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Background: Four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) is an emerging non-
invasive imaging technology used to visualise and quantify intra-cardiac blood flow. The aim of this systematic
review is to assess the literature on the current clinical applications of intra-cardiac 4D flow CMR.
Methods: A systematic review was conducted to evaluate the literature on the intra-cardiac clinical applications
of 4D flow CMR. Structured searches were carried out on Medline, EMBASE and the Cochrane Library in October
2016. Amodified Critical Skills Appraisal Programme (CASP) tool was used to objectively assess and score the in-
cluded studies. Studies were categorised as ‘highly clinically applicable’ for scores of 67–100%, ‘potentially clini-
cally applicable’ for 34–66% and ‘less clinically applicable’ for 0–33%.
Results: Of the 1608 articles screened, 44 studies met eligibility for systematic review. The included literature
consisted of 22 (50%) mechanistic studies, 18 (40.9%) pilot studies and 4 (9.1%) diagnostic studies. Based on
the modified CASP tool, 27 (62%) studies were ‘highly clinically applicable’, 9 (20%) were ‘potentially clinically
applicable’ and 8 (18%) were ‘less clinically applicable’.
Conclusions: There are many proposed methods for using 4D flow CMR to quantify intra-cardiac flow. The evi-
dence base is mainly mechanistic, featuring single-centred designs. Larger, multi-centre studies are required to
validate the proposed techniques and investigate the clinical advantages that 4D flow CMR offers over standard
practices.
PROSPERO = CRD42016051438.
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©2017 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Cardiovascular disease is the leading cause of mortality worldwide,
with an estimated 17.7 million deaths in 2015 alone [1]. Blood flow is
a vital parameter in the assessment of cardiovascular disease and
hence, requires precise measurement.

Non-invasive imaging techniques, such as echocardiography and
two-dimensional cine phase contrast magnetic resonance imaging
(2D PCMRI), are standard components of a thorough cardiovascular in-
vestigation.Despite this, current quantificationmethods cannot fully as-
sess the complex, three-dimensional and multi-directional nature of
intra-cardiac blood flow.
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Four-dimensional flow cardiovascular magnetic resonance (4D flow
CMR) is a technique that enables comprehensive haemodynamic flow
assessments. In recent years, 4D flow acquisition and post-processing
techniques have greatly advanced, accompanied by the development
of several new quantification methods. The latest 4D flow consensus
document supplies a detailed overview of current 4D flow uses, both
cardiac and non-cardiac [2]. This has been supplemented by several
other review articles [3–5]. However, existing articles tend to encom-
pass a large breadth of applications. The most recent 4D flow reviews
addressing cardiac applications specifically, are from 2011, featuring
non-systematic methodologies [6,7]. With the rapid advancement of
4D flow, a comprehensive and archival update is warranted. This is es-
pecially relevant for the ageing population, given that adult cardiac dis-
ease, such as heart failure and valvular heart disease, presents a major
and increasing health burden [8,9]. Therefore, the aim of this systematic
review is to methodically summarise new mechanistic intra-cardiac
findings, alongwith information regarding thepotential clinical applica-
tions of these 4D flow CMR techniques.
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2. Methods

This systematic review was registered in the international database of prospectively
registered systematic reviews (PROSPERO, registration number = CRD42016051438).
The review protocol can be accessed online via the PROSPERO website [10]. The Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) checklist was ad-
hered to when structuring this article [11].

2.1. Search strategy

A comprehensive search was undertaken in October 2016 on the following electronic
databases: Medline, EMBASE and the Cochrane Library. The search was limited to
‘Humans’ and ‘English Language’ only. There was no limitation on time periods. To mini-
mise bias, OpenGrey and Copac databases were also searched to identify any grey litera-
ture. In addition, clinicaltrials.gov was searched to find any ongoing studies. The
supplementalfile provides an in-depth description of the search strategy. Citation tracking
and manual reference searching was carried out through the OvidSP databases.

2.2. Article screening

Once duplicates were removed, the titles and abstracts of the search results were
assessed using a screening algorithm, shown in Fig. 1, Panel A. This was performed by
two independent reviewers (S·C and P.G) and cross-checked against a third independent
reviewer (M.E). Cases of disagreement were discussed between the reviewers to reach a
suitable conclusion. The studies that adhered to this screeninghad their full texts evaluated.

2.3. Quality assessment

The quality of the included studies was assessed by P.G using a modified Critical
Appraisal Skills Programme (CASP) tool, provided in the supplemental file. Answers of
Fig. 1. Overview of study selection process. Panel A = Article screening algorithm. Two review
number of studies excluded at each stage is shown. Panel B = Flow diagram used for identi
screening process were assessed. Of these, 4 (5.5%) were excluded as being irrelevant to the
OvidSP databases, as well as manual reference searching. This process identified a further 4 re
whereas 29 (39.7%) were abstracts only. Flow diagram adapted from Moher et al. [11]. Prefe
PLOS Medicine 2009. 6 (7):e1000097. The PRISMA Statement is distributed under the terms o
and reproduction in any medium.
‘yes’ scored 1 point, whereas answers of ‘no’ or ‘can't tell’ scored 0 points. Total scores
were converted to percentages and studies were allocated to one of three categories;
‘highly clinical applicable’ for a score of 67–100%, ‘potentially clinically applicable’ for
34–66% and ‘less clinically applicable’ for 0–33%. Study quality was used as an estimate
of clinical applicability for the purposes of this review.

2.4. Quantitative assessment

Ameta-analysis was deemed inappropriate for this systematic review as much of the
research is exploratory, with considerable heterogeneity in the included studies. As a re-
sult, a narrative review is provided.

3. Results

The search yielded a total of 1608 studies. These consisted of 539
(33.5%) and 1019 (63.4%) studies sourced from electronic databases
Medline and EMBASE respectively, 18 (1.1%) from the Cochrane Library
database, 20 (1.2%) from grey literature searches (Copac and OpenGrey
databases) and 12 (0.7%) from clinicaltrials.gov.

Of the 1608 studies identified, 672 (41.8%) were removed as dupli-
cates. After screening the title and abstracts of the remaining studies, a
further 863 (53.7% of original 1608) were removed as irrelevant.
Assessing the full texts of the remaining 73 studies resulted in 4 further
exclusions. Citation tracking resulted in no new relevant studies where-
as manual reference searching identified 4 relevant records. From the
final 73 studies, 29 (39.7%) were abstracts and are presented in the
ers independently screened the titles and abstracts of 936 studies using this system. The
fying the included studies. The full-texts of the 73 studies that were identified from the
systematic review. The remaining 69 studies underwent citation tracking through the
levant studies for inclusion. Of the final 73 studies included, 44 (60.3%) were full studies,
rred reporting items for systematic reviews and meta-analyses: The PRISMA Statement.
f the Creative Commons Attribution License, which permits unrestricted use, distribution,
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supplemental file. The remaining 44 (60.3%) records were full-text
studies. The PRISMA algorithm for study inclusion is presented in
Fig. 1, Panel B.

3.1. Included studies

In total, 44 studieswere included in this systematic review. Of these,
22 (50%) were mechanistic studies, 18 (40.9%) were pilot studies and
4 (9.1%) were diagnostic studies. The modified CASP tool found that
27 (62%) studieswere ‘highly clinically applicable’, 9 (20%)were ‘poten-
tially clinically applicable’ and 8 (18%) were ‘less clinically applicable’.
Graphs of the percentage of clinical applicability against various study
design factors are depicted in Fig. 2, A to D. The studieswere divided ac-
cording to intra-cardiac structure, 34 of which were relevant to the left
heart, 12 addressing the valves of the heart, and 8 for the right heart.
Some studies were relevant to more than one category. All 44 included
studieswere single-centred. A summary of the included studies' charac-
teristics for the left heart, heart valves and right heart can be found in
Table 1. The breakdown of scoring for each study is provided in the sup-
plemental file.

