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  Abstract— The investigation of the performance of different 

Positron Emission Tomography (PET) reconstruction and motion 

compensation methods requires accurate and realistic 

representation of the anatomy and motion trajectories as observed 

in real subjects during acquisitions. The generation of well-

controlled clinical datasets is difficult due to the many different 

clinical protocols, scanner specifications, patient sizes and 

physiological variations. Alternatively, computational phantoms 

can be used to generate large datasets for different disease states, 

providing a ground truth. Several studies use registration of 

dynamic images to derive voxel deformations to create moving 

computational phantoms. These phantoms together with 

simulation software generate raw data. This paper proposes a 

method for the synthesis of dynamic PET data using a fast analytic 

method. This is achieved by incorporating realistic models of 

respiratory motion into a numerical phantom to generate datasets 

with continuous and variable motion with Magnetic Resonance 

Imaging (MRI)-derived motion modeling and high resolution MRI 

images. In this paper, datasets for two different clinical traces are 

presented, 
18

F-FDG and 
68

Ga-PSMA. This approach incorporates 

realistic models of respiratory motion to generate temporally and 

spatially correlated MRI and PET datasets, as those expected to 

be obtained from simultaneous PET-MRI acquisitions. 

Index Terms— Computer simulation, Diagnostic medical 

imaging, Molecular imaging, Motion compensation, PET, 

Phantoms.  

I.! INTRODUCTION 

OSITRON emission tomography (PET) is an advanced 

molecular imaging technique that offers insights on the 

molecular pathways of humans and animals in vivo. A positron-

emitter, e.g. 
18

F and 
68

Ga, is used to radiolabel a molecule of 

interest, of which picomolar amounts can be traced in the 

patient during the scan. The imaging duration for one bed 

position is usually short, e.g. 3 min, though some protocols may 

last even longer than 60 min [1]. Inevitably during PET 

scanning the patient breathes continuously and potentially 

exhibits other internal and external body movements which 

create artifacts, occasionally so strong that may render the 

acquisition obsolete [2]. The causes of such motion artifacts are 

not only attributable to the physical movement of the 

radiotracer and deformations [3-5] but also to the lung density 

variation during respiration [6]. Compensation of motion 

artifacts is feasible by [7-8] carefully accounting for all related 

factors [9-11]. For example, the attenuation map is usually 
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measured using a separate CT or MRI acquisition and requires 

to be free of motion and be co-registered with the PET images 

at all times [12-13]. Motion compensation requires a realistic 

representation of physical movements for the evaluation of 

correction algorithms [14]. Various controlled parameters that 

may affect the correction methods need to be investigated, and 

therefore a substantial number of clinical datasets is required 

for more precise investigations. Parameters encompassing the 

clinical data such as respiratory and cardiac gating of dynamic 

images to derive the corresponding spatial deformations make 

the creation of a complete database difficult because they 

include intra-gate motion. Alternatively, synthetic data can be 

developed based on computational phantoms that represent the 

human anatomy [13]. This enables the creation of large datasets 

in various disease states which provide a ground truth, 

otherwise unavailable during clinical studies [15-16]. 

Many phantoms have been traditionally developed from 

segmented high resolution anatomical images (e.g. CT or MRI) 

such as the widely used XCAT [17], which model the human 

thorax anatomy and simulate both cardiac and respiratory 

motion. Computational phantoms have been extensively used 

in numerous applications, such as the optimization of detection 

systems, the validation of reconstruction algorithms, the study 

of physical effects including photon attenuation, scatter and 

motion [18-19]. 

To incorporate motion into numerical phantoms many 

studies use registration of dynamic images with sufficient 

temporal and spatial resolution (e.g. CT and MRI) that derive 

voxel deformations in order to warp a 3D numerical phantom 

[20]. For example, in the case of the XCAT phantom, 

respiratory and cardiac motion information have been derived 

from CT data [17]. 

Numerical phantoms together with appropriate software 

packages are used to simulate a PET acquisition, generating raw 

data in the form of sinograms. The most commonly used 

method is based on Monte Carlo simulations, such as the open 

source software GATE [21]. Monte Carlo simulations can 

model precisely the physical phenomena involved, but have the 

drawback of high computational demand. To compensate for 

these limitations, fast analytic methods have been developed, 

e.g. STIR [22], ASIM [23] or CASTOR [24] open source 

software packages. 

Dr C. Tsoumpas is with the Division of Biomedical Imaging, Leeds Institute of 

Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of 

Medicine and Health, University of Leeds, LIGHT Labs, Clarendon Way, 

Leeds, LS2 9NL, United Kingdom, e-mail: C.Tsoumpas@leeds.ac.uk. 

Irene Polycarpou, Georgios Soultanidis and Charalampos Tsoumpas, Senior Member, IEEE 

Synthesis of Realistic Simultaneous Positron Emission 

Tomography and Magnetic Resonance Imaging Data 

P 



TMI-2017-0156 2 

A scheme for simulating realistic dynamic PET sinograms 

using real MRI acquisitions and analytic simulations based on 

STIR was developed by Tsoumpas et al. [20]. This approach is 

extended further in this study by incorporating realistic models 

of respiratory motion into numerical phantoms in order to 

generate datasets with continuous and variable motion, as 

expected to be obtained during real simultaneous PET-MRI 

acquisitions [25-26]. To perform this, real respiratory signals 

derived from PET-CT images are combined with MRI-derived 

motion modelling and high resolution MRI images. In addition, 

this study enhances the realism of these simulations by 

incorporating changes in the lung attenuation values at different 

respiratory cycle positions which arise from the density changes 

in the lung as a result of motion; a phenomenon discussed in 

detail by Holman et al. [6]. Our paper provides a detailed 

description of the synthesis of realistic 4D numerical 

computational phantoms and associate PET data with motion 

for two clinically used radiotracers: 
18

F-FDG and 
68

Ga-PSMA.  

II.! METHODS 

The synthesis of realistic anthropomorphic PET data with 

aperiodic motion requires several independent steps: (A) 

Segmented high resolution images from MRI for the generation 

of the PET and attenuation images; (B) A motion model which 

can provide the motion transformation vectors at any time 

point; (C) A respiratory signal from internal navigators or 

external surrogates; (D) Software synthesizing the 4D 

computational phantom (i.e. both PET and attenuation 

distributions) which subsequently can be either forward 

projected, as performed in our framework, or otherwise 

simulated with a Monte Carlo simulator. Each of these steps is 

discussed in the following sections: 

 

A.! High Resolution 4D MRI dataset 

A 4D dynamic MRI dataset of the thorax was obtained on a 

1.5 T Philips Achieva
TM

 scanner with a 32-channel coil using a 

T1 weighted turbo field echo (TFE) sequence with repetition 

time equal to 3.3 ms and echo time equal to 0.9 ms and a flip 

angle of 10
o
. The MRI dataset was reconstructed voxel 

dimensions of 1.5×5×1.5 mm
3
 (feet-head, right-left, anterior-

posterior) and temporal resolution 0.7 s per time frame. An 

additional dedicated electrocardiograph (ECG) triggered 

cardiac MRI scan was performed to obtain details for 

myocardium motion in order to avoid any cardiac motion 

during the high resolution cardiac MRI acquisition as described 

by Tsoumpas et al. [20]. The dynamic 3D acquisition was 

applied with parallel imaging sensitivity encoding factor of 2 in 

anterior-posterior and 4 in right-left direction to speed up the 

acquisition and obtain the entire thorax within the 

500×450×245 mm
3 

field of view. In total, 105 frames of 3D 

MRI images of the thorax were acquired for the same volunteer. 

The first thirty five images were acquired during a normal 

breathing mode, the next thirty five during a fast breathing 

mode and the last thirty five during deep breathing. 

More accurate attenuation maps were developed through the 

inclusion of information for bone regions which were extracted 

using an MRI Ultrashort Time Echo (UTE) acquisition. 

Anatomical information was obtained from a respiratory-

triggered UTE scan of the same volunteer used previously as 

described in [27]. For these UTE acquisition, two images were 

acquired with different echo times and with respiratory gating. 

The field of view was 400×400×400 mm
3
, with a resolution 

equal to 2×2×2 mm
3
 and with the times TR/TE1=6.5/0.14 ms 

and TE2=4.6 ms. A flip angle of 10° was also applied. The 

gating was achieved using a pencil-beam navigator which was 

manually positioned on the right hemidiaphragm. The scan 

duration was typically 10 to 30 min depending on the  breathing 

pattern of the subject and the sufficiency of respiratory gating. 

The two resulting images were subtracted to create a third 

image, which exhibits increased cortical bone contrast. 

 

B. MRI-derived motion model 

To create the MRI-derived motion model each of the 105 

MRI images was registered to the separately acquired reference 

breath hold image using a hierarchical registration algorithm 

[28]. The reference breath hold image was at the end-expiratory 

state. The respiratory signal was measured using a virtual pencil 

beam navigator which was manually placed at a middle point 

of the diaphragm along the feet-head direction. This navigator 

was manually placed on the dome of the right hemi-diaphragm 

and orientated along the feet-head direction in the first image of 

the series. For each control point and for each of the 105 MRI 

images the displacements in x, y, and z directions were 

calculated and plotted as functions of the head-foot diaphragm 

translation signal (i.e. surrogate signal). The direction of motion 

(i.e. inspiration and expiration) was also calculated. 

A curve based on second order polynomial functions is fitted 

to the x, y, and z displacements as a function of surrogate values. 

This non-linear function allows for the estimation of non-linear 

motion [29]. Polynomial fitting is applied for inspiration and 

expiration phases separately, by using the constraint that the 

curves of the inspiration and expiration phases come across at 

the extreme navigator positions as shown in Fig. 1. As a result, 

a model is defined by a three polynomial coefficients vector a. 

The three coefficients define the location of the control point (i, 

j, k), the coordinate direction (x, y or z) and the breathing phase, 

d (inspiration or expiration). The coefficient a is a [3×3×2] set 

of [Nx×Ny×Nz] volumes, where Ni are the number of control 

points on the B-spline grid in each direction i. Each voxel is a 

scalar that corresponds to the displacement of that voxel in the 

image being transformed. Therefore, there is one volume for (a) 

each order of γ, (b) all three directions, and (c) a separate set of 

coefficients for inspiration and expiration. 

To apply the motion model, the x, y, z displacements for all 

control points are estimated based on a single input navigator 

value, γ, and a breathing phase, d. The motion estimation at 

control point φi,j,k is defined by the following equation 

explained in [29]: 

 

� �#,%,& = 	

�(�#,%,&,,,− , �)

�(�#,%,&,0,− , �)

�(�#,%,&,1,− , �)

           (1)  

where Ψ(a,γ) denotes the application of the second order 
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polynomial function using the coefficients a and input variable 

γ. The breathing phase d is determined by comparing the current 

navigator value with its predecessor. Once the 3D motion fields 

for each of the control points are determined, a denser motion 

field is computed using a multilevel B-splines interpolation 

[28]. The variation of the motion fields as a function of the 

surrogate signal was modelled separately for inspiration and 

expiration to consider the hysteresis effects. Realistic 

respiratory cycle variation is captured using high temporal 

resolution as well as the three respiration modes (i.e. normal, 

fast and deep breathing) for the formation of the model. 

Therefore, for a given surrogate value (e.g. diaphragm position 

in a respiratory signal) and breathing direction (i.e. inspiration 

or expiration) the model calculates the corresponding motion 

fields. 

 

Fig. 1. Demonstration of the motion model. The control points are plotted 

separately for the inspiration and the expiration. 

C. Respiratory signal database 

Respiratory signals describing the vertical displacement of the 

diaphragm as a function of time were obtained from thirty four 

ammonia (
13

NH3) cardiac perfusion PET studies of anonymized 

datasets of freely breathing patients using a data driven method 

[30-31]. The motion signal was extracted using a spectral 

analysis technique on projection space to identify the voxels 

with intensity change in PET data, a technique originally 

proposed by Schleyer et al. [30]. Each signal was acquired for 

3 min of 0.1 s duration for each time point. Examples of these 

signals are presented in Fig. 2. 

   All thirty four patient studies were investigated, by 

determining the maximum, minimum and mean motion 

amplitude in order to calibrate the expected motion amplitude 

range during a 3 min PET study. For each of the thirty four 

patient curves, the diaphragm motion was measured as the 

difference between the highest and the lowest diaphragm edge 

locations on the gated, attenuation-uncorrected, 
13

NH3 PET 

images. These attenuation-uncorrected images were used, since 

they do not suffer from additional attenuation-induced 

respiratory artifacts. Results indicate that the maximum and the 

minimum diaphragm motion amplitude, as measured in PET 

images, were approximately equal to 20 mm and 6 mm, 

respectively. This range is consistent with a previous study by 

Liu et al. [32] which reported a maximum displacement 20 mm 

and 15 mm and a minimum displacement 5 mm and 4 mm for 

the left and right diaphragm, respectively. 

 

 
Fig. 2. Examples of breathing curves and corresponding displacement 

histograms for nine patients. 

 

The study by Liu et al. [32] showed that the variability of the 

different respiratory signals can be classified into three 

breathing patterns based on the corresponding displacement 

histogram. Each of the thirty four signals in the database of 

thorax PET studies was allocated to one of these three breathing 

patterns. The most representative signal for each pattern was 

subsequently selected to be used in this study. The reader is 

notified that for visualization purposes of the motion artifacts, 

the most significant and representative signal for each breathing 

type was selected rather than an average one, as the latter would 

have created motion artefact less apparent due to the small size 

of the corresponding figure. 

The selected respiratory signals and their corresponding 

displacement histograms are illustrated in Fig. 3. The first 

signal is characterized by long quiescent motion periods (type-

1), the second signal by regular quiescent motion periods (type-

2) and the third signal by random baseline shifts (type-3). Note, 
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that for longer acquisition protocols e.g. 60 min, the patient 

respiratory cycle may follow more variable respiration pattern. 

With the use of the selected breathing patterns a database 

with variable diaphragm motion was created based on the above 

measurements of expected amplitude range in a 3 min 

acquisition. To do this, all signals were firstly shifted to zero 

median displacement and then scaled to diaphragm amplitudes 

ranged from 14 to 20 mm with a step of 3 mm creating a 

complete database of all three breathing types. 

 

 
Fig. 3. Example of breathing curves and corresponding displacement 

histograms for the three breathing types: (a) long quiescent motion periods, (b) 

regular quiescent motion periods and (c) random baseline shifts. 

 

D. 
18

F-FDG and 
68

Ga-PSMA 3D computational phantoms 

One anthropomorphic numerical phantom of the thorax was 

produced for each tracer, 
18

F-FDG and 
68

Ga-PSMA, simulating 

normal activity distributions. As proposed by Tsoumpas et al. 

[20] a 3D MRI reference image was segmented into different 

tissue types using intensity thresholds to extract each region of 

interest (i.e. air, soft tissue, bone and lung tissue). Then, 

uniform standardized uptake values (SUVs) as typically 

measured in a clinical acquisition were assigned to each type 

according to the radiotracer. 

For the 
18

F-FDG distribution, SUVs were assigned to each 

type as following [33]: 0 for air, 1 for soft tissue, 3.2 for 

myocardium, 2.5 for liver, 2.3 for bone and 0.5 for lung tissue. 

Then, synthetic spherical tumors were created and embedded at 

different locations in the lungs and liver with various 

characteristics (i.e. size ranging from 6 to 12 mm diameter with 

a step of 2 mm and tumor to background ratio ranging from 3:1 

to 6:1 with a step of 1). For each combination of size and tumor 

to background ratio, a synthetic phantom was created such that 

the tumors were added to identical positions. 

For the 
68

Ga-PSMA distribution, SUVs were assigned to 

each type of tissue as following [34-36]: 0 for air, 1 for soft 

tissue, myocardium and bone, 5 for liver , and 0.5 for lung 

tissue. Spherical tumors were also created and embedded in the 

image at different locations in the lungs and liver with various 

characteristics (i.e. size ranging from 10-12 mm diameter with 

a step of 2 mm and tumor to background ratio 3:1). 

The effect of positron range was included in the 
68

Ga-PSMA 

simulations as the average kinetic energy of the positrons 

emitted from 
68

Ga nuclei is much higher than those emitted 

from the 
18

F nuclei. Additionally, 
68

Ga positron range is 

considerably higher in different materials, in comparison with 
18

F. Specifically, the lung mean positron range in lung increases 

by 6.17 mm compared to water for 
68

Ga. For 
18

F, the difference 

is 1.28 mm [37]. In addition, the existence of a strong magnetic 

field makes the positron range considerably anisotropic [38-

40]. For these reasons, a positron range kernel, derived from 

Monte Carlo simulations was applied to the 
68

Ga-PSMA 

numerical phantom prior to the analytical simulations. Note that 

for 
18

F the positron range is negligible for the typical clinical 

scanners resolution, and as such it was not simulated in the 

current study [40]. 

To derive the positron range kernel, the established Monte 

Carlo stimulation package, GATE, was utilized. A point source 

of 
68

Ga was placed in the center of a phantom, and 10
6
 positron 

annihilations were simulated with the presence of a 3 T 

magnetic field perpendicular to the inferior-superior direction 

(z axis). We chose water, lung and cortical bone as the 

representing materials. The simulated cortical bone and lung are 

given by the ICRU-44 report. Cortical bone was simulated with 

of 1.68 gr/cm
3
 and attenuation coefficient at 511 keV equal to 

0.15 cm
-1

 and lung was simulated with density of 0.26 gr/cm
3
 

which corresponds to attenuation coefficient 0.0248 cm
-1

 at 511 

keV. Following the simulation, all positron annihilation 

positions were obtained. 

Each voxel may accommodate a large amount of point 

sources and as such the positron range kernel needs to be 

adjusted for accuracy. To estimate the density of the kernel for 

each voxel a variation of the sample distribution function was 

applied as described by the following equation: 

 

��(�, �, �) =
7

8
�(� + �×� , � + �×� , � + �×� )

≅Α/Χ

&DΕ

≅Φ/Χ

%DΕ

≅Γ/Χ

#DΕ  (2) 

                                                                                                

where Ri, Rj and Rk denotes the size of each voxel size (2×2×2 

mm
3
), � is the sampling rate within the sub-voxel area (0.1 mm) 

n is the total number of repetitions of this cycle, depended by 

the sampling rate and K is the positron range kernel with 

resolution similar to the sampling rate, θ [41]. Coronal planes 

of the kernels for the three tissue types (i.e. cortical bone, water 

and lung) are presented in Fig. 4. For these kernels, full width 

at half maximum (FWHM) and full width at tenth maximum 

(FWTM) are provided in Table 1 for the x axis perpendicular to 

the magnetic field and z axis, parallel with the magnetic field. 

 
Fig. 4: Coronal planes of the kernels relative to 

68
Ga in the (A) cortical bone, 

(B) water and (C) lung tissue at 3 T. 

Table 1: Kernel FWHM and FWTM for x and z axis (mm). 

 
FWHM 
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FWTM 

x axis 

FWHM 

z axis 

FWTM 

z axis 

Cortical bone 2.4 4.3 2.4 4.4 

Water 2.6 4.7 2.7 4.8 

Lung 2.6 4.8 3.4 6.2 
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kernels of each tissue was separately performed, according to 

the tissue density. The soft tissue, liver and heart were classified 

as water and the rest (lung, bone) to their corresponding groups. 

The first step is to apply the distribution function as described 

by literature [40] and convolve the kernel with the activity 

distribution for each organ individually and with the proper 

kernel for it. An important side effect of long positron range is 

the overlap between regions, most notably in the lung, where 

the positrons from high emitting areas travel into a less dense 

medium. To account for this, the borders of the media was 

considered. The first step is to apply the distribution function as 

described by literature and convolve the kernel with the activity 

distribution for each organ individually and with the most 

appropriate kernel. Afterwards, we detect the voxel adjacent to 

a new material, where the kernels change. When a kernel 

crosses to a new material we recalculate the kernel from the 

border locations and we use the local intensity. Afterwards, the 

new kernels are applied only to areas containing the adjacent 

material. Each region of the phantom was treated individually 

but also in correlation with the neighboring regions for the 

calculation of kernel variations. 

 

E. Motion model application: 
18

F-FDG and 
68

Ga-PSMA 4D 

computational phantoms 

Respiratory motion was incorporated in the numerical 

phantoms by applying the deformation fields. These fields were 

estimated from the dynamic MRI images together and the 

motion model. 

For each respiratory signal, the motion model is used to 

calculate motion fields necessary to transform the reference 

distribution (i.e. the 3D tracer uptake distribution) to the 

relevant respiratory positions and generate the moving 

phantom. Note that no tracer kinetics within the body or 

radioactivity physical decay was simulated in this investigation.  

The activity distribution was warped using transformations 

calculated from the motion model for each sampling point of a 

3 min acquisition signal with 0.1 s duration for each point (i.e. 

1800 sampling points) as illustrated in Fig. 5. Similarly, the 

motion fields were applied to the anatomical attenuation maps 

to create datasets with motion. 

For each PET dataset with motion, the projection data can 

either be simulated without gating or alternatively they can be 

gated based on amplitude and/or phase of the respiratory signal 

to generate eight partitions (i.e. ates) over the full respiratory 

motion cycle [42]. For example, in the case of amplitude-based 

gating for a given breathing type and amount of motion, the 

amplitude range can be firstly subdivided into eight equal 

amplitude bins (i.e. gates) such that each of the 1800 images 

can be averaged into each corresponding gate creating a 

respiratory-gated 4D phantom. Therefore, each gate of this 

phantom includes intra-gate motion and since the PET 

acquisition system model is in reasonable approximation linear, 

averaging the radