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Rationale: The doubly labelled water (DLW) method is the reference method for the estimation

of free‐living total energy expenditure (TEE). In this method, where both 2H and 18O are employed,

different approaches have been adopted to deal with the non‐conformity observed regarding the

distribution space for the labels being non‐coincident with total body water. However, the method

adopted can have a significant effect on the estimated TEE.

Methods: We proposed a Bayesian reasoning approach tomodify an assumed prior distribution

for the space ratio using experimental data to derive theTEE. A Bayesian hierarchical approach was

also investigated. The dataset was obtained from 59 adults (37 women) who underwent a DLW

experiment during which the 2H and 18O enrichments were measured using isotope ratio mass

spectrometry (IRMS).

Results: TEE was estimated at 9925 (9106‐11236) [median and interquartile range],

9646 (9167–10540), and 9,638 (9220–10340) kJ·day−1 for women and at 13961 (12851–

15347), 13353 (12651–15088) and 13211 (12653–14238) kJ·day−1 for men, using normalized

non‐Bayesian, independent Bayesian and hierarchical Bayesian approaches, respectively. A

comparison of hierarchical Bayesian with normalized non‐Bayesian methods indicated a

marked difference in behaviour between genders. The median difference was −287 kJ·day−1

for women, and −750 kJ·day−1 for men. In men there is an appreciable compression of the

TEE distribution obtained from the hierarchical model compared with the normalized

non‐Bayesian methods (range of TEE 11234–15431 kJ·day−1 vs 10786–18221 kJ·day−1).

An analogous, yet smaller, compression is seen in women (7081–12287 kJ·day−1 vs

6989–13775 kJ·day−1).

Conclusions: The Bayesian analysis is an appealing method to estimate TEE during DLW

experiments. The principal advantages over those obtained using the classical least‐squares

method is the generation of potentially more useful estimates of TEE, and improved handling

of outliers and missing data scenarios, particularly if a hierarchical model is used.
1 | INTRODUCTION

The doubly labelled water (DLW) technique of indirect calorimetry for

the estimation of total energy expenditure (TEE) was originally sug-

gested by Lifson et al1 and applied to use in humans some
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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time later.2,3 It is now a well‐established method and considered a

gold‐standard for the measurement of TEE under free‐living conditions.4

The main assumptions of the DLW method originally provided by

Lifson and McClintock5 have been more recently summarized and

scrutinized by Coward and Cole,6 who concluded that, whilst none

of the six basic assumptions were true, at least the imperfections were

manageable.
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Although at least three important works describing the principles and

practices of the DLW method, striving to promote universal consistency,

have been produced, there is still some non‐uniformity in the calculations

adopted by workers at different laboratories. This is particularly the case

for corrections for fractionation (Assumptions 1 to 3 for space ratios and

Assumption 5 are discussed by Coward and Cole6). The major difficulty

in dealing with fractionation is the estimation of the proportion of water

that undergoes phase change (from liquid to vapour) before being lost

from the body. This is to some extent dependent on the environment

of subjects and their physical activity and this needs to be considered

within a given experimental paradigm.

The approach adopted for the space ratio, however, is less open to

modulation by the experimental environment. When body water is

estimated from an isotope dilution experiment, the value obtained is

an over‐estimate by a factor of approximately 4% if 2H is used or about

1% when 18O is employed. For 2H, this is attributed to the exchange

with labile hydrogen atoms, principally from proteins and lipids.7

The 18O pool size exceeds that of the body water pool, not only

because of the exchange with dissolved CO2 and bicarbonate,8 which

is fundamental to the principle of the DLW method, but also because

of exchange with bone mineral and other deep pools. The practical

consequence of this is that neither the accessible 2H nor the 18O

volumes of distribution (pools) are coincident with the total body

water, and furthermore there is a measurable difference between

the apparent volumes into which the two isotopes are distributed.