4. Discussion

To the authors' knowledge, this is the first systematic review of
intra-cardiac 4D flow CMR. This systematic review incorporated
44 (2.7%) full papers and 29 (1.8%) abstracts from the 1608 records
identified.

4.1. Left heart

4.1.1. Left atrium
A 2001 study was one of the first to define normal left atrial (LA)

flow patterns using particle trace visualisation [22]. These findings
were supported by a 2015 study from Suwa et al. [17], who proposed
Fig. 2. Graphical representations of the percentage of clinical applicability against various stu
against the 4D flow methods used and Panel D = against intra-cardiac structure. KE = kineti
retrospective valve tracking, JSLD = jet shear layer detection method, VT = volume tracking
AV = aortic valve, TV = tricuspid valve, PV = pulmonary valve, RA = right atrium, RV =
that the presence of vortices in the LA may have a role in minimising
blood stasis and thus, preventing thrombus formation. This concept
has since been investigatedwidely byMarkl et al. [13–15]. In a study in-
vestigating velocity profiles, patients with atrial fibrillation (AF) had
11–19%higher blood stasis compared to controls [13]. Taken further, ve-
locitymaps are reliable tools for detecting both regional and global flow
patterns in the LAof AF patients [14]. Additionally, they found stasis was
significantly higher (P b 0.001) at thewall of the LA, compared to the LA
centre, a finding which complements preliminary work by Fyrenius
et al. [22]. Recommendations by a third study [15] as well as Lee et al.
[12], suggest the need for longitudinal studies to assess whether intra-
atrialflowdynamics, as derived by4DflowCMR, offer better predictions
for thromboembolic events than the current, epidemiologically based,
CHA2DS2-VASc score [19].

Dyverfeldt et al. assessed turbulent kinetic energy (TKE), in mitral
regurgitation (MR) patients [21]. TKE encompasses the energy eventu-
ally lost as heat in turbulent flow. Mean LA TKE correlated with the se-
verity of MR (r2 = 0.983, P b 0.001), however this study was limited to
only 5 patients.

In health, younger individuals showed higher LA velocity inside the
vortex than older individuals (P=0.012) [20], suggesting that changes
in intra-LA haemodynamics are part of normal ageing physiology.
Arvidsson et al. found a weak correlation between early diastolic KE of
the LA and left ventricular (LV)mass (r2=0.28, P b 0.05) [18]. They pro-
posed that the elastic recoil of the LV causes a rise in LA KE in early dias-
tole and so, diastolic suction is likely to be responsible for LV filling.
4.1.2. Left ventricle
The LV is the most extensively studied structure within the intra-

cardiac 4D flow literature. This began with Kim et al. identifying the
presence of LV vortices aswell as its close relationshipwith anteriormi-
tral leaflet motion [44]. This validated the speculations produced by
in vitro flow visualisation models at the time.
dy design factors, Panel A = against study type, Panel B = against study year, Panel C =
c energy, TKE = turbulent kinetic energy, Haem forces = haemodynamic forces, RVT =
, RV = regurgitant volume, LA = left atrium, LV = left ventricle, MV = mitral valve,
right ventricle.



Table 1
Summary of included studies.

