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1
Αβστραχτ—This paper proposes a novel method for the fast 

determination of moment of inertia of permanent magnet 
synchronous machine (PMSM) drive systems. It is based on the 
use of sinusoidal perturbation signals and can determine the 
combined moment of inertia within one sinusoidal cycle of 
perturbation while the influence of viscous friction is eliminated 
during the modeling process. It does not need the aid of complex 
system identification algorithms, and thanks to the elimination of 
influence of viscous friction, the proposed scheme shows higher 
accuracy than the conventional method without taking into 
account. Furthermore, its accuracy is also competitive with the 
conventional method using complex system identification 
algorithms, for example, the model reference adaptive system 
(MRAS). Besides, the performance of designed speed regulators 
using the estimated mechanical parameters and the influence of 
mismatching of mechanical parameters are also investigated. 

Ινδεξ Τερmσ—Electrical machine drive, mechanical parameter, 
moment of inertia, parameter determination, permanent magnet 
synchronous machine, viscous friction coefficient 

I. INTRODUCTION 
arameters of permanent magnet synchronous machine 

(PMSM) drive systems are of great importance for the 
design of controllers and related parameter determination 

technologies are now widely reported [1]-[28]. For example, 
electrical parameters such as δθ-axis inductances and winding 
resistance [20] are usually needed for the design of current loop 
proportional-integral (PI) controllers while mechanical 
parameters such as combined moment of inertia (ϑ) and viscous 
friction coefficient (Φ) are quite important for the design of 
speed loop controllers [18]-[20], [22]-[25]. In reality, electrical 
parameters will not vary too much and the designed current 
loop PI regulators are usually robust to the varying working 
points. However, mechanical parameters usually vary 
significantly with the dimensions and the shape of mechanical 
loads. For example, it is quite normal in some direct-drive 
applications that the moment of inertia of mechanical load, 
such as the wind turbine blade, the rigid cylinder of printing 
press, and the actuator of loom, is usually more than 10 times 
larger than that of PMSM rotor. Besides, in those applications 
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with gear boxes between the machine and the load, the reflected 
inertia of the load may be quite high. In this case, a mismatched 
machine may not be powerful enough to ensure the dynamic 
performance of the drive system. Therefore, most servo drives 
have an upper limit to the ratio of load inertia versus rotor 
inertia. For example, the upper limit of the ratio of load inertia 
versus rotor inertia of a Panasonic MINAS A4 Series servo 
drive is 100. Besides, for the high frequency injection based 
sensorless control of low speed PMSM [26], [27], the 
correlation between the load inertia and the frequency/ 
amplitude of injected current also needs to be considered during 
the controller design [26]. 

Thus, for a commercial drive, it is required that the software 
should have the ability to determine the mechanical parameters 
of the whole drive train, especially the combined moment of 
inertia. Existing methods for the determination of mechanical 
parameters of drive systems can be mainly categorized into 
three types, which are reviewed as follows. 

The first type is based on the addition of periodic 
perturbations in electromagnetic torque or rotor speed, by 
which the transient torque due to the moment of inertia will not 
be zero but a forward-reverse variable with respect to the time 
[1]-[7]. This type of solution is easy for implementation and 
also widely reported in the application of different machines 
such as DC machine [6], [15], induction machine (IM) [1], [2] 
and PMSM [3]-[8]. This type of method usually uses system 
identification algorithms such as model reference adaptive 
system (MRAS) [7], [16], [17], extended Kalman filter [8], and 
recursive least square (RLS) [2] to online or offline estimate 
parameters from measured data.  

The second type calculates the moment of inertia during the 
startup of electric machines or the step response of drive 
systems. Similar to that of the first type, the transient torque due 
to the moment of inertia will not be zero but a constant (for a 
constant acceleration or deceleration) or a variable term (for a 
variable acceleration or deceleration) [10], [11]. 

The third type usually works at the loaded condition and 
regards the mechanical load as a constant disturbance torque [1], 
[3], [6], [11]-[14]. For example, in [1], system inertia and 
disturbance torque are estimated to aid the speed observation of 
a low speed induction machine. In [28], the RLS is employed 
for the estimation of variations of time-varying inertia and load 
torque, which are then employed to improve the performance of 
a back stepping controller for low speed PMSM.  

In this paper, a method for fast determination of the 
combined moment of inertia of the PMSM drive system is 
proposed, which is based on the addition of zero mean 
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sinusoidal perturbation to the drive system. It can estimate the 
combined moment of inertia within one sinusoidal cycle of 
perturbation and does not need the aid of complex system 
identification algorithms while the influence of viscous friction 
is eliminated during the modeling process. Besides, a 
comparison with two conventional methods is conducted and 
the application of estimated mechanical parameters to the 
design of speed loop PI regulator is also investigated. 

II. CONVENTIONAL AND PROPOSED ESTIMATION SCHEMES 
In the drive control, the PMSM can be expressed in the 

δθ-axis reference frame as follows: 
δ

δ δ θ θ δ

δι
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where ねm, Ρ, Λδ, Λθ, ιδ, ιθ, の, υδ, υθ, π, Κε, ϑ, Φ, のρ, Τε and Τm are 
rotor PM flux linkage, winding resistance, δθ-axis inductances, 
δθ-axis currents and voltages, electrical angular speed, pole 
pair number, torque constant, combined moment of inertia, 
viscous friction coefficient, mechanical angular speed, 
electromagnetic torque, and disturbance torque, respectively. In 
(1), terms such as Ριδ, Ριθ, ねmの, Λδのιδ and –Λθのιθ and are 
voltage drops due to winding resistance, PM flux linkage, and 
δθ-axis inductances. It is noteworthy that the θ-axis flux 
linkage Λθιθ is perpendicular to the δ-axis while its resulting 
voltage Λθのιθ is in the negative direction of δ-axis. In reality, Τm 
can be produced by an excited machine, a spring [28], gravity 
[5] and other external forces. Besides, it should be emphasized 
that for simplicity, the parameter Φ in this paper can be 
regarded as a lumped parameter representing all nonlinear 
terms such as viscous/Coulomb friction, core loss and windage 
effects. 

Α. Χονϖεντιοναλ Σχηεmε1 

It is proposed in [21] that ϑ can be derived by an acceleration 
or deceleration process if the influence of Φのρ can be ignored. 
As shown in Fig. 1(a), the open loop transfer function of the 
mechanical model of PMSM drive is a first order system and 
the gain of the input signal is 1.5πΚε. On condition that the 
influence of Φのρ is negligible, it can be simplified to an integral 

element and the gain of the input signal is 1.5 επΚ

ϑ
, as depicted 

in Fig. 1(b). For a discrete sampling system, the output of an 
integral element during the unit step response at the ν-th 
sampling time point can be expressed as τ=Τ=νΤσ, in which Τσ is 
the sampling time. Thus, on condition that the influence of Φのρ 
can be ignored, ϑ can be approximately calculated by (2) [21] 
and this scheme is designated as Scheme1 in this paper. 
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Fig. 1.  Transfer function of mechanical model of PMSM. (a) and (b) Transfer 
functions taking into account and ignoring influence of Φ. 

Β. Χονϖεντιοναλ Σχηεmε2 

As detailed hereinbefore, observers based methods such as 
MRAS, RLS, and EKF are widely used for the estimation of 
mechanical parameters. By way of example, the conventional 
MRAS observer is selected and introduced, which is designated 
as Scheme2 in this paper. Assuming that  ρ , ϑ , and Φ  are the 
estimated のρ, ϑ and Φ, respectively, the MRAS observer will 
usually be expressed in the form of PI controllers [16], [17]: 

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1
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where 
ρρε     and Πϑ, Ιϑ, ΠΦ, ΙΦ, ϑ0 and Φ0 are PI constants 

of MRAS observers of ϑ and Φ, and initial values of estimated ϑ 
and Φ, respectively. 

Χ. Προποσεδ Μετηοδ (Σχηεmε3) 

In order to eliminate the influence of Φのρ, a novel method is 
proposed and designated as Scheme3. Assuming that the 
δθ-axis currents are set to ιδ=0 and ιθ=ιθπ

∗sin(のητ), respectively, 
in which のη and ιθπ

∗ are the frequency and amplitude of injected 
ιθ. The resulting のρ can be expressed as のρ=のπsin(のητ+l), in 
which のπ is the peak value of のρ and l is the phase shift 
between ιθ and のρ. Thus, on condition that the disturbance 
torque is set to zero, Τm=0, (1d) can be transformed to: 
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At the transient of zero crossing (τ=τ0) of rotor speed, 
のρ(τ=τ0)= 0sin( ) 0π ητ     and 0cos( ) 1ητ   . Thus, the 
torque component owing to Φのρ will also be zero at this time 
point (τ=τ0) and (5) can be simplified to: 

*
0 01.5 sin( ) 1.5 ( )π η m θπ η m θϑ π ι τ π ι τ τ        (6)

Thus, ϑ can be calculated by: 
*
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As can be seen from (7), only ιθ(τ=τ0) and のπ are needed for 
the derivation of ϑ and compared with the Scheme2, it does not 
need to differentiate the rotor speed. Thus, the proposed 
Scheme3 will be of lower computational cost compared with 
those conventional observer algorithm based estimation 
schemes. For the sake of better understanding, the flow chart of 
the proposed determination of ϑ is illustrated in Fig. 2: 
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Fig. 2.  Flow chart for determination of combined moment of inertia by 
Scheme3. 