These issues are discussed by Coward9 alongside the recommendation

of Schoeller et al.,10 that a fixed ratio of 1.03 (later revised to 1.03411

and further to 1.03611) between the 2H space (NH) and the 18O space

(NO) be adopted. It is suggested that the experimental space ratio should

be used as a screen for the quality of the DLW data, with values lying

outside the range of between 1.015 and 1.060 indicating potential

dosing error or analytical error. If the spaces have been deduced from

back‐extrapolation of a linear fit to the semi‐logarithmically transformed

curves of disappearance, the experimental values should be used

directly. On the other hand, if the spaces are deduced from enrichments

in the first few hours post‐dose (the plateau method) with flux derived

separately, the suggestion of Schoeller et al. should be adopted and

the pool sizes combined to achieve the desired ratio. In practice, this is

achieved by weighting the experimentally obtained values according to:

NH corrð Þ ¼ 1
2
NH obsð Þ þ 1:03NO obsð Þð Þ (1)

NO corrð Þ ¼ 1
2

NH obsð Þ
1:03

þ NO obsð Þ
� �

(2)

Speakman12 discusses comprehensively the correctness of this

approach, with the tentative conclusion that in humans the fixed ratio

approach should be used, but with a modified coefficient derived from

the mean experimental ratio found for the given sub‐population

under study.

The International Atomic Energy Agency (IAEA)13 advocates

universal adoption of the equations:

NH corrð Þ ¼ 1:041×
1
2

NH obsð Þ
1:041

þ NO obsð Þ
1:007

� �
(3)
NO corrð Þ ¼ 1:007×
1
2

NH obsð Þ
1:041

þ NO obsð Þ
1:007

� �
(4)

which fixes the space ratio at a value of 1.034, as suggested by

Racette et al.14

The consequences of the decision to normalize the space ratios

are not trivial and affect the estimation of the TEE. Clearly, decisions

made in deriving the TEE from the experimental isotope enrichments

are important, and yet are frequently undocumented in publications.

In this work, we develop the estimation of TEE further. Previously,

we demonstrated the use of Bayesian methods in modelling gastric

emptying,15,16 and their use in other tracer methods have been

assessed.17 For doubly labelled water, Bayesian methods are very

attractive as there is a considerable amount of prior knowledge for

any experiment. Apart from the space ratio, which can be assigned a

distribution, approximate values for water turnover and lean body

mass can be predicted a priori from anthropometric parameters.

The aim of the present study was therefore to develop and

implement a more informative Bayesian model for the calculation of

TEE. A convenient implementation of Bayesian statistics employing

Monte Carlo Markov Chain algorithms is provided by the WinBUGS

package18 used in this work.
2 | EXPERIMENTAL

2.1 | Data and instrumentation

The data used for this study was taken from the Adults aged 19–

64 years NDNS survey of 1999–2000.19 Isotope ratios were measured

using isotope ratio mass spectrometry (AP2003 mass spectrometer;

Analytical Precision, Manchester, UK, with an analytical precision better

than ±0.12 ‰, for δ18O values and Aqua‐SIRA mass spectrometer, VG

Isogas, Middlewich, UK, with an analytical precision of ±1.5 ‰, for

δ2H values) using equilibration methods for oxygen20 and reduction

over uranium for hydrogen.21 All data are expressed relative to the

international standard Vienna Standard Mean Ocean Water (vSMOW).

2.2 | Non‐Bayesian equations for RCO2
determination

Non‐normalized RCO2
has been calculated using the equation of

Coward:22

RCO2
¼ kONO−kHNH−27:3 f2−f1ð Þ

2f3 þ 1:1 f2−f1ð Þ

where k and N refer to the rate constant and pool size, respectively,

with subscripts to indicate the isotope.

However, normalized RCO2
has been calculated using the equation

of Schoeller et al:10

RCO2
¼ kONO−kHNH

2f3 þ 2:1 f2−f1ð Þ

where k refers to the rate constant, N refers to the normalized pool

size which fixes the space ratio at 1.03, and the subscripts indicate

the isotope.

