
Journal of Sound and Vibration 412 (2018) 207–221

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier . com/ loca te / j sv i

Rotational degree-of-freedom synthesis: An optimised finite

difference method for non-exact data

T.J. Gibbons a,*, E. Öztürk b, N.D. Sims a

a Department of Mechanical Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
b Advanced Manufacturing Research Centre with Boeing, The University of Sheffield, Wallis Way, Catcliffe, Rotherham S60 5TZ, United Kingdom

a r t i c l e i n f o

Article history:

Received 7 March 2017

Revised 2 September 2017

Accepted 25 September 2017

Available online 6 October 2017

Keywords:

Rotational degree-of-freedom (RDOF)

Finite difference

Optimisation

Error analysis

Modal analysis

a b s t r a c t

Measuring the rotational dynamic behaviour of a structure is important for many areas of

dynamics such as passive vibration control, acoustics, and model updating. Specialist and

dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised

based upon translational data. However, this involves numerically differentiating the transla-

tional mode shapes to approximate the rotational modes, for example using a finite difference

algorithm. A key challenge with this approach is choosing the measurement spacing between

the data points, an issue which has often been overlooked in the published literature.

The present contribution will for the first time prove that the use of a finite difference

approach can be unstable when using non-exact measured data and a small measurement

spacing, for beam-like structures. Then, a generalised analytical error analysis is used to pro-

pose an optimised measurement spacing, which balances the numerical error of the finite dif-

ference equation with the propagation error from the perturbed data. The approach is demon-

strated using both numerical and experimental investigations. It is shown that by obtaining

a small number of test measurements it is possible to optimise the measurement accuracy,

without any further assumptions on the boundary conditions of the structure.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Experimental rotational degrees-of-freedom (RDOF) are required in many areas of dynamics, such as structural modification

[1,2], acoustics [3], and model updating/reduction [4,5]. Whilst the measurement of translational data is now commonplace,

the same cannot be said for their rotational counterparts. Although techniques exist to directly measure RDOFs, they usually

require specialist equipment, such as laser vibrometers or rotational accelerometers, which may not be readily available. For

this reason, synthesis methods are often used to extract rotational information form translational data, which can be measured

using standard test equipment. The most common is the finite difference (FD) technique, first proposed by Sattinger in 1978 [6].

The method applies a finite difference equation to data collected from closely spaced sensors to numerically differentiate the

translational data with respect to the spatial coordinate. However, as with any numerical method, its accuracy is dependent on

the choice of spacing between data points. It is well documented that the accuracy of a FD equation can be improved by reducing

the spacing; this paper will show that when using non-exact measured data (data containing some error), the method becomes

unstable. As the spacing is decreased, small errors or perturbations in the input data, such as noise or misalignment, give rise to
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large errors in the output. Hence, a compromise must be found, which balances the numerical error of the FD equation with the

perturbation propagation error from the data.

Whilst the numerical errors associated with finite difference equations are well known, little attention has been paid to the

propagation error. For this reason the application of the FD method for rotational degree-of-freedom synthesis is not robust. In

this paper, a full analytic error analysis of the FD method in the modal domain is carried out, showing that, for any structure,

the method becomes unstable when using non-exact data. The results from the error analysis are used to propose an optimum

spacing to balance the two errors. However, the optimum spacing relies on knowledge of two unknown quantities, the high

order derivatives of the translational data and the error contained in the measurement. Analytical solutions for the mode shapes

of beams are used to show that, for certain finite difference equations, this information can be found from the translational modal

model, whilst for all other finite difference equations, a good approximation can also be found. An experimental investigation is

also carried out to show how effective the method can be when approximating the measurement error.

The applications of experimentally derived rotational degrees-of-freedom are vast and varied. Schmitz et al. [1,2] proposed

a structural modification method, called receptance coupling substructure analysis (RCSA), as a method to avoid chatter in

machining operations such as milling. Moorhouse et al. [3] used the finite difference method in order to characterise structure-

borne sound sources for use in assembled structures, such as vehicles and machinery. And the Craig-Brampton method [5]

(more commonly known today as component mode synthesis) was originally proposed as a model reduction method. Whilst

these applications are promising, they are all limited by the need for highly accurate information on the rotational degrees-of

freedom. As stated above, this paper concentrates on the FD method, partly due to its simplicity, but also due to the lack of

robust error analysis available for the method.

Sattinger first considered the problem of rotational degree-of-freedom synthesis in 1980 [6], showing that any rotational

frequency response function (FRF) is equal to the spatial derivative of its translational equivalent. The finite difference method

was then used to approximate such derivatives. Using a free-free beam as an example, it was found that the results were accurate

close to resonance, whilst other areas of the FRF showed considerable scatter. Although it was shown (using theoretical data)

that a smaller spacing increases the accuracy of the numerical method, the link between increasing the spacing and decreasing

the scatter was not made. Sestieri et al. [7] also used the example of a free-free beam, this time with experimental data. They

suggested an improvement in the result could be found by using a spacing of between 5% and 8% of the total beam length;

however, they failed to recognise that the error level may vary between different experiments and with different beams.