Step1. Set the disturbance torque to zero (Τm=0). 
Step2. Add the sinusoidal perturbation signal ιθ=ιθπ

∗sin(のητ).  
Step3. One sinusoidal cycle of machine data such as rotor 

speed and δθ-axis currents will be recorded. 
Step4. The time point of zero crossing of rotor speed will be 

indexed from the recorded data by using the program 
introduced in Appendix A, by which the value of ιθ(τ=τ0) 
can be directly obtained. Besides, the value of のπ can be 
indexed by shifting a quarter of one sinusoidal cycle. 

Step5. With the aid of obtained ιθ(τ=τ0) and のπ, the combined 
moment of inertia can be derived from (7). 

Similarly, at the peak value of rotor speed (τ=τπ), 
sin( ) 1η πτ    and cos( ) 0η πτ   , which yields: 

*1.5 sin( ) 1.5 ( )π m θπ η π m θ πΦ π ι τ π ι τ τ       (8)
As can be seen from (8), Φ at the peak value of rotor speed 

can be derived as: 
1.5 ( )m θ π

π

π ι τ τ
Φ





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However, the result of (9) is the transient value of Φ, which is 
only related to the transient rotor speed. In order to obtain the 
exact correlation between Φ and rotor speed, a steady state test 
will be preferred [17] in real applications. At the steady state of 
Τm=0, (1d) is simplified to ε ρΤ Φ  and Φ can be obtained by: 

(1.5 )( )
( ) ( )

ε θε

ρ ρ

mεαν πΚ ιmεαν Τ
Φ

mεαν mεαν 
   (10)

where ‘mεαν’ is the mean operator. Thus, the variation of Φ 
with respect to different rotor speeds can be therefore obtained. 
The operation process for the determination of Φ with respect to 
different rotor speeds consists of three steps: 
Step1. Set the disturbance torque to zero (Τm=0). 
Step2. Set the rotor speed to different values ranging from low 

to rated rotor speeds. 
Step3. At the steady state of each point of rotor speed, Φ will be 

calculated by (10). 
In order to evaluate the performance of the proposed 

Scheme3, a comparison with the other two conventional 
schemes (Scheme1 and Scheme2) is conducted in next section. 

III. EXPERIMENTAL VALIDATION AND INVESTIGATION 
The prototype PMSM together with the load DC machine 

and drive system is depicted in Fig. 3. The design parameters 
are listed in Table I, in which the moment of inertia of rotor and 
couplings are calculated by using their mechanical dimensions 
and material density. Besides, a dSPACE 1006 based field 
oriented drive is employed to feed the PMSM and the sampling 
rate is set to 2kHz. The block diagram of vector control system 
is depicted in Fig. 3(b). For the determination of ϑ, the speed 
loop regulator will be removed by switching off Κ and the 
δθ-axis reference currents will be setup by software. The 
calculated ϑ of rotor of DC load machine is about 6.70×10¢3 

kg.m2 and the overall combined moment of inertia of the whole 
drive system is 6.70×10蕪3+4×2.42×10蕪4+2.66×10蕪5+3.61×10−4 

≈8.06×10蕪3kg.m2. In this paper, Τm=0 if the DC load machine is 
open-circuit or the DC load machine is removed. 

In order to test the accuracy of the three methods introduced 
in Section II, three load conditions will be investigated: 
C1: There is no mechanical load and only ϑ of bare rotor is 

estimated or calculated. 
C2: One side of the coupling is mounted on the rotor shaft. 
C3: The DC load machine is connected with the PMSM. 

Α. Χοmπαρισον βετωεεν Σχηεmε1 ανδ Σχηεmε3 

The performance of Scheme1 is experimentally investigated 
at C1, C2 and C3, respectively, and the results are compared in 
Table II. For simplicity, the nominal value of rotor PM flux 
linkage shown in Table I will be employed for the calculation of 
electromagnetic torque although it is reported in [17] that the 
saturation of machine parameters will influence on the 
accuracy of estimation of mechanical parameters. An example 
of the step response of PMSM rotor speed is shown in Fig. 4 
and aiming to achieve the fast determination of ϑ by (2), the 
data length Ν=400 is employed, which corresponds to 0.2s of 
sampling. As can be seen from Table II, the accuracy of 
Scheme1 will be quite low if ϑ is quite small, for example, at 
C1and C2. This can be explained that the influence of static 
friction and Φのρ is not negligible at C1 and C2. In order to 
investigate their influences, a comparison between the 
simulated and experimentally measured step responses of rotor 
speeds is now given in Fig. 4. In the simulation model, the 
variation of Φ with respect to のρ at C1, C2, and C3, is 
approximated by a linear function as introduced in Appendix B, 
while ϑ is set to its nominal value as shown in Table I. With the 
calculated Φ(のρ)=αξ+β and nominal value of ϑ, the simulated 
step response of rotor speeds at C1 and C2, respectively, is 
shown in Fig. 4(b). It is found that at the beginning of step 
response, the slope of simulated rotor speed is relatively higher 
than that of experimental results. This can be explained that the 
electromagnetic torques at C1 and C2 are relatively small 
(ιθ=0.1A) and the static friction will slow down the speed of 
step response which is not modeled in the simulation model. 
Besides, during the step response at C3 (ιθ=1, with DC load 
machine), the rotor speed will be limited to around 400rpm due 
to the limit of DC bus voltage, as shown in Fig. 4(a). Since there 
is no limit to the rotor speed and DC bus voltage in the 
simulation model, the simulated rotor speed will continue 
increasing even if it is higher than 400rpm. 
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(a) 

 
(b) 

Fig. 3 Machine test system. (a) PMSM, load DC machine and dSPACE drive 
system. (b) Block diagram of control system. 

 
TABLE I 

DESIGN PARAMETERS AND SPECIFICATION OF PMSM 
Parameters Value 

Rated current 4 A 
Rated speed 400 rpm  
DC link voltage 100 V 
Nominal phase resistance 6.000 Ω  
Nominal δ-axis inductances 38.10 mH  
Nominal θ-axis inductances 58.50 mH  
Nominal rotor PM flux linkage 236.0 mWb 
Number of  pole pairs 3 
Nominal moment of inertia of rotor 3.61×10¢4 kg.m2

Nominal value of moment of inertia of rotor coupling 2.42×10¢4 kg.m2

Moment of inertia of torque transducer (from datasheet) 2.66×10¢5 kg.m2

Number of lines of encoder 2048 
Note: Nominal values are measured. 

Furthermore, it is found that at C3, the slope of the 
experimental result is almost the same as that of simulation 
result when the rotor speed is below 400rpm. This can be 
explained that the electromagnetic torque at C3 is almost ten 
times (ιθ=1A) as large as those at C1 and C2, and the 
contribution of ϑ to Τε will be relatively dominant compared 
with those of Φ and static friction. Thus, the estimation error of 
ϑ by the Scheme1 at C1 and C2 is much larger than that at C3, 
as shown in Table II. In reality, the Scheme1 can be used for the 
approximate determination of ϑ if the contributions of Φのρ and 
static friction to Τε (1d) are much smaller than that of ϑ.  

In order to achieve a higher accuracy, the influence of Φ is 
taken into account in the Scheme3 being compared below. For 
the proposed Scheme3, only three values such as ιθ(τ0), ιθ(τπ), 
and のπ, are needed for the calculation of ϑ and Φ. In order to get 
the sampling sequence number corresponding to time points τ0 
and τπ, a searching program is developed and introduced in 
Appendix A. 

 
(a) 

 
(b) 

Fig. 4 Step response of rotor speed at different load conditions. (a) and (b) 
Experimentally measured and simulated step responses of rotor speeds. 

Taking the measured signals shown in Fig. 5 as an example, 
the first zero crossing point of measured rotor speed is at 
τ=178Τσ=τ0 and the second zero crossing point is at τ=378Τσ. It is 
known that the sampling time Τσ is 0.0005s and the period of ιθ 
and のρ is set to 0.2s. Thus, the time length of a quarter of the 
period of ιθ and のρ is 100Τσ. In this case, the peak (or valley) 
value of rotor speed is at τπ=τ0+100Τσ=278Τσ, as shown in Fig. 
5(a), and ιθ at τ=τ0 and τ=τπ can be respectively indexed as shown 
in Fig. 5(b). Consequently, ϑ and Φ can be calculated by 
substituting のπ, ιθ(τ0) and ιθ(τπ) to (7) and (9), respectively. 

As mentioned in section II C, the Scheme3 has one good 
feature that in theory, its determination of ϑ will not be 
influenced by Φのρ if the detection of zero crossing of rotor 
speed is ideal, as shown in (7). However, in reality, the speed 
measurement is always not ideal and the real rotor speed at the 
detected zero crossing point is usually not zero. Consequently, 
the influence of Φのρ will be not zero while the influence of 
static friction can be regarded as zero since のρ≠0. Thus, as can 
be seen from Tables III-V, assuming that φ is the frequency of 
perturbation signal, the influence of φ on the estimation of ϑ is 
dominant because the accuracy of detection of zero crossing of 
rotor speed at a fixed sampling rate (2kHz) will deteriorate if φ 
is getting too high, for example, 10Hz. In this case, a higher 
perturbation torque can be a good solution to mitigate this issue. 
For example, in Table V, the estimation error at C3 is quite 
small (usually smaller than 3%) compared with those in Table 
III and Table IV if φ=3Hz or φ=5Hz. This can be explained that 
the amplitude of perturbation current is relatively high (1.5A 
and 2A) at C3 and the term Φのρ at the detected zero crossing 
point is quite small compared with the transient Τε. Thus, in 
order to ensure a higher ratio of signal versus noise, φ should be 
set to φ≤5Hz. Besides, since the system inertia is usually much 
larger than that of the rotor, the load condition C3 will be more 
typical in real applications. Thus, the Scheme3 can achieve the 
accuracy of <3% at C3 and obtain the result within one 
sinusoidal cycle of perturbation (φ=5Hz, 0.2s), which is already 
fast enough for real applications. 
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(a) (b) 

 
(c) (d) 

Fig. 5 Detections of zero crossing and peak value of perturbation signals while 
DC load machine is connected with PMSM rotor. (a) and (b) Measured  rotor 
speed and θ-axis current (φ=5Hz) with respect to sampling sequence. (c) and (d) 
Detected zero crossing of rotor speed and θ-axis current. 

TABLE II 
RESULTS OF SCHEME1 

Tests 
Combined moment of inertia (ϑ) 

Error Nominal values Calculated results 
C1 3.61×10¢4 kg.m2 1.60×10¢3 kg.m2 347.9%
C2 6.03×10¢4 kg.m2 2.30×10¢3 kg.m2 274.4%
C3 8.06×10¢3 kg.m2 1.06×10¢2 kg.m2 31.5% 

 
TABLE III 

RESULTS OF SCHEME3 AT C1 

ιθπ
∗ φ Φ Combined moment of inertia (ϑ) 

Nominal values Calculated results Error 
0.5A 3Hz 7.6×10¢4 3.61×10¢4 kg.m2 4.13×10¢4 kg.m2 14.4%
0.5A 5Hz 2.1×10¢3 3.61×10¢4 kg.m2 4.37×10¢4 kg.m2 21.1%
0.5A 10Hz 1.8×10¢2 3.61×10¢4 kg.m2 4.61×10¢4 kg.m2 27.7%

 
TABLE IV 

RESULTS OF SCHEME3 AT C2 

ιθπ
∗ φ Φ 

Combined moment of inertia (ϑ) 
Nominal values Calculated results Error 

0.3A 3Hz 2.4×10¢3 6.03×10¢4 kg.m2 7.57×10¢4 kg.m2 25.5%
0.5A 3HZ 4.8×10¢4 6.03×10¢4 kg.m2 7.42×10¢4 kg.m2 23.1%
0.3A 5Hz 1.8×10¢3 6.03×10¢4 kg.m2 7.59×10¢4 kg.m2 25.9%
0.5A 5Hz 4.1×10¢3 6.03×10¢4 kg.m2 7.65×10¢4 kg.m2 26.9%
0.5A 10Hz 3.6×10¢2 6.03×10¢4 kg.m2 8.06×10¢4 kg.m2 33.7%

 
TABLE V 

RESULTS OF SCHEME3 AT C3 

ιθπ
∗ φ Φ Combined moment of inertia (ϑ) 

Nominal values Calculated results Error 
1.5A 3Hz 1.7×10¢2 8.06×10¢3 kg.m2 8.10×10¢3 kg.m2 0.5% 
2A 3Hz 2.3×10¢2 8.06×10¢3 kg.m2 7.90×10¢3 kg.m2 2.0% 

1.5A 5Hz 8.1×10¢2 8.06×10¢3 kg.m2 8.00×10¢3 kg.m2 0.7% 
2A 5Hz 9.1×10¢2 8.06×10¢3 kg.m2 8.20×10¢3 kg.m2 1.7% 

1.5A 10Hz 0.42 8.06×10¢3 kg.m2 1.09×10¢2 kg.m2 35.2%
2A 10Hz 0.45 8.06×10¢3 kg.m2 1.24×10¢2 kg.m2 53.8%
Besides, compared with the results of Scheme1, as shown in 

Table II, the estimation error of Scheme3 at C1 and C2 is much 
smaller than that of Scheme1. For example, the estimation error 
of Scheme1 is around 300% at C1 and C2 while that of 
Scheme3 is lower than 34%. More importantly, at the typical 
load condition C3, the estimation error of Scheme3 is smaller 
than 3% if φ≤5Hz while that of Scheme1 is larger than 30%.  

 
Fig. 6 Estimated moment of inertia of PMSM rotor by MRAS (scheme PI1: 
Πϑ=0.01, Ιϑ=1000, ΠΦ=1, ΙΦ=1). 

Β. Χοmπαρισον βετωεεν Σχηεmε2 ανδ Σχηεmε3 

As introduced in section II, the Scheme2 also takes into 
account the influence of Φ in its estimation model while the 
Scheme1 does not. In this case, the Scheme2 will be a better 
reference to the performance of the proposed Scheme3. In 
theory, a good MRAS based estimation of ϑ can be achieved if 
the estimated transient  ρ can track the measured transient のρ. 
However, as can be seen from the expression of MRAS 
observers (3) and (4), the setup of PI constants of observers is 
quite important to ensure the tracking ability of algorithm since 
the input and output signals of observers are in the form of 
periodic forward-reverse perturbation. Figs. 6, 7 and Tables VI, 
VII are examples of applications of MRAS based ϑ observer 
using five different schemes (PI1-PI5) of PI constants and 
perturbation signals. As can be seen from Fig. 6, it is obvious 
that with the same PI constants (PI1), the convergence speed 
and final results of MRAS will be different under various 
perturbation schemes. 

Furthermore, from Fig. 7, it is found that an improper setup 
of PI constants of MRAS observer will result in a divergence of 
estimation. Thus, it is essential that the setup of PI constants of 
MRAS observer should match the perturbation signal properly 
and consequently the tuning of PI constants becomes quite 
complex and usually depends on the expert experience. The 
proposed Scheme3 does not have these issues and in theory, it 
can obtain ϑ within one sinusoidal cycle of perturbation, which 
is usually less than 0.5s while the MRAS needs more than 1s as 
shown in Fig. 6. Thus, the Scheme3 is faster than the traditional 
MRAS in the determination of ϑ. Furthermore, from the 
comparison between Tables III and VI, both the estimation 
errors of Scheme3 and Scheme2 can achieve the accuracy of 
15%-20% at the small load condition C1 if φ≤5Hz.  

Besides, from the comparison between Tables IV and VII, 
both the estimation errors of Scheme3 and Scheme2 can be less 
than 3% at C3 if φ≤5Hz. This can be explained that both 
methods have taken into account the influence of Φ and are 
based on the same reference/variable model (1d) while the 
measured data are of the same ratio of signal versus noise in 
both methods.  

Thus, the accuracy of Scheme3 is quite competitive to those 
conventional observer algorithm based methods such as the 
MRAS method (Scheme2), while it also has superior 
performances such as faster in calculation, lower computational 
cost and no need to tune the convergence speed to match the 
perturbation signal. 
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(a) 

 
(b) 

 
(c) 

Fig. 7 MRAS based estimation of ϑ at C2. (a) Estimation of ϑ with two sets of 
different PI constants.  (b) Estimated and measured のρ with PI constants 
Πϑ=1000, Ιϑ=20000, ΠΦ=10, ΙΦ=100 (scheme PI2). (c) Estimated and measured 
のρ with PI constants Πϑ=1000, Ιϑ=1000, ΠΦ=100, ΙΦ=1000 (scheme PI3). 
 

TABLE VI 
RESULTS OF MRAS BASED ESTIMATION AT C1 

ιθπ
∗ φ PI scheme 

Combined moment of inertia (ϑ) 
Nominal values Calculated results Error 

0.5A 3Hz PI1 3.61×10¢4 kg.m2 4.19×10¢4 kg.m2 16.1%
0.5A 5Hz PI1 3.61×10¢4 kg.m2 4.35×10¢4 kg.m2 20.5%
1A 5Hz PI1 3.61×10¢4 kg.m2 4.13×10¢4 kg.m2 14.4%

PI scheme PI1: Πϑ=0.01, Ιϑ=1000, ΠΦ=1, ΙΦ=1.  
 

TABLE VII 
RESULTS OF MRAS BASED ESTIMATION AT C3 

Ιθ
∗ φ PI scheme 

Combined moment of inertia (ϑ) 
Nominal values Calculated results Error

2A 3Hz PI5 8.06×10¢3 kg.m2 7.85×10¢3 kg.m2 2.6%
2A 5Hz PI4 8.06×10¢3 kg.m2 8.18×10¢3 kg.m2 1.5%
2A 5Hz PI3 8.06×10¢3 kg.m2 8.13×10¢3 kg.m2 0.9%
PI scheme PI3: Πϑ=1000, Ιϑ=1000, ΠΦ=100, ΙΦ=1000. 
PI scheme PI4: Πϑ=100, Ιϑ=100, ΠΦ=10, ΙΦ=100. 
PI scheme PI5: Πϑ=1000, Ιϑ=10000, ΠΦ=1, ΙΦ=1. 

IV. APPLICATION TO SPEED CONTROL 

Α. Dεσιγν οφ ΠΙ Χοντρολλερ φορ Σπεεδ Λοοπ 

Under ιδ=0 control, the speed loop of a field oriented control 
system is illustrated in Fig. 8, in which the current loop Χιθ(s) 
acts as an inner loop of the whole speed loop. In Fig. 8(a), のρ

*, 
Τの, Κε=1.5πねm, Κν and Κνι=Κν/kν are reference speed, time 
constant of low pass filter for measured rotor speed, torque 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 Transfer function of speed loop of field oriented control. (a) Speed loop 
model. (b) Simplified speed loop. (c) Bode diagram of simplified speed loop. 
constant, PI constants of speed regulators. Since the time 
constant of current loop, Τσ, and Τの are usually much smaller 
than that of speed loop, a conventional solution to reduce the 
order of the drive system model is to combine those small time 
constants together and the simplified system transfer function 
can be expressed as Fig. 8(b) [20]. As introduced in [20], the 
optimized PI constants for speed loop can be expressed as: 

2ν

ε συm

ϑ
Κ

Κ Τ
  (11)

,  
2

ν

νι ν

ν ε συm

Κ Φ ϑ
Κ

Κ Τ Φ



  

 
(12)

where Τσυm=Τの+2(Τσ+Τδ+Τιφ), in which Τδ and Τιφ are the dead 
time of PWM control and low pass filter time constant of 
measured δθ-axis currents [20]. The values of related small 
time constants are set to Τσ=1.0×10 ¢ 4s, Τの=8.0×10 ¢ 3s, 
Τδ=6.0×10¢6s, and Τιφ=4.3×10¢5s, respectively. Besides, the PI 
regulators of δθ-axis current loops can be obtained by 
substituting the nominal values of Λδ, Λθ, and Ρ to (13) and (14), 
respectively [20]. 

,
2 2

θδ

πδ πθ

σφ σφ

ΛΛ
Κ Κ

Τ Τ
   (13)

2ι

σφ

Ρ
Κ

Τ
  (14)

where Τσφ =Τσ+Τδ+Τιφ and Κπδ, Κπθ and Κι are PI constants of 
δθ-axis current controllers. Thus, the derived PI constants of 
δθ-axis current controllers are Κπδ = 104.7, Κπθ = 196.3, and Κι 
= 20805.  
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Fig. 9 Calculated Φ(のρ) with respect different rotor speeds. 

 
Fig. 10 Step response of rotor speed in forward and reverse directions. 

 
(a) 

 
(b) 

Fig. 11 Performance comparison between designed speed regulators with and 
without online calculation of Φ (ιδ=0, ιθ=2.5A). (a) Comparison at relatively 
low speed region. (b) Comparison at relatively high speed region. 

For the determination of Φ at different rotor speeds, the 
proportional constant of the speed regulator is derived by (11) 
using the average value (8.05×10¢3 kg.m2) of calculated ϑ (at 
φ=5Hz and 3Hz) as shown in Table V while the integral 
constant is set to 0.1. The curve of calculated Φ by (10) is 
depicted in Fig. 9, which is then approximated by Φ(のρ)=αのρ+β, 
as introduced in Appendix B. Φ(のρ)=αのρ+β will be then used to 
aid the online derivation of the integral constant by (12), as 
shown in Fig. 3(b). With the determined ϑ and average value of 
Φ, the bode diagram of the simplified speed loop as shown in 
Fig. 8(b) is then depicted in Fig. 8(c), which shows that the 
bandwidth of speed loop at C3 is 84.6rad/s. 

Β. Περφορmανχε Τεστσ οφ Dεσιγνεδ ΠΙ Χοντρολλερσ 

The performance of speed PI regulator derived by (11) and 
(12) is then tested and shown in Fig. 10, in which the 
proportional constant is derived by using the average value of 
calculated ϑ and the integral constant is derived by using the 

 
Fig. 12 Comparison between speed regulators using proportional constants 
derived with aids from Scheme1 and Scheme3 (ιδ=0, ιθ=2.5A), respectively. 

 
(a) (b) 

Fig. 13 Dθ-axis currents in tests shown in Fig. 12(b) (ιδ=0, ιθ=2.5A). (a) Speed 
regulator using proportional constant derived with aids from Scheme3. (b) 
Speed regulator using proportional constant derived with aids from Scheme1. 
real-time calculated Φ(のρ)=αのρ+β, as shown in Fig. 3(b). It is 
obvious that the PMSM can rotate in the forward and reverse 
directions with quite small overshoot and short settling time. 
Fig. 11 shows the performance comparison between two speed 
regulators using PI constants derived with and without online 
calculation of Φ(のρ)=αのρ+β. The speed regulator without online 
calculation of Φ(のρ) uses the average value of calculated Φ, as 
shown in Fig. 9, to derive the integral constant by (12). 

From the comparison results at relatively low and high 
speeds, it is found that the speed regulator with the online 
calculation of Φ shows better performance in eliminating the 
steady state error. This can be explained that since Φ decreases 
with the rotor speed, the derived integral constant by using the 
average value of Φ will be too small at low speed region while it 
will be too big at high speed region. In this case, the scheme 
using online calculated Φ(のρ) with respect to the transient rotor 
speed, as shown in Fig. 3(b), will be superior in improving the 
performance of speed regulator at different rotor speeds. 

Figs. 12 and 13 are the performance comparison between 
two speed regulators using two different proportional constants, 
of which both the integral constants are online tuned with the 
real-time calculated Φ with respect to the transient rotor speed, 
as shown in Fig. 3(b). It is found that ιθ of both tests will reach 
the maximum limit (4A) immediately at the beginning of step 
response, as shown in Fig. 13, which will result in a similar step 
response of rotor speed, as shown in Fig. 12. However, at the 
steady state, the speed regulator using the calculated ϑ by 
Scheme3 shows better dynamic performance in ιθ. This can be 
explained that the calculated ϑ by Scheme1 is 31.7% larger than 
that of Scheme3, which will result in a bigger peak-to-peak 
ripple in the θ-axis current.  

Thus, it is confirmed that the identified ϑ by Scheme1 can 
also be employed for the design of speed loop regulator 
although the dynamic performance can be further improved if 
the identified ϑ by Scheme3 is employed. In reality, both 
methods can be good alternatives for the fast determination of 
ϑ. 
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V. CONCLUSION 
A method for fast determination of combined moment of 

inertia of PMSM drive system is proposed in this paper. It is 
based on the addition of sinusoidal perturbation to the drive 
system and the combined moment of inertia can be accurately 
identified while the influence of viscous friction has been 
eliminated during the modeling process. Its accuracy is higher 
than the conventional method without taking into account the 
influence of viscous friction and is also competitive to the 
conventional MRAS based observer. More importantly, 
compared with the MRAS, the proposed method is superior in 
faster determination, easier implementation, and lower 
computational cost. Besides, the application of estimated 
mechanical parameters in the design of speed loop PI regulator 
is also investigated while a good performance is achieved. 

APPENDIX A 
The fake code for zero crossing detection is shown below, in 

which variables such as Dατα,  Πολαριτψ, and ΖεροΧροσσινγ are 
measured raw data such as ιθ and rotor speed, polarity of 
measured data, and sequence number of zero crossing point of 
measured raw data, respectively. 
    ιφ Dατα(ι)>0; 

       Πολαριτψ(ι)=1; 

    ελσε 

        Πολαριτψ(ι)=−1; 

    ενδ 

  ιφ αβσ(Πολαριτψ(ι+1)− Πολαριτψ (ι))>0 

        ΖεροΧροσσινγ(ι)=1; 

    ελσε 

        ΖεροΧροσσινγ(ι)=0; 

ενδ 

APPENDIX B 
In this paper, Φ(のρ) is curve fitted by a linear function (B.1).  
( )φ ξ αξ β   (B.1)

where ξ is the measured transient のρ and φ(ξ) is the calculated 
Φ(のρ). The reason why the linear function (B.1) is employed as 
the curve fit function is that it only needs to measure two points 
to derive the values of α and β. 
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