The fractionation factors f1, f2 and f3 are given as 0.941, 0.991 and

1.037, respectively.
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2.3 | Re‐parameterization of the DLW equations

For ease of model specification in the Bayesian environment, the first

step is to re‐cast the DLW equations such that the observed mass

spectrometric enrichments are expressed in terms of the parameters

of physiological relevance. Since it is assumed that for all stable isotopes

employed, including 2H and 18O, elimination from the body follows

first‐order kinetics, the expression for the MS‐derived enrichment

of each isotope at time t is of the form:

δ tð Þ ¼ DT δdd−δTð Þ
18:02Nd

exp −ktf g þ δb (5)

In deriving Equation 5, it is assumed that the usual method of

combining the δ‐values (‰) of the sample of body water, δ(t) with

the basal (pre‐dose) value δb, and that of a diluted sample of the dose,

δdd, made by adding d grams to a quantity T, of naturally abundant

water of known enrichment δT is used. The actual dose administered

to the subject is D grams, the isotope space is denoted N (mol), and

the fractional rate constant of elimination labelled as k (day−1).

The DLW technique combines the data from the two isotopes 2H

and 18O to derive essentially four parameters: the CO2 product (R):*

RCO2
¼ α1 kONO−kHNHð Þ þ α2 (6)

the space ratio, S

S ¼ NH

NO
(7)

The water turnover, RW

RW ¼ β1kHNH þ 1−β1ð ÞkONO þ β2 (8)

and the fraction of body fat F

F ¼ 1−
γ1
W
NH−

γ2
W
NO (9)

where the subject's body weight is W, and α1, α2, β1, β2, γ1 and γ2 are

constants that depend upon the fractionation model employed. The

parameter F is not necessary to calculate the TEE in this model, but

its inclusion allows a further useful outcome from the 2H dataset.

The Total Energy Expenditure (TEE) is derived from RCO2
as

proposed by the modified Weir equation:23

TEE ¼ 22:4×
15:48
RQ

þ 5:55

� �
RCO2

(10)

In this instance, we assumed a common respiratory quotient,

RQ = 0.85 for all subjects, and therefore, TEE bears a constant ratio

to RCO2 with a constant of proportionality equal to 532.

Using simple algebra (see section S1, supporting information):

NH ¼ WS 1− Fð Þ
γ1Sþ γ2

(11)

kH ¼ γ1Sþ γ2ð Þ
W 1− Fð Þ

α1 Rw−β2ð Þ− 1−β1ð Þ RCO2
−α2ð Þ½ �

α1S
(12)

NO ¼ W 1− Fð Þ
γ1Sþ γ2

(13)
kO ¼ γ1Sþ γ2ð Þ
W 1− Fð Þ

α1 Rw−β2ð Þ þ β1 RCO2
−α2ð Þ½ �

α1
(14)

The derivation of Equations 11–14 allows values to be sampled

from prior distributions of the physiologically relevant parameters to

make predictions of the observed kinetics. This therefore allows

the generation of Bayesian estimates of the model parameters that

derive TEE.

2.4 | Choice of priors

In Bayesian analysis, the choice of priors for the physiological parameters

of interest is of paramount importance; for the DLW model described

here, vague (non‐informative) priors have been adopted for the

parameters RCO2
; Rw and F,

0<RCO2<100mol=day RCO2∼dunif 0;100ð Þ
0<RW<1000mol=day RW∼dunif 0;1000ð Þ
0< F<1 F∼dunif 0;1ð Þ

These priors allow the iterations to adopt values for these parameters

that are almost entirely data driven. Note that a slightly different approach

is used for the space ratio S. According to our prior knowledge, we

suggested that S had a prior distribution that was normal, with a mean

of 1.035 and with a standard deviation of 0.01 (precision = 10000),

giving 99% confidence limits of 1.005 and 1.065. Therefore:

S∼dnorm 1:035;10000ð Þ:

All the measured δ values were assumed to be normally distributed

about the experimental value, with a prior standard deviation of 2‰ for
2H and 0.5 ‰ for 18O.