Duarte and Ewins [8,9] later looked at the same problem and had similar issues, noting that the spacing of the accelerometers

affects not only the scatter in the results but also the position of the antiresonances. The paper was also the first to apply the finite

difference method in the modal domain. Again using data from a free-free beam, rotational mode shapes were approximated

by applying the FD equation directly to the measured mode shapes, and then the rotational FRFs constructed from the result.

This was found to give more accurate results than application in the frequency domain, but carried the added difficulty of how

to include high frequency residuals. A high frequency pseudo mode was found to give satisfactory results. Although the paper

suggests that the quality of the result is directly linked to the spacing, it is also concluded that the selection of the appropriate

spacing remains a problem.

The only theoretical error analysis of the finite difference method for use in rotational DOF synthesis came from Elliot [10,11].

In this case, using a simply supported beam as an example, it was shown that the numerical error associated with FD equations

is directly proportional to the spacing between the sensors. However, the paper does not go on to show that the perturbation

propagation error is inversely proportional to the spacing; instead arguing that, due to improvements in measurement equip-

ment/practice, this should be less of a problem.

2. Background

The translational displacement of a structure can be characterised by its mode shapes 𝜙r(x) and their corresponding eigen-

values 𝜔2
r
, which are easily related to the frequency response function (FRF), Hij, usually measured in modal testing.

Hij(𝜔) =
Yi(𝜔)
Fj(𝜔)

=
N∑

r=1

𝜙r(xi)𝜙r(xj)
𝜔2

r
− 𝜔2

(1)

Here, Hij(𝜔) is the FRF excited at location i and measured at location j for a particular frequency 𝜔, Yi is the Fourier transform

of the displacement at location i, Fj is the Fourier transform of the input force at location j, N is the total number of modes

measured, 𝜙r(xi) is the rth mode at location i, and the magnitude of 𝜔r is the rth natural frequency.

However, the above equation only makes up part of the full response model often required for the applications discussed in

section 1, as it only considers the translational displacement, Y , and excitation force, F. To fully understand the vibration of any

structure both rotational displacement Θ and excitation moment M must also be included, giving rise to three further FRFs:

Nij(𝜔) =
Θi

Fj

=
N∑

r=1

𝜙(1)
r (xi)𝜙r(xj)
𝜔2

r
− 𝜔2

Lij(𝜔) =
Yi

Mj

=
N∑

r=1

𝜙r(xi)𝜙
(1)
r (xj)

𝜔2
r
−𝜔2

Pij(𝜔) =
Θi

Mj

=
N∑

r=1

𝜙(1)
r (xi)𝜙

(1)
r (xj)

𝜔2
r
−𝜔2

(2)

Whilst the measurement of these FRFs is difficult, mainly due to the application of a pure moment, Eq. (2) shows that they can be

constructed from the standard modal model (𝜙r , 𝜔r) and the rotational mode shapes 𝜙(1)
r (where the superscript (1) represents
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Fig. 1. Application of the first order forward finite difference equation in the modal domain.
the first derivative). Hence, by measuring the mode shapes and eigenvalues, and using this data to approximate the rotational

mode shapes, it is possible to construct a full response model.

Perhaps the simplest method of approximating the derivative of a mode shape is the first order forward finite difference

equation, a standard result derived from the truncated Taylor series. Defining the forward finite difference operator, DF
𝛿

, we

have that:

𝜙(1)
r
(x) ≈ DF

𝛿
𝜙r(x) =

𝜙r(x + 𝛿) − 𝜙r(x)
𝛿

(3)

where x is the coordinate of interest on the structure, 𝛿 is a small length on the structure, and 𝜙r has a continuous bounded

derivative. In application, the mode shape is measured using two sensors (separated by 𝛿), as shown in Fig. 1, then Eq. (3) is

used to approximate its derivative. It should be noted that it is not necessary for the co-located FRF to occur at the point of

interest, and higher order finite difference equations can be also be applied using additional sensors.

2.1. Error analysis

By Taylor’s theorem [12], provided 𝜙r has a continuous bounded second derivative (𝜙(2)
r ) the truncation error of the above

approximation (Eq. (3)) is bounded by:|||𝜙(1)
r
(x) − DF

𝛿
𝜙r(x)

||| ≤ 𝛿

2
‖𝜙(2)

r
‖ (4)

where ‖𝜙(2)
r ‖ is the Euclidean norm of the vector 𝜙(2)

r . This result is derived in Appendix A. The general form of such forward

difference equations (for the first derivative) can be written as

DF
𝛿
𝜙r(x) =

1

𝛿

n∑
k=0

ak𝜙r(x + k𝛿) (5)

Here, ak ∈ ℝ are the coefficients found from the Taylor series derivation, and n is the number of additional nodes in the finite

difference method. For the example given in Eq. (3), ak = {−1, 1}, and n = 1. Similar to the above example, the general truncation

error is given by|||𝜙(1)
r
(x) − DF

𝛿
𝜙r(x)

||| ≤ T𝛿n‖𝜙(n+1)
r

‖ (6)

where the specific truncation coefficient T ∈ ℝ can be found by analysing the Taylor series truncation. For the example given in

Eq. (4), T = 1/2.

This, however, is not the only error when using finite difference equations with measured data [13]. Consider the measured

mode shape 𝜙rm, which is the sum of the actual mode shape 𝜙r and some measurement perturbation 𝜙r . Hence,

𝜙rm = 𝜙r + 𝜙r (7)

This perturbation may contain signal noise as well as measurement or curve fitting errors. When a finite difference equation is

applied to such data, it is applied to both the mode shape and the perturbation, giving rise to the so called propagation error.

Similar to the idea of the truncation error in Eq. (6), an upper bound on the propagation error must also be found. Consider any

point x in the region of interest, then|𝜙r(x) − 𝜙rm(x)| ≤ ‖𝜙r − 𝜙rm‖ ≤ Mr (8)

Here, ‖𝜙r − 𝜙rm‖ is the Euclidean distance between the vectors 𝜙r and 𝜙rm, and Mr is defined as the upper bound on the

measurement perturbation of the rth mode, i.e.

‖𝜙r‖ ≤ Mr (9)
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Then, applying the above forward difference equation (Eq. (5)) to the perturbed data, we have that

DF
𝛿
𝜙rm(x) =

1

𝛿

n∑
k=0

ak𝜙rm(x + k𝛿)

= 1

𝛿

(
n∑

k=0

ak𝜙r(x + k𝛿) +
n∑

k=0

ak𝜙r(x + k𝛿)

)

= DF
𝛿
𝜙r(x) +

1

𝛿

n∑
k=0

ak𝜙r(x + k𝛿) (10)

Therefore, the noise propagation error can be bounded by:

|||DF
𝛿
𝜙r(x) − DF

𝛿
𝜙rm(x)

||| = |||||1

𝛿

n∑
k=0

ak𝜙r(x + k𝛿)
||||| ≤ Mr

𝛿

n∑
k=0

|ak| (11)

Hence, by combining the truncation error in Eq. (6) with the noise propagation error in Eq. (11), a bound on the total error (eT)

is given by:

eT = |||𝜙(1)
r
(x) − DF

𝛿
𝜙rm(x)

||| ≤ |||𝜙(1)
r
(x) − DF

𝛿
𝜙r(x)

||| + |||DF
𝛿
𝜙r(x) − DF

𝛿
𝜙rm(x)

||| ≤ T𝛿n‖𝜙(n+1)
r

‖ + Mr

𝛿

n∑
k=0

||ak
|| (12)

Herein lies the most significant problem of the application of finite difference formulae with real data. As 𝛿 → 0 the truncation

error tends to zero, whilst the propagation error tends to infinity and the method becomes unstable.

2.2. A new optimum spacing

By minimising the upper bound of the total error, the total error itself will be minimised; therefore, a value of 𝛿 must be

chosen so as to balance the two terms and minimise the right hand side (RHS) of Eq. (12). This may be found by setting the first

derivative (with respect to 𝛿) of the RHS of Eq. (12) to zero, then the resultant 𝛿F
min

is found to be:

𝛿F
min

=

(
Mr

nT

n∑
k=0

|ak|‖𝜙(n+1)
r

‖−1

) 1

n+1

(13)

Making the same assumptions on the continuity of 𝜙r as above, and following the same process, the optimum spacing for the

general backward difference equations (𝛿B
min

) is found to be the same function. Whilst for central differences 𝛿C
min

is given by:

𝛿C
min

=

(
Mr

2nT

n∑
k=−n

|ak|‖𝜙(2n+1)
r

‖−1

) 1

2n+1

(14)

Whilst it is advantageous to have an optimum spacing for each individual mode, for structures with many modes, it may become

experimentally expensive to capture a separate dataset for each mode shape. In this case, each of the individual optimum

spacings should be calculated and an average taken, such that:

𝛿F
min

=
R∑

r=0

(
Mr

nT

n∑
k=0

|ak|‖𝜙(n+1)
r

‖−1

) 1

n+1

𝛿C
min

=
R∑

r=0

(
Mr

2nT

n∑
k=−n

|ak|‖𝜙(2n+1)
r

‖−1

) 1

2n+1

(15)

Where R is the total number of modes considered. The effect of averaging the optimum spacings is discussed in section. 6.

The formulae and necessary coefficients (T ,
∑

ak) for the forward, backward and central difference equations for n = 1, n = 2,

and n = 3 are summarised in Tables B.1, B.2, and B.3 respectively. However, the optimum spacings given in Eqs. (13) and (14) still

contain two unknown values, firstly, the high order derivative norm ‖𝜙(p)
r ‖ (where p = n + 1 for forward/backward differences,

and p = 2n + 1 for central differences), and secondly, the measurement perturbation bound Mr .

The next two sections deal with how to evaluate the derivative norms ‖𝜙(p)
r ‖. A numerical investigation is used to validate

the optimised measurement spacing when assuming perfect knowledge of the measurement perturbation bound Mr .
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3. Evaluating the fourth order derivative norms

The aim of the section is to validate the new optimum spacings for the finite difference method with non-exact data.

Numerical examples are used so that the measurement perturbation bound Mr can be calculated exactly, leaving the only

unknown value as the high order derivative norm ‖𝜙(p)
r ‖. Using the analytical solutions for the mode shapes of beams with

arbitrary boundary conditions, it will be shown that for forward/backward finite difference equations of order n = 4k − 1 where

k = 1, 2, 3,…, the exact value of ‖𝜙(p)
r ‖ can be calculated from the translational modal model (𝜙r, 𝜔r).

3.1. The fourth derivative of beam mode shapes

The general form of the rth mode shape for an Euler-Bernoulli beam is given by:

𝜙r(x) = C1 cosh(𝜆rx) + C2 sinh(𝜆rx) + C3 cos(𝜆rx) + C4 sin(𝜆rx) (16)

where constants C1 to C4 are found from the boundary conditions and

𝜆4
r
=

𝜌A𝜔2
r

EI
(17)

where 𝜌 is the material density, A is the cross-sectional area, E is the Young’s modulus, and I is second moment of inertia.

Due to the inherent trigonometric/hyperbolic nature of such mode shapes, certain relationships between Eq. (16) and its

higher order derivatives can be found. The trigonometric functions will repeat every fourth derivative, and the hyperbolic func-

tions every second, therefore:

𝜙(4)
r

= 𝜆4
r
𝜙r (18)

Hence, when using the forward/backward difference equations and the optimum spacing given in Eq. (13), by choosing n = 3 the

norm of the fourth derivative is required, meaning the finite difference equation can be optimised without any approximation.

The optimum spacing then simplifies to

𝛿F
min

= 1

𝜆r

(
80Mr

9‖𝜙r‖
)(

1

4

)
(19)

Following the same logic it is also possible to show that

𝜙(4k)
r

= 𝜆4k
r
𝜙r where k = 1, 2, 3,… (20)

meaning the exact value for dF
min

can be found for all finite differences of order n = 4k − 1.

3.2. A beam with arbitrary boundary conditions

Since no assumptions on the boundary conditions (BCs) of the beam were made, the above result may be applied to both

beam and beam like structures. Hence for validation purposes, a finite element model of a 0.5 m cylindrical beam of diameter

0.01 m (shown in Fig. 2 section A) was constructed, and extended in both directions to give arbitrary BCs. One boundary (B1)

was comprised of a 0.5 m square beam of 0.02 m width pinned at one end, whilst the other (B2) consisted of a 0.3 m cylindrical

beam of diameter 0.02 m fixed at one end. The eigenvalue problem was solved over the whole beam and a normal mode model

extracted across section A, which contained 501 equally spaced nodes. The response to an impulse, applied at boundary B1, with

maximum amplitude of 1 N and time step of 1.25 × 10−5 s, was then simulated for each of the 501 nodes.
Fig. 2. The geometry and boundary conditions of a beam used for numerical validation of error analysis.
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Fig. 3. Flow chart detailing the process followed to calculate optimum spacings 𝛿min (left hand side) in numerical investigation, and total error eT (right hand side) for

numerical validation of error analysis.

3.3. Numerical validation

Since noise and error in measurement is random and varies from test to test and from signal to signal, a statistical investiga-

tion is needed to validate the error analysis.

Firstly, using the result given in Eq. (19) the optimum spacings for the first 5 bending modes were calculated by following the

process shown on the left hand side of the diagram in Fig. 3. To each of the 501 time domain response signals (yi(t)) and the input

force signal (f j(t)), white Gaussian noise with a signal to noise ratio (SNR) of 50 dB was added, and the Fourier transform (Ỹi(𝜔),
F̃i(𝜔)) calculated. In the frequency domain, alignment error between the input force and measured response was simulated by

multiplying the force signal by a cosine error (Fj(𝜔) = F̃i(𝜔) cos 𝛽), where 𝛽 is normally distributed with mean 3 and standard

deviation of 0.625, based on the data given in Ref. [14]. Then, from the FRFs, curves were fitted between 0 Hz and 1500 Hz and

the measured mode shapes (𝜙rm) extracted. The measurement perturbation bound (Mr) was found as the Euclidean norm of

the difference between the extracted mode shapes (𝜙rm) and the ‘perfect modes’ (𝜙r) from the finite element model. This gave

optimum spacings of 0.0481 m, 0.04 m, 0.0282 m, 0.0245 m, and 0.0225 m for the first five modes.

Secondly, the finite difference equation was applied at fifty 𝛿 values between 0.001 m and 0.05 m, by following the right

hand side of the diagram in Fig. 3. For a particular value of 𝛿, i = 0.5/𝛿 + 1 time domain response signals were extracted from

the FD model. Measurement noise, sensor alignment, and curve fitting errors were introduced as above and the measured mode

shapes extracted. Then, the finite difference equation was applied and the total error (eT) calculated as

eT = |||𝜙(1)
r
(x) − D𝛿𝜙rm(x)

||| (21)
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Fig. 4. Results of the numerical validation using a beam with arbitrary boundary conditions for the first 5 bending modes (a)–(e) using the n = 3 forward FD equation:

Spacing (𝛿) vs. Total error mean (—) (and 95% confidence interval) as well as predicted optimum spacing 𝛿min (- -).
This was repeated 500 times to give a sufficiently large population of errors for each of the spacings, from which a random

sample of 50 was taken and a 95% confidence interval calculated.

3.4. Results and discussion

The results of the numerical validation are presented in Fig. 4a–e for modes 1–5 respectively. In each case, the total error

(eT) mean is shown with its confidence interval. The figures show that by using the 𝛿min value calculated by the optimisation

method, the error can be minimised, thus validating the approach. For each mode, values below 𝛿min give rise to much higher
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mean errors, showing that the likelihood of the perturbation propagation error will affect the solution rapidly increases as 𝛿
shrinks. Contrastingly, as 𝛿 becomes larger, the likelihood of the truncation error effecting the solution increases, albeit more

gradually than for the propagation error. From this it is sensible to conclude that when 𝛿min is unknown, a larger 𝛿 value is more

likely to give accurate results. The gradient of the curves increases with wave number, which implies greater sensitivity to the

spacing 𝛿. This is to be expected as the n = 3 finite difference equation becomes less accurate as the frequency of the wave

increases.

Whilst encouraging, this numerical example suffers from two drawbacks. First, the result appears to be restricted to the use

of a 3rd order finite difference scheme (Table B.3). Second, the measurement perturbation bound has been assumed to be known

perfectly, which is of course impossible in a practical scenario. These issues will be dealt with in Section 4 and 5 respectively.

4. Evaluating other high order derivative norms

Whilst it is advantageous to use the n = 4k − 1 forward/backward difference equation, as ‖𝜙(p)
r ‖ can be evaluated exactly, it

may not always be practicably beneficial. In this case, a method to approximate ‖𝜙(p)
r ‖ from the standard modal model (𝜙r , 𝜔r)

must be found. It will now be shown, using the same numerical example as above, that for forward/backward differences with

n = 1 and n = 2 a good approximation to the optimum spacing can be found using the following relationship:‖𝜙(p)
r ‖ ≈ 𝜆(p)

r ‖𝜙r‖ (22)

which yields optimum spacings approximately given by:

𝛿F
min

≈ 1

𝜆r

(
4Mr‖𝜙r‖

)(1∕2)

and 𝛿F
min

≈ 1

𝜆r

(
6Mr‖𝜙r‖

)(1∕3)

(23)

respectively.

Using the process outlined in Fig. 3 the same numerical investigation was carried out on the structure shown in Fig. 2, this

time using the approximate optimum spacings given in Eq. (23). The results for the first and fifth modes for the n = 1 and n = 2

forward difference equations are presented in Fig. 5a–d respectively.

The results follow the same trends as those of the n = 3 forward FD equations presented in section 3, with the propagation

error tending to infinity at small spacings, and the numerical error tending to infinity more gradually as 𝛿 increases. Most
Fig. 5. Results of the numerical validation using a beam with arbitrary boundary conditions: Spacing (𝛿) vs. Total error mean (—) (and 95% confidence interval) as well as

predicted optimum spacing 𝛿min (- -): (a) n = 1 forward difference: Mode 1 (b) n = 1 forward difference: Mode 5 (c) n = 2 forward difference: Mode 1 (d) n = 2 forward

difference: Mode 5.
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importantly, the approximate optimum spacings still result in the lowest total errors in each case meaning that by using the

approximate value for ‖𝜙(p)
r ‖ given in Eq. (22) it is possible to optimise the method for any finite difference equation.

5. Approximating the ‘perfect modes’

The above examples have assumed perfect knowledge of the measurement perturbation bound Mr , in that the mode shapes

𝜙r could be directly extracted from the finite element model. In practice, this information is unknown and must somehow be

approximated. The example from section 3 is now revisited, allowing the high order norm ‖𝜙(p)
r ‖ to be calculated explicitly,

leaving the only error in approximating the ‘perfect modes’ 𝜙r .

Assuming that the measurement perturbation (𝜙r) at any location x has a random distribution, the mode shapes 𝜙r(x) may

be approximated as the mean of a set of K measured mode shapes {𝜙rm1(x), 𝜙rm2(x),… , 𝜙rmK(x)}, i.e.

𝜙r(x) ≈ 𝜇r(x) = 𝜇
(
𝜙rm1(x), 𝜙rm2(x),… , 𝜙rmK(x)

)
(24)

where 𝜇r(x) is the mean at location x of the rth mode. This approximation should improve as K → ∞.

In order to approximate the bound Mr it is also assumed that the set of measured values {𝜙rm1(x), 𝜙rm2(x),… , 𝜙rmK(x)} is

also normally distributed. It is well known that 95% of values from any normally distributed variable lie within the range 𝜇 ± 2𝜎,

where 𝜎 is the standard deviation. Therefore, considering the measurement perturbation defined in Eq. (7), it can be deduced

that approximately 95% of the values of 𝜙r lie within the following region

[𝜙r(x)]95% = [𝜙rm(x) − 𝜙r(x)]95% ≈ (𝜇r(x) ± 2𝜎r(x)) − 𝜇r(x) ≈ ±2𝜎r(x) (25)

Substituting this into the measurement perturbation bound defined in Eq. (9) an approximation on Mr can be found:‖2𝜎r‖ ≤ Mr (26)

The accuracy of which should improve with the number of measurements K.

Before discussing the effect of this approximation on 𝛿min, the assumptions made above are discussed. It is a perfectly valid

assumption that measurement error such as noise will be randomly distributed; however, errors such as curve fitting (especially
Fig. 6. Histograms of 1000 measured mode shapes (𝜙r) with normal density function: (a) Mode 1 at location x = 0 m with 𝜇1(x = 0) = 0.2953 and 𝜎1(x = 0) = 0.032 (b)

Mode 1 at location x = 0.25 m with 𝜇1(x = 0.25) = 0.6146 and 𝜎1(x = 0.25) = 0.032 (c) Mode 5 at location x = 0 m with 𝜇5(x = 0) =−0.5037 and 𝜎5(x = 0) = 0.031 (d) Mode

5 at location x = 0.25 m with 𝜇5(x = 0.25) = −0.4195 and 𝜎5(x = 0.25) = 0.033.
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Fig. 7. The effect of sample size (or number of measurement repetitions) on 𝛿min prediction for mode 1 (a) and mode 5 (b).

Fig. 8. A free-free beam of length 0.5 m, diameter 0.01 m, with 11 equally spaced measurement locations, used for experimental validation of error analysis.
if the process is automated) may be more systematic in nature and will effect the accuracy of this approximation. The validity

of the second assumption, that a set of measured mode shapes at any location x is normally distributed, is now demonstrated

using the example given in section 3. To the finite element mode shapes 𝜙r noise, misalignment, and curve fitting errors were

introduced as before. This was then repeated 1000 times to represent K = 1000 experimental repetitions. The data sets at

x = 0 m and x = 0.25 m were extracted and individual histograms generated. The results for modes 1 and 5 are plotted in Fig. 6,

along with the normal density function generated using the associated 𝜇 and 𝜎. The figures demonstrate that independent of

wave number or measurement location, the measured data sets all have a (roughly) normal distribution, thus validating the

assumption made above.

The impracticality of repeating an experiment 1000 times would obviously render the method worthless; therefore, the

above approximation must now be validated for small values of K. Consequently, the numerical investigation from section 3

was repeated, yielding 𝛿min values of 0.0481 m and 0.0225 m for the first and fifth bending modes respectively.
Fig. 9. Flow chart detailing the experimental process for calculation of optimum spacings.
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Fig. 10. Flow chart detailing the process used to experimentally validate error analysis.
Additionally, from the 1000 sets of measured modes, a random sample of size K = 3 were extracted. Using this sample 𝛿min

was calculated for the first and fifth bending modes (r = 1, 5) using the following result:

𝛿F
min

= 1

𝜆r

(
80‖2𝜎r‖

9‖𝜇r‖
)( 1

4
)

(27)

This process was then repeated for sample sizes between K = 3 and K = 1000. The approximate 𝛿min values are plotted against

the expected values (0.0481 m, and 0.0225 m) in Fig. 7. The figures clearly show that increasing the sample size (i.e. the number

of measurement repetitions) increases the accuracy of the approximation as expected. In both cases, the data tends to a value at

or near the expected 𝛿min value. However, even with very small sample sizes of K = 3, the prediction is accurate to within 0.62%

for mode 1 and 0.81% for mode 5; thus, yielding inaccuracies of just +0.14 mm and −0.39 mm respectively. Due to the accuracy

in these approximations the optimum spacings given in Eqs. (13) and (14) are redefined such that:

𝛿F
min

≈ 1

𝜆r

(‖2𝜎r‖‖𝜇r‖
n∑

k=0

|ak|
nT

) 1

n+1

𝛿C
min

≈ 1

𝜆r

(‖2𝜎r‖‖𝜇r‖
n∑

k=−n

|ak|
2nT

) 1

2n+1

(28)

where 𝜆r ≈ 𝜇(𝜆rm).
This section has concentrated on approximating the ‘perfect modes’ from a measured data set, showing that by obtaining

a very small number of mode shape measurements, it is possible to accurately calculate the optimum spacing. Thus far, the

effect of approximating the high order measurement norm (‖𝜙(p)
r ‖), and the effect of approximating the ‘perfect’ mode shapes

(𝜙r) have been discussed in isolation, using numerical examples. The next section, looks to utilise an experimental data set to

combine both approximations, and validate the effectiveness of the optimised finite difference method in practice.

6. Experimental investigation

This section experimentally validates the error analysis, utilising data from a free-free beam to demonstrate how effective

the optimum spacings can be in practice. The ‘perfect modes’ are approximated from three repetitions (i.e. K = 3), and the N = 1
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finite difference scheme is used to include the effect of approximating the high order norm. A free-free beam was chosen as an

example since the boundary conditions can be easily reproduced under test conditions; therefore, the finite difference results

can be compared with the analytical solutions to the beam equation.

6.1. Experimental calculation of optimum spacings

A cylindrical beam of length 0.5 m and diameter 0.02 m was suspended at each end using light strings to produce the

free-free boundary conditions. The beam had standard steel material properties (density 𝜌 = 7750 kg m−3, Young’s Modulus

E = 200 GPa) and standard geometry (cross section A = 3.14 × 10−4 m2, area moment of inertia I = 7.9 × 10−9 m4). The response

was measured with a single accelerometer at 11 equally spaced locations ({x1, x2,… , x11}) separated by 0.025 m, by striking

the beam at location 1 with an impulse hammer, as shown in Fig. 8.

In order to calculate the optimum spacing using only experimental data the process depicted in Fig. 9 was followed. An

experimental modal analysis was carried out on the data set to extract the measured mode shapes (𝜙rm) and natural frequencies

(𝜔rm), from which the eigenvalues were calculated as

𝜆4
rm

=
𝜌A𝜔2

rm

EI
(29)

considering only the first five bending modes. This was repeated three times, always replacing the accelerometer so as to include

location error in the data, resulting in three modal models. The optimum spacings for the n = 1 FD equation were then calculated

from the three repetitions, using the following result:

𝛿F
min

≈ 1

𝜆r

√
4‖2𝜎r‖‖𝜇r‖ (30)

giving 𝛿min values of 0.038 m, 0.055 m, 0.056 m, 0.032 m, 0.033 m for the first five modes respectively.

Placing an accelerometer at a location correct to the nearest 0.001 m is difficult in practice, and seeing as the accelerometer

has a width of 0.005 m, the five optimum spacings were averaged, and a value of 0.04 m used as the optimum spacing for all five

modes.

6.2. Experimental validation

The experimental data set included measurements at the eleven locations of interest {x1, x2,… , x11} as well as eleven finite

difference locations {x1 + 0.04 m, x2 + 0.04 m,… , x11 + 0.04 m}. The following process (outlined in Fig. 10) was performed for

validation purposes only, and would usually be unnecessary.

From the data set of twenty-two response signals, the measured mode shapes and eigenvalues were extracted, the FD equa-

tion applied to the mode shapes to obtain DF
𝛿
𝜙rm, and the eigenvalues were used with the solution to the beam equation to
Fig. 11. Bar chart comparing errors from experimental validation of error analysis at five spacings.
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construct an analytical model (𝜙r , and 𝜙(1)
r ). The input error to the finite difference equation was calculated as the difference

between the measured and analytical modes, whilst the output error was taken as the difference between DF
𝛿
𝜙rm and the ana-

lytical rotational modes (𝜙(1)
r ).

In this context, the aim is therefore to minimise the output error, compared to the input error, by adjusting the measurement

spacing 𝛿. To compare the optimum spacing with other arbitrary spacings, the process was repeated at four other spacings,

0.005 m, 0.01 m, 0.06 m, and 0.1 m, each time calculating both the input and output errors.

6.3. Results and discussion

The results of the experimental validation are presented in Fig. 11, which shows the ratio of the output error to the input

error averaged over the eleven locations, for each of the five spacing values. It can be seen that the optimum spacing (or a value
Fig. 12. Frequency Response Function plots comparing the real part of the rotation/moment FRF Pij(𝜔) for both analytical and experimental models: (a) location 1, mode 1

(b) location 1, mode 4 (c) location 6, mode 3 (d) location 6, mode 4 (e) location 11, mode 1 (f) location 11, mode 5.
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close to it) can significantly reduce the error of the finite difference method with non-exact data.

Of all the results plotted in Fig. 11, there is only one scenario (Mode 4, 0.01 m spacing) where the performance was better

than that for the optimum spacing. This may be because the correct spacing for this mode was actually calculated to be 0.032 m,

or it is also possible that, due to statistical variation in the data, the error for this mode in the 0.01 m spacing experiment was

significantly lower than in the others.

Using the calculated rotational mode shapes, for each of the five spacings, the rotational displacement/excitation moment

FRF, Pij(𝜔) (as given in Eq. (2)), was calculated. These experimental FRFs are compared with that of the analytical model in

Fig. 12, where six individual modes at three measurement locations across the length of the beam are presented. In each case,

the optimum spacing (40 mm) results in a significantly more accurate result, with the exception of mode 1 at location 1 (Fig. 12a),

where 10 mm spacing produced a highly accurate result. However, Fig. 12 also demonstrates the significant variability in the

results when using a nonoptimal spacing, as only 40 mm spacing produces repeatedly accurate results.

7. Conclusion

In structural dynamics, the measurement of rotational degrees-of-freedom has not evolved to the same extent as transla-

tional measurements, despite the need for rotational information in many engineering applications. It is, however, possible to

synthesise the rotational information from translational data, using numerical methods such as finite differences. Whilst the

application of such methods is seemingly simple, they are limited by the user’s choice of spacing. Reducing the spacing between

data points will, naturally, reduce the numerical error associated with the finite difference equation; however, the method also

becomes unstable when the spacing is reduced, as small perturbations in the input data propagate through the method causing

large errors in the output data.

In the present study, an analytical error analysis has been presented to prove the instability of the finite difference method

when using non-exact data. Then, a new optimum spacing, which balances the numerical and propagation errors, has been

proposed. The method uses the general form of the beam equation and its higher order derivative norms, but does not require

any analytical parameters and requires only that the structure exhibits beam-like dynamic behaviour. The method is exact

for finite difference equations of the order n = 4k − 1, where the derivative norm can be evaluated exactly. For other finite

difference equations, it has been observed that a good approximation can still be found. The method also requires knowledge

of the measurement error for the experimental mode shapes. It has been shown that in practice this measurement error can be

easily approximated by performing just three repeat measurements of the translational mode shapes. Consequently, the method

is straightforward to implement in practice and has minimal additional experimental or computation cost compared to a naive

approach.

Results from a numerical investigation on a beam with arbitrary boundary conditions have been used to validate the error

analysis and demonstrate the effectiveness of the derivative approximations. An experimental study has also been performed to

demonstrate how the optimised finite difference method may be used in practice. A comparison of errors, at optimal and non-

optimal spacings, shows that the presented method can significantly reduce the error when using the finite difference method

with non-exact data.
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Appendix A. Finite difference derivation

Using Taylor’s theorem it is possible to derive a bound on the truncation error of the finite difference equation given in Eq.

(3). The theorem states that if a real valued function 𝜙r(x) is differentiable at point x, then a linear approximation to the function

at point x + 𝛿, where 𝛿 is a real positive constant, can be found as:

𝜙r(x + 𝛿) = 𝜙r(x) + 𝛿𝜙(1)
r
(x) + 𝛿2

2
𝜙(2)

r
(x) + · · · (A.1)

Eq. (A.1) can be rearranged to give an approximation of the first derivative at point x (𝜙(1)
r (x)):

𝜙(1)
r
(x) = 𝜙r(x + 𝛿) − 𝜙r(x)

𝛿
− 𝛿

2
𝜙(2)

r
(x) + · · · (A.2)

resulting in the well known first order forward finite difference equation. Substituting for the forward finite difference operator

DF
𝛿

we have that

𝜙(1)
r
(x) = DF

𝛿
𝜙r(x) −

𝛿

2
𝜙(2)

r
(x) + · · · (A.3)
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Rearranging and taking the absolute value, the error associated with the finite difference approximation is found from the first

truncation term in the Taylor series|||𝜙(1)
r
(x) − DF

𝛿
𝜙r(x)

||| = ||||𝛿2𝜙(2)
r
(x) + · · ·

|||| (A.4)

Using the well known subadditivity property of the absolute value (|a + b| ≤ |a| + |b|) it is found that|||𝜙(1)
r
(x) − DF

𝛿
𝜙r(x)

||| ≤ 𝛿

2

|||𝜙(2)
r
(x)||| + · · · (A.5)

Since the value of 𝜙(2)
r (x) is unknown, a bound on the error can be found by taking the Euclidean norm of the function 𝜙(2)

r .|||𝜙(1)
r
(x) − DF

𝛿
𝜙r(x)

||| ≤ 𝛿

2
‖𝜙(2)

r
‖ (A.6)

where ‖𝜙(2)
r ‖ is the Euclidean norm of the vector 𝜙(2)

r .

Appendix B. Tables
Table B.1

Finite difference formulae with coefficients for optimisation for n = 1 points.

n = 1 Formula Accuracy
∑|ak| T

Backward
𝜙(x) − 𝜙(x − 𝛿)

𝛿
O(𝛿) 2 1/2

Forward
𝜙(x + 𝛿) − 𝜙(x)

𝛿
O(𝛿) 2 1/2

Central
𝜙(x + 𝛿) − 𝜙(x − 𝛿)

2𝛿
O(𝛿2) 1 1/6

Table B.2

Finite difference formulae with coefficients for optimisation for n = 2 points.

n = 2 Formula Accuracy
∑|ak| T

Backward
3𝜙(x) − 4𝜙(x − 𝛿) + 𝜙(x − 2𝛿)

2𝛿
O(𝛿2) 4 1/3

Forward
−3𝜙(x) + 4𝜙(x + 𝛿) − 𝜙(x + 2𝛿)

2𝛿
O(𝛿2) 4 1/3

Central
−𝜙(x + 2𝛿) + 8𝜙(x + 𝛿) − 8𝜙(x − 𝛿) + 𝜙(x − 2𝛿)

12𝛿
O(𝛿4) 3/2 1/30

Table B.3

Finite difference formulae with coefficients for optimisation for n = 3 points.

n = 3 Formula Accuracy
∑|ak| T

Backward
11𝜙(x) − 18𝜙(x − 𝛿) + 9𝜙(x − 2𝛿) − 2𝜙(x − 3𝛿)

6𝛿
O(𝛿3) 20/3 1/4

Forward
−11𝜙(x) + 18𝜙(x + 𝛿) − 9𝜙(x + 2𝛿) + 2𝜙(x + 3𝛿)

6𝛿
O(𝛿3) 20/3 1/4

Central (⋆) O(𝛿6) 5/3 1/150

(⋆) 𝜙(x + 3𝛿) − 9𝜙(x + 2𝛿) + 45𝜙(x + 𝛿) − 45𝜙(x − 𝛿) + 9𝜙(x − 2𝛿) − 𝜙(x − 3𝛿)
60𝛿
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