalign-
ments, which is an important challenge, can be modelled by similarly building a
synthetic training sample of misalignments (by artificially displacing SA slices)
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and by learning the required corrections through patch-based regression.600

The global measures used for quality control and the corresponding perfor-
mance suggest these could be incorporated into the segmentation process to
further improve the segmentation results. However, their use within our Active
Shape Model framework is more complicated as it corresponds to an inherently
local search problem, which requires different descriptors, such as the local nor-605

mal appearance profiles typically used to fit the boundaries locally to the image
evidence.

Future perspectives for this work include (i) applying it to other public large
databases (e.g. the UK Biobank), which would further state the scalability and
robustness of the method and (ii) use of the results to compute and analyze610

cardiac measures as EF or volume and extract new clinical knowledge of MRI-
based phenotypes of cardiovascular health and disease.
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