For the additional hierarchical analysis (see section S2, supporting

information), hyper‐parameters (population parameters) adopt these

distributions with the individual parameters drawn from them and

associated with normal distributions:

RCO2
i½ �∼dnorm RCO2

; tauRCO2

� �
tauRCO2

∼dgamma 0:01;0:01ð Þ
Rw i½ �∼dnorm Rw; tauRwð Þ tauRw∼dgamma 0:01;0:01ð Þ
F i½ �∼dnorm F; tauFð Þ tauF∼dgamma 0:01;0:01ð Þ
S i½ �∼dnorm S; tauSð Þ tauS∼dunif 1;100000ð Þ

The between‐subject variance for the space ratio again reflects

the richness of prior information for this variable.

2.5 | Implementation in WinBUGS and description of
datasets

For an initial investigation of the performance of the Bayesian

methods, the three subjects used as examples given by Cole and Coward

in Prentice9 were used as the error structures of various models used to

interpret these data and are extensively discussed. Unfortunately, no

anthropometric parameters are given for these examples, so an arbitrary

weight of 70 kg was assigned to each subject. A second investigation

used the same model as the first, but took as the dataset a cohort

of 59 adults aged between 19 and 64 years, including 37 women

and 22 men.
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WinBUGS was installed on a 32‐bit standard laptop (Latitude

E5410, Dell Computers Ltd, Bracknell, UK) running Windows 7

(Microsoft Corp., Redmond, WA, USA). For this application, 50,000

iterations were employed in the Markov Chain, with the first 4000

being discarded since they were regarded as 'burn in'. The code was

written such that data for the 59 subjects in the large dataset were

analyzed in a single programme run, which took 791 seconds. Whilst

it was possible to analyze all 59 adults in a hierarchical fashion, we

chose to perform a separate hierarchical analyses for men and women

as the CO2 production rates and body compositions were expected to

be drawn from different global distributions. Hierarchical analysis took

257 seconds for the 37 women and only 152 seconds for the 22 men.
FIGURE 1 Bland‐Altman plot of Total Energy Expenditure obtained
using non‐normalized and normalized body water spaces in 37 adult
women and 22 adult men [Color figure can be viewed at
wileyonlinelibrary.com]
3 | RESULTS

Table 1 compares the results of the Bayesian analysis with those

obtained by least‐squares analysis. In preparing this table, the results

given in Table 11.2 of Prentice9 have been used to estimate TEE using

the equations given in the first section. For all three subjects the

Bayesian analysis returned estimates of TEE with uncertainty in the

range from 4 to 8%. This is comparable with the estimated error

obtained from logarithmic least‐squares by the method of Cole and

Coward,24 which we calculate as 3.7%, 3.5% and 8.5% for subjects 1,

2 and 3, respectively.
TABLE 1 Results of parameter estimations obtained for three subjects usi

Subject 1

Logarithmic Poisson

Natural Normalized Natural Normaliz

NH 2528 2531 2524 2525

NO 2451 2448 2444 2443

kH 0.0828 0.0828 0.0831 0.0831

kO 0.1078 0.1078 0.1082 0.1082

S 1.032 1.034 1.033 1.034

RCO2
(mol.day−1) 25.05 24.81 25.08 24.95

TEE (kJ.day−1) 13331 13202 13349 13278

Subject 2

Logarithmic Poisson

Natural Normalized Natural Normaliz

NH 2711 2720 2712 2711

NO 2640 2631 2620 2622

kH 0.1149 0.1149 0.1148 0.1148

kO 0.1349 0.1349 0.1363 0.1363

S 1.027 1.034 1.035 1.034

RCO2
(mol.day−1) 20.38 19.34 20.89 21.10

TEE (kJ.day−1) 10846 10294 11114 11230

Subject 3

Logarithmic Poisson

Natural Normalized Natural Normaliz

NH 1856 1811 1846 1794

NO 1708 1752 1686 1735

kH 0.0892 0.0892 0.0899 0.0899

kO 0.1342 0.1342 0.1358 0.1358

S 1.087 1.034 1.095 1.034

RCO2
(mol.day−1) 29.20 33.87 28.98 34.33

TEE (kJ.day−1) 15542 18024 15425 18271
When isotope data for a cohort of 37 women and 22 men was

analyzed using classical least‐squares methods, the space ratio was

found to vary between 1.010 and 1.069, with the majority falling in

the ‘acceptable range’ judged by the criterion of Prentice.9 Using

Coward's analysis, the mean estimates of TEE obtained using
ng different models for deriving pool sizes and rate constants

Exponential WinBUGS

ed Natural Normalized Mean σ CV

2519 2520 2526 9 0.4%

2438 2437 2446 10 0.4%

0.0834 0.0834 0.0838 0.0004 0.5%

0.1088 0.1088 0.1098 0.0006 0.6%

1.034 1.034 1.033 0.005 0.5%

25.23 25.21 25.99 1.15 4.4%

13429 13417 13830 611 4.4%

Exponential WinBUGS

ed Natural Normalized Mean σ CV

2712 2701 2714 14 0.5%

2603 2613 2622 12 0.4%

0.1148 0.1148 0.1149 0.0008 0.7%

0.1382 0.1382 0.1412 0.0009 0.7%

1.042 1.034 1.035 0.006 0.6%

22.11 23.34 26.72 1.96 7.3%

11768 12423 14220 1043 7.3%

Exponential WinBUGS

ed Natural Normalized Mean σ CV

1839 1773 1822 12 0.7%

1651 1715 1720 13 0.8%

0.0903 0.0903 0.0904 0.0008 0.9%

0.1398 0.1398 0.1482 0.0022 1.5%

1.114 1.034 1.059 0.008 0.7%

29.78 36.77 41.66 2.11 5.1%

15845 19571 22170 1122 5.1%

http://wileyonlinelibrary.com


FIGURE 2 The effect of normalization of the space ratio on estimated
TEE [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 The physiological parameters (median and range) obtained from

Non‐normalized non‐Bayesian Norma

S Womena 1.037 (1.010–1.058) 1.035
Menb 1.041 (1.016–1.069) 1.035
Combinedc 1.037 (1.010–1.069) 1.035

F (%) Womena 37.6 (23.2–51.8) 37.6
Menb 27.4 (11.1–40.0) 27.4

RCO2
(mol.day−1) Womena 18.1 (12.8–23.8) 18.7

Menb 25.9 (18.2–31.6) 26.2

TEE (kJ.day−1) Womena 9589 (6803–12664) 9925
Menb 13788 (9668–16827) 13961

aN = 37; bN = 22; cN = 59.

FIGURE 3 The space ratios for the pooled
subjects obtained from non‐normalized non‐
Bayesian, independent Bayesian, and
hierarchical Bayesian analyses [Color figure
can be viewed at wileyonlinelibrary.com]
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non‐normalized (natural) spaces were 9741 (women) and 13951

(men) kJ·day−1. When the space ratio was normalized, however, the

corresponding estimates of TEE became 10080 (women) and 14573

(men) kJ·day−1. Normalization, therefore, increased the population

estimate of TEE by approximately 4%.

The effects of normalization on the individual estimates of TEE are

shown in Figure 1. From Figure 2 it is apparent that normalizing the

space ratio decreases the estimated TEE if the natural space ratio is

less than the target normalization, whilst the TEE is increased if the

space ratio is more than the target normalization. Furthermore, this

effect is highly linear.

When the independent Bayesian method was applied, as

expected, the continuous distribution of individual median estimates

of space ratios decreased (Table 2). A further reduction in the width

of the distribution is achieved by specifying a hierarchical model

(Figure 3). Since the distribution of space ratios was not found to be

gender‐specific (Figure 2), the results for the women and men have

been combined in Figure 3. The posterior distributions are drawn in
the isotope data under the various methods of analysis

lized non‐Bayesian Independent Bayesian Hierarchical Bayesian

1.036 (1.022–1.047) 1.037 (1.028–1.043)
1.037 (1.025–1.050) 1.040 (1.031–1.050)
1.036 (1.022–1.050) 1.038 (1.027–1.049)

(23.2–51.8) 37.7 (23.2–51.6) 37.7 (23.2–51.6)
(11.1–40.0) 27.4 (11.0–40.0) 27.4 (11.2–40.0

(13.1–25.9) 18.1 (13.0–24.3) 18.1 (13.3–23.1)
(20.3–34.2) 25.1 (18.9–32.7) 24.8 (21.1–29..0)

(6989–13775) 9646 (6898–12920) 9638 (7081–12287)
(10786–18221) 13353 (10080–17378) 13211 (11234–15431)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 4 The prior (dotted line) and posterior distributions for the
independent Bayesian analysis (thin line) and hierarchical Bayesian
analysis (heavy line). Also shown is the distribution found from the
hierarchical analysis for the hyperparameter Sg
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Figure 4, along with the prior for comparison. Under the hierarchical

analysis, a distribution is also obtained for the hyperparameter, Sg,

which was found to have a mean value of 1.0382, and a standard

deviation of 0.0016. Plate model descriptions are found in Figure 5.

Figure 6 shows observed and estimated 18O isotopic enrichments

drawn from the data supplied from subject 3.
3.1 | Independent Bayesian model

Independent Bayesian modelling of TEE gives results that correlate

highly with those from normalized non‐Bayesian methods (overall

r2 = 0.96). This is expected as they are conditional on the data.

However, an informative comparison is obtained from a Bland‐Altman

plot.25 These results indicate that, overall, there is little difference

between the two methods. However, for some individuals the

discrepancy between normalized non‐Bayesian and independent
Bayesian methods is not insignificant. The limits of agreement

between the normalized non‐Bayesian and Bayesian methods are

much wider for men (−1296 to +1367 kJ·day−1) than for women

(−750 to +660 kJ·day−1).
3.2 | Hierarchical Bayesian model

When a hierarchical Bayesian analysis is compared with the normalized

non‐Bayesian results, there is a marked difference in behaviour

between the women and the men. For the men there is an appreciable

compression of the distribution obtained from the hierarchical

model compared with standard methods (range of TEE is 11234–

15431 kJ·day−1 compared with 10786–18221 kJ·day−1). This is

understandable because extremes are drawn into the middle of the

population distribution (under the assumption of exchangeability).

Although an analogous compression is seen for the women, it is not

of such magnitude (Table 2). This compression for men is very

apparent in the Bland‐Altman comparison of the two methods, where

a pronounced slope is observed on the plot, due to subjects with a

low TEE tending towards negative difference and those with a high

TEE tending towards a highly positive difference. The summary statistics

for the comparison suggest a median difference of −287 kJ·day−1 for

women and of −750 kJ·day−1 for men. Again, the limits of agreement

are narrower for women than for men (a range of −92 to

+1488 kJ·day−1 for women compared with −448 to +2790 kJ·day−1

for men). Since TEE is a derived variable in the Bayesian model, no

estimates of a hyperparameter are obtained directly. However, in this

work, we have chosen to assume a simple scaling factor between

RCO2 and TEE, and therefore the posterior hyperparameter distributions

are obtained indirectly. For the women it is defined by a median of

9638 kJ·day−1 with a range from 7081–12287 kJ·day−1, while for the

men the corresponding values are 13211 kJ·day−1 and 11234–

15431 kJ·day−1, respectively.
FIGURE 5 δk,i is the oxygen/hydrogen
isotope measurement for individual k at time i;
σ2[e] represents the isotope measurement
error; θk = [RCO2 ,k, Sk, RW,k, Fk], representing
model parameter vector for subject k; and μ
and σ2[k] are population mean and population
variability representing the population
distribution from which the individual
parameters were drawn



FIGURE 6 Observed and estimated 18O isotopic enrichments drawn from the data supplied from subject 3. Each graph represents a different
post‐dose timepoint, and is drawn on the delta‐scale, centred about the predicted value from the unnormalized (exponential) model (shown as
the chained line). The predictions from logarithmic transformation are indicated by the dotted lines and the experimental data shown by the
dashed lines. The posterior distributions obtained from the Bayesian analysis are drawn as solid curves [Color figure can be viewed at
wileyonlinelibrary.com]
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4 | DISCUSSION

In this study we used a Bayesian approach for the estimation of human

total energy expenditure (TEE) using doubly labelled water data

obtained from 59 participants after incorporating prior information of

the space ratio parameter.
In the analysis ofmethods used to deriveTEE from the isotope data,

we have shown that RCO2
is a linear function of the differences in the

isotope effluxes, regardless of the model used. Furthermore, sinceTEE

is taken as proportional toRCO2
(i.e. the ratio of macronutrients oxidized

is taken to be the same for all subjects), a similar linear relationshipmust

also hold for energy expenditure. Therefore, we write:

http://wileyonlinelibrary.com
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TEE ¼ λ kONO−kHNHð Þ þ μ ¼ λ kO−SkHð ÞNO þ μ (15)

when the natural spaces are used. Similarly, normalization of the spaces

leads to a relationship:

TEE′ ¼ λ kO−S′kHð ÞN′O þ μ (16)

where the prime denotes the normalization process, which may be

summarized by:

N′O ¼ 1
2

S
S′

þ 1

� �
NO (17)

Therefore, we expect normalization to change the estimated TEE

according to:

TEE′−TEE ¼ λ
S
S′

þ 1

� �
kO þ S′kH

2

� �
NO

� �
(18)

In this expression, the term in square brackets can be regarded as

an approximation to the average of the two isotope fluxes, which will

be roughly invariant in any population.

On this basis, it might be expected that the application of a

Bayesian analysis would produce estimates of TEE midway between

those obtained from the natural and normalized methods. However,

it must be borne in mind that the usual method of analyzing the

disappearance curves uses logarithmic transformation followed by linear

least‐squares methods, whereas the formulation that we have used for

the Bayesian analysis fits the curves in their exponential form. The

question of whether logarithmic transformation is appropriate has

been discussed previously, and it has been noted that the correct

choice of data pre‐treatment depends upon the error structure of the

data,26 which is determined by the balance between biological variation

and analytical performance. Since the Bayesian approach generates

posterior distributions for the fitted data points it is indeed richer in

information than the least‐squares method. This is illustrated in

Figure 6. This diagram, drawn from 18O data for subject 3, shows

the measured and predicted 18O enrichments (on the δ‐scale) for

each of the fourteen post‐dose timepoints. For ease of comparison, each

graph is drawn to the same x‐scale, and centred on the predicted δ‐value

from the exponential fit. From this figure, it is apparent that, at least for

these data, the width of the posterior distribution for the modelled

points does not change appreciably with the 18O enrichment, apart from

in the very early stages of the timecourse, when the 18O enrichment

is changing rapidly with time, and so errors in the latter are most

significant. Under the conditions of constant (non‐proportionate)

error in δ it is incorrect to use the logarithmic transform.

A second noteworthy point illustrated in Figure 6 is that the mean

values of the Bayesian posteriors generally do indeed lie closer to the

experimental datapoints than the predictions from the least‐squares

estimates. Quantitatively, the root‐mean‐square deviation for the

logarithmic fit is 4.00 ‰, that for the exponential fit 3.92 ‰, and

3.89 ‰ for the Bayesian modelling. However, these figures are

dominated by the outlying point on day 11; in our opinion this point

should have been omitted in the analysis, but we have retained it

for consistency with the previous work. Excluding day 11, the rms

deviations become 2.9 ‰, 2.6 ‰ and 2.2‰ for the logarithmic,

untransformed and Bayesian methods, respectively.
Having demonstrated the utility of the Bayesian method for analysis

of DLW data, we chose to examine its performance in a medium‐sized

dataset comprising 59 adults (37 women, 22 men). Initially, each subject

was modelled individually (independent Bayesian model). In view of the

caveat imposed by the anomalous behaviour of the basal 18O discussed

in the small dataset we first compared the posterior means obtained

with the experimental data. In this larger dataset, there was no evidence

of non‐ideal behaviour, the root‐mean‐squared residuals between

experimental and fitted means being 0.60‰ for 2H and 0.20‰ for
18O, with limits of agreement from −1.02 to 1.03 ‰ and from

−0.41 to 0.39 ‰, respectively. This reassuring result confirms our

view that the earlier data9 suffered from analytical non‐linearity in

the 18O data.

A Bland‐Altman analysis of theTEE data showed that there was

little overall difference between the normalized non‐Bayesian and

independent Bayesian methods, although the limits of agreement

were somewhat larger. With these data the limits of agreement

for the women (from −750 to +660 kJ·day−1) are narrower

than those for the men (from −1296 to 1369 kJ·day−1); which is

probably an artefact due to the relatively small number of subjects,

although it does indicate that on an individual basis the difference

between the Bayesian and non‐Bayesian result can be far

from trivial.

When a Bayesian hierarchical method was used, even when split

across men and women, the spread of space ratios was further

reduced. In particular, the lower bound is pushed upwards (Figure 3).

Under the hierarchical model the range of TEE is also compressed,

again with very small overall difference for the women, but now some-

what more for the men. Whilst in both cases there is a significant slope

on the Bland‐Altman plot, the slope is much steeper for the men (0.55

compared with 0.17 for the women) indicating that the hierarchical

Bayesian method compresses the TEE data considerably more for this

group of men than for the women.

Although, for the purposes of assessing Bayesian analysis as a

tool for DLW analysis in general, the amount of prior knowledge

incorporated into the Bayesian analysis was small, it is reasonable

that a higher degree of prior information could be supplied. For

example, other anthropometric parameters such as height could be

included, and prior assessment of the body composition made using

prediction equations such as those derived by Deurenberg and co‐

workers or Jackson et al.27,28 Studies reported in the research literature

on water requirement and turnover are under‐represented compared

with studies of other nutrients. Compared with the model presented

here, much tighter limits are known to exist and progress is being made

in developing prediction equations.29 It is even possible to make use of

non‐physiological properties of stable isotopes to improve the model.

Section S3 (supporting information) illustrates how the meteoric water

line can assist in deriving priors for the basal isotopic enrichments. The

degree to which informative‐rich priors should be incorporated into

the model will depend upon the research question, the homogeneity

of the population under investigation, and ultimately on the confidence

that the investigator has in his/her prior convictions. In this study, we

have used the Bayesian method to address a relatively long‐standing

controversy regarding handling of dilution spaces in the DLW method

while imposing minimal further restraints upon the determination of
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TEE. It is an advantage of Bayesian methods that the analysis can be

informed as much or as little as is deemed appropriate for dealing with

the particular experimental circumstances.

In principle, a Bayesian method is a stochastic approach where

the parameter of interest has an assumed probability distribution

(prior) which is updated by the observed dataset to generate the

parameter's posterior distribution. If in an extreme case where the

measurement error is zero and the underlying mechanistic model is

true, the prior information about the parameter will be considered of

zero weight. As such, the model will fit perfectly into the dataset

and thus the estimation of the parameter (for example TEE) will be

an error‐free value resulting in the same estimation as if a least‐

squares method is used. In any other case, the prior information used

in the Bayesian method will play a role in the estimation of the posterior

distribution and if the prior information is valid this will increase the

estimation accuracy. In effect, when the laboratory precision is limited,

the use of Bayesian methods could improve the estimations of TEE to

that of a laboratory in which a high level of instrument precision is

observed. Where multi‐subject datasets are available, a hierarchical

model can be further applied that results in an even more precise

estimation of TEE.
5 | CONCLUSIONS

Bayesian analysis is an appealing approach to estimate population and

individual total energy expenditure with the doubly labelled water

method. The method offers a valuable approach to deal with outliers

and missing data and gives a smaller unbiased estimate on the population

dispersion, particularly if a hierarchical model is used.
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ENDNOTE

* In the absence of isotope fractionation, R ¼ kONO−kHNH

2
. There has been

much discussion on the corrections applicable to this basic equation to

account for differential loss of isotope; however, nearly all lead to an

equation of the form of Equation 4 with the coefficients α1 and α2 dependent

on the model used. For example, using literature values for fractionation

factors, the model of Schoeller et al. gives α1 = 0.4589, α2 = 0, while

Coward's proposal yields α1 = 0.4689, α2 = −0.6495. Similar considerations

apply to the other parameters. In the remainder of this work we will adopt

Coward's model, for which β1 = 0.9676, β2 = 1.5544, γ1 = 0.01187 kg.mol−1

and γ2 = 0.01222 kg.mol−1.
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