Author(s), year Study type Cohort Methods Applicability

Left atrium
Lee et al., 2016 [12] Mechanistic 30 HV, 40 AF Velocity profile Highly
Markl et al., 2016 [13]* Retrospective mechanistic 8 HV, 62 AF Velocity profile Highly
Markl et al., 2016 [14] Mechanistic 30 HV, 81 AF Velocity profile and its maps Highly
Markl et al., 2016 [15] Retrospective mechanistic 15 HV, 60 AF Velocity profile Highly
Steding-Ehrenborg et al., 2015 [16]* Retrospective mechanistic 14 HV, 14 athletes KE Highly
Suwa et al., 2015 [17] Prospective mechanistic 9 HV, 15 No OHD, 17 OHD Pathline visualisation of vortex Highly
Arvidsson et al., 2013 [18]* Mechanistic 15 HV KE Highly
Fluckiger et al., 2013 [19] Pilot 19 HV, 10 AF Flow velocity distribution Less
Foll et al., 2013 [20]* Mechanistic 24 HV Vortex and flow visualisation Potentially
Dyverfeldt et al., 2011 [21] Pilot 2 HV, 5 MR Particle tracing visualisation and turbulent KE Potentially
Fyrenius et al., 2001 [22] Mechanistic 11 HV Particle tracing visualisation Highly

Left ventricle
Eriksson et al.,
2016 [23]

Mechanistic 10 HV, 10 DCM Global haemodynamic forces Potentially

Suwa et al., 2016 [24] Mechanistic 22 pEF, 14 rEF Pathline visualisation of vortex Highly
Svalbring et al., 2016 [25] Mechanistic 10 HV, 26 IHD KE Potentially
Van Ooij et al., 2016 [26] Mechanistic 10 HV, 35 HCM Pressure gradients and viscous energy loss Highly
Wong et al., 2016 [27] Prospective mechanistic 35 HV, 10 rEF KE Highly
Al-Wakeel et al., 2015 [28] Pilot 7 HV, 10 MR KE Potentially
Eriksson et al., 2015 [29] Mechanistic 12 HV Pressure gradients Potentially
Kanski et al., 2015 [30] Prospective mechanistic 12 HV, 29 HF KE Highly
Kanski et al., 2015 [31] Pilot 8 HV, 20 HF Particle tracing visualisation and kinetic energy Highly
Steding-Ehrenborg et al., 2015 [16]* Retrospective mechanistic 14 HV, 14 athletes KE Highly
Zajac et al., 2014 [32] Mechanistic 11 HV, 9 DD Turbulent KE Less
Elbaz et al., 2014 [33] Pilot 24 HV Vortex visualisation Highly
Eriksson et al., 2013 [34] Prospective mechanistic 10 HV, 10 DCM Pathline visualisation and KE Highly
Foll et al., 2013 [20]* Mechanistic 24 HV Particle tracing and velocity vector visualisation Potentially
Carlsson et al., 2012 [35]* Pilot 9 HV KE Potentially
Toger et al., 2012 [36] Mechanistic 9 HV, 4 DCM Vortex visualisation Less
Brandts et al., 2011 [37] Prospective diagnostic 47 HF Diastolic function using retrospective valve tracking Highly
Eriksson et al., 2011 [38] Mechanistic 12 HV, 1 DCM Pathline visualisation and KE Less
Kumar et al., 2011 [39] Prospective pilot 15 DD Flow visualisation Less
Toger et al., 2011 [40] Pilot 8 HV, 1 ALVA Volume tracking Less
Eriksson et al., 2010 [41] Pilot 6 HV, 3 DCM Pathline visualisation Highly
Bolger et al., 2007 [42] Pilot 17 HV, 1 DCM Particle tracing and KE Potentially
Ebbers et al., 2002 [43] Pilot 1 HV Pressure gradients Less
Kim et al., 1995 [44] Mechanistic 26 HV Flow visualisation Highly

Mitral valve
Marsan et al., 2009 [45] Diagnostic 64 MR Regurgitant volume, 4D flow as reference method Highly
Roes et al., 2009 [46]* Pilot 22 HV, 29 IC Valve flow quantification using retrospective valve tracking Highly
Westenberg et al., 2008 [47]* Retrospective pilot 10 HV, 20 MR/TR Valve flow quantification using retrospective valve tracking Highly
Westenberg et al., 2005 [48] Pilot 10 HV, 10 MR Valve flow quantification using retrospective valve tracking Highly
Westenberg et al., 2004 [49] Pilot 10 HV Valve flow quantification using retrospective valve tracking Highly

Aortic valve
Chelu et al., 2016 [50] Prospective diagnostic 54 AR Visual grading of AR Highly
Garcia et al., 2014 [51] Retrospective pilot 10 HV, 40 AS Jet shear layer detection method Highly
Ewe et al., 2013 [52] Retrospective diagnostic 32 AR Regurgitant Volume with 4D flow as reference method Highly
Roes et al., 2009 [46]* Pilot 22 HV, 29 IC Valve flow quantification using retrospective valve tracking Highly

Tricuspid valve
Roes et al., 2009 [46]* Pilot 22 HV, 29 IC Valve flow quantification using retrospective valve tracking Highly
Westenberg et al., 2008 [47]* Retrospective pilot 10 HV, 20 MR/TR Valve flow quantification using retrospective valve tracking Highly

Pulmonary valve
Roes et al., 2009 [46]* Pilot 22 HV, 29 IC Valve flow quantification using retrospective valve tracking Highly

Right atrium
Callaghan et al., 2016 [53] Prospective pilot 12 HV Particle tracing and kinetic energy Highly
Markl et al., 2016 [13]* Retrospective mechanistic 8 HV, 62 AF Velocity profile Highly
Steding-Ehrenborg et al., 2015 [16]* Retrospective mechanistic 14 HV, 14 athletes KE Highly
Arvidsson et al., 2013 [18]* Mechanistic 15 HV KE Highly

Right ventricle
Han et al., 2015 [54] Pilot 9 HV, 10 PAH KE Less
Steding-Ehrenborg et al., 2015 [16]* Retrospective mechanistic 14 HV, 14 athletes KE Highly
Carlsson et al., 2012 [35]* Pilot 9 HV KE Potentially
Fredriksson et al., 2011 [55] Mechanistic 10 HV Pathline visualisation and KE Potentially

Summary of the 44 included studies. Of these, 35 address the left heart, 12 for the heart valves and 8 for the right heart. Clinical applicability has been divided into the following groups
based on the score achieved using themodified CASP tool: ‘highly’ for 67–100%, ‘potentially’ for 34–67% and ‘less’ for 0–33%. Studies that are relevant tomore than one intra-cardiac struc-
ture are denoted by an asterisk (*). HV = healthy volunteers, AF = atrial fibrillation, OHD = organic heart disease, MR = mitral regurgitation, DCM = dilated cardiomyopathy, pEF =
preserved ejection fraction, rEF = reduced ejection fraction, IHD = ischaemic heart disease, HCM = hypertrophic cardiomyopathy, HF = heart failure, DD = diastolic dysfunction,
ALVA = apical left ventricular aneurysm. IC = ischaemic cardiomyopathy, TR = tricuspid regurgitation, AR = aortic regurgitation, AS = aortic stenosis. PAH = pulmonary arterial
hypertension.
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In recent years, various studies have used 4D flow CMR to further
understand normal LV blood flow [20,29,33,35,43]. Foll et al. described
the effects of multiple demographic variables on LV haemodynamics
[20]. It was found that increasing age has an inverse relationship with
the number of both LV vortices [(correlation coefficient (CC) =
−0.51, P= 0.01] and diastolic vortices (CC =−0.49, P= 0.03). In ad-
dition, older subjects had reduced size and velocitywithin their basal LV
vortices, whilst women had smaller basal LV vortices than men.
Supplementing this, Wong et al. found older individuals have a lower
peak diastolic KE compared with both children (P = 0.0001) and
young adults (P = 0.025), suggesting a progressive decline with ad-
vancing age [27]. These studies highlight the wide variety of normal
LV blood patterns.

Al-Wakeel et al. used KE for the assessment of surgical outcomes in
MR patients [28], finding significant decreases in mean KE, systolic
and early-diastolic KE peaks after mitral valve (MV) repair (P = 0.01,
0.02 and 0.01 respectively). A larger study found that heart failure pa-
tients had lower average normalised systolic KE when compared with
healthy volunteers (6.3 ± 2.2 mJ/ml vs 8.0 ± 2.1 mJ/ml, P = 0.025)
[30]. Carlsson et al. quantified the KE for the left and right ventricle, not-
ing higher early diastolic KE in the LV (6.0± 0.6mJ vs 3.6 ± 0.4mJ, P=
0.004) [35]. This indicates that LV filling is more dependent on suction
mechanisms. Unlike previous studies, these values weren't normalised
for LV volumes.

KEhas beenproposed as a subclinicalmarker of LVdysfunction in di-
lated cardiomyopathy (DCM) patients, following observations that al-
terations in diastolic haemodynamics can be detected despite clinical
compensation [34]. Moreover, ischaemic heart disease patients display
reductions in ‘Direct flow’ and KE at end-diastole as LV volumes in-
crease, compared to controls [25]. Changes in ‘these parameters may
provide more sensitive clinical classifications of LV dysfunction over
standard volumetric assessments.

Many studies have compared normal ventricular function with that
of DCM patients [23,34,36,38,41,42]. One study described the reduced
efficiency of a DCM heart, preserving only 5% of the mitral inflow KE
compared with 16% for healthy volunteers [42]. However, these are an-
ecdotal findings, given this study featured only one patient. Eriksson
et al. demonstrated that LV haemodynamic filling forces of DCM hearts
are non-uniform [23] and the volume of LV inflow that is directly
ejected, is decreased [34,38]. The group also mapped out normal LV
pressure differences [29] as well as validating semi-automatic quantifi-
cation analysis as an accurate and reproducible method of assessing LV
inflow and outflow volumes [41].

Colour vector analysis was proposed as a novel method of assessing
LV diastolic flow in a study of 15 patients with diastolic dysfunction, by
observing the termination of organised high velocity flow at themid-LV
[39]. Vortex size and vortex core locationswere analysed between heart
failure patients, in both preserved and reduced ejection fraction [24].
This study suggests diastolic vortex formation may be crucial for the
LV ejection, as well as filling. Characteristic haemodynamic changes
need to be established before this can be introduced clinically.

Volume tracking has been offered as an additional way to quantify
blood flow [40]. It was tested against particle tracing, a common 4D
flow CMR visualisation method. Volume tracking showed an average of
90.5% agreement with particle tracing in mid-diastole as well as strong
inter-observer agreement (κ=0.91). Despite this, the clinical applicabil-
ity of thismethod is uncertain given its potential to accrue velocity errors
and the unknown influence of factors such as blood viscosity.

Zajac et al. assessed TKE [32] as a measure of flow inefficiency. They
found peak TKE at late diastolic fillingwas higher in DCM patients com-
pared to healthy volunteers (3.0 ± 1.8 mJ vs 1.5 ± 0.8 mJ, P = 0.02).
This supports earlier findings by Bolger et al. demonstrating the reduced
efficiency of DCM hearts [42]. There is conflicting evidence regarding
vortex characteristics in LV dysfunction [24,36]. Toger et al. found a
smaller proportion of blood volume is incorporated within vortices of
these patients compared to healthy volunteers [36]. However, this is
inconsistent with findings of increased sphericity, greater transverse
lengths and larger area for LV vortices in patients with impaired LV func-
tion [24]. These variances could be due to chance given the small samples
or the differences in how the patients' clinical features were defined.

In a study investigating flow changes in hypertrophic cardiomyopa-
thy, patients with increased extracellular volume (ECV), from fibrosis,
had greater energy losses (P b 0.001) and elevated pressure gradients
(P b 0.001) at the LV outflow tract [26].

4.2. Heart valves

4.2.1. Mitral valve
Westenberg et al. validated the use of retrospective valve tracking

for valvular flowquantification through comparisonswith conventional
CMR [47]. Retrospective valve tracking was used to accurately and reli-
ably quantify flow, showing strong correlations with aortic systolic
stroke volume reference standard (r = 0.96, P b 0.01 for MV flow).
Roes et al. investigated the intra−/inter-observer variability of net
flow volumes using retrospective valve tracking [46]. For the MV of
healthy volunteers, retrospective valve tracking showed excellent
agreement (intraclass correlation coefficient [ICC] = 0.97, P b 0.001
and ICC=0.91, P b 0.001 for intra-/inter-observer variability respective-
ly). Similar levels of agreement were demonstrated for patients with
valvular regurgitation.

4.2.2. Aortic valve
Retrospective valve tracking is also reliable for net flow quantifica-

tion across the aortic valve (AV), with an ICC of 0.93, P b 0.001 for
intra-observer results, and an ICC of 0.98, P b 0.001 for inter-observer
findings [46]. In a larger study, 4D flow CMR had a sensitivity and spec-
ificity of 100% and 98% respectively for identifying aortic regurgitation
(AR) [50]. In a study grading AR severity, 2D echocardiography showed
limited correlation with 4D flow (κ=0.53) [52]. The authors speculate
that these differences are the result of the assumptions 2D echocardiog-
raphy requires for its calculation of AR, such as eccentric jets and noncir-
cular orifices.

The only study evaluating aortic stenosis (AS) proposed using the jet
shear layer detection (JSLD) method to calculate the AV's effective ori-
fice area (EOA) [51]. Not only did 4D flow CMR show a strong agree-
ment with current 2D EOA methods (r = 0.91, P b 0.001), but it
allows for improvements in identifying the true position of the vena
contracta, reducing sources of measurement error.

4.2.3. Tricuspid valve
Two studies have demonstrated the robustness of quantifying tri-

cuspid valve (TV) flow using retrospective valve tracking, against the
aortic systolic stroke volume reference standard (r = 0.88, P b 0.01)
[47] and with strong intra-/inter-observer agreement (ICC = 0.93,
P b 0.001 and ICC = 0.94, P b 0.01 respectively) [46].

4.2.4. Pulmonary valve
One study investigated pulmonary valve (PV) flow patterns using

retrospective valve tracking [46]. This technique is highly repeatable
for PV flow quantification in thosewith andwithout valvular regurgita-
tion (intra-/inter-observer variability, ICC = 0.99 and 0.95, P b 0.001
respectively). The lack of studies investigating this structure could be
due to the reduced incidence of PV pathology with respect to other val-
vular diseases [56].

4.3. Right heart

4.3.1. Right atrium
Arvidsson et al. suggested that the conversion of rotational flow into

helicalflow in the right atrium (RA)may be amethod of conserving atri-
al KE during right ventricular (RV) filling [18]. This is supplemented by
findings that 79% of RA stroke volume is comprised of a single vortex
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[53], with further evidence of helical flow existing between the RA and
the RV [16].

4.3.2. Right ventricle
Several studies have shown RV haemodynamics are different to that

of the LV [16,35,55]. One study found that RV ‘Direct flow’ was larger
and made up a greater proportion of the blood volume at end-
diastole, compared to LV ‘Direct flow’ (P b 0.01) [55]. It is thought that
these conditions, specific to the RV, allow for maximal systolic ejection
efficiency of the ‘Direct flow’ volume. This is consistent with findings
of higher systolic RV KE compared to the LV (P = 0.004) [35].

Additional KE research found the percentage of viscous dissipation
was significantly larger in pulmonary arterial hypertension (PAH)
patients compared to healthy volunteers (21.1 ± 6.4% vs 2.2 ±
3.1%, P = 0.0001, ICC = 0.995) [54]. PAH patients also displayed a
Fig. 3. 4D flow streamline visualisation and retrospective valve tracking quantification. Panels
shows the mitral regurgitation (yellow arrow) as well as tricuspid regurgitation (red arrow).
and D = Four-dimensional aortic flow in a patient with aortic root dilatation. Panel C sho
regurgitation (yellow arrow). Panel D = Aortic valve flow quantification using retrospective v
greater RV KE work density (94.7 ± 33.7 mJ/ml vs 61.7 ± 14.8 mJ/ml,
P = 0.007, ICC = 0.990).

5. Clinical perspective

Current technological advances in acceleration methods have en-
abled 4D flow to be acquired in b10 min, with a reasonable spatial
and temporal resolution. Given these optimisations, it is feasible to in-
corporate 4D flow acquisition within current clinical CMR protocols.
The results from this systematic review suggest that retrospective
valve tracking for valvular flow quantification, velocity profiling/KE for
various chambers of the heart and several visualisation techniques
have the most clinical applicability.

Firstly, retrospective valve tracking is a highly reproducible and ac-
curate 4D flow method (Fig. 3). Moreover, it now features within
A and B = Four-dimensional mitral inflow in a patient with mitral regurgitation. Panel A
Panel B = Mitral valve inflow quantification using retrospective valve-tracking. Panels C
ws pathological vortex formation in the ascending aorta (red arrow) as well as aortic
alve-tracking.



492 S. Crandon et al. / International Journal of Cardiology 249 (2017) 486–493
commercial software packages, for example CAAS by PIEMedical Imag-
ing, Maastricht, The Netherlands. This facilitates its incorporation into
clinical studies and increases its availability for routine use. Retrospec-
tive valve tracking circumvents issues seen with 2D imaging, chiefly
through-plane motion errors when quantifyingmitral inflow velocities.
Despite the enhanced reliability of thesemeasures, the added value that
this may bring to diastolic assessments is yet to be validated clinically.
Velocity measurements derived by 4D flow CMR have shown similar
correlation to velocities calculated using transesophageal echocardiog-
raphy (TOE) [15]. Compared to TOE, 4D flow is non-invasive and so, is
a more tolerable investigation. It can also be used in patients with con-
traindications to TOE and does not carry the inherent risks associated
with anaesthesia and intubation. Furthermore, velocity/KE profiles
have characterised unique flowdifferences between health and disease.
Given the complex classification and management of many cardiac pa-
thologies, it is likely that these 4D flow methods can provide new pa-
rameters in which to risk stratify these patients, prioritising targeted
preventative interventions. Finally, visualisation is a key strength of
4D flow. It is a versatile technique, including vector graphs, streamlines
and pathline/particle tracing. Visualisation provides detailed flowmaps
which can aid in making distinct assessments of haemodynamic distur-
bances, including alterations to vortex architecture, to supplement ve-
locity and KE findings. However, it is critical that the presentation of
this visualisation data is standardised.

6. Limitations

Systematic reviews can only synthesise existing literature, therefore
any biases or limitations in the included studies will reduce the reliabil-
ity of the results included for review. The studies reviewed showed con-
siderablemethodological heterogeneity, whichmay have affected inter-
study comparisons. For this reason, meta-analyses were not performed.
The aspects of subjectivity within the modified CASP tool were
minimised through the use of various prompts for each scoring compo-
nent. Assessing authors have 3 years of 4D flow experience, which
may have influenced the results. Nevertheless, the culmination of over
10 years' experience in cardiovascular medicine, enables a qualified as-
sessment of both study quality and the clinical feasibility of developing
methods.

7. Conclusion

Current literature in 4D flow CMR is mainly single-centred and
mechanistic. The available data offer novel insights into intra-cardiac
flow patterns, their possible clinical relevance and demonstrate that
4D flow CMR is a precise and reliable tool for flow quantification. The
developedmethodswith themost clinical applicability appear to be ret-
rospective valve tracking, velocity profiling/KE and visualisation tech-
niques. Prospective, randomised, multi-centred studies are required to
investigate the incremental benefits 4D flow CMR may offer over stan-
dard practices.

A list of abbreviations and definitions is provided in the supplemen-
tal file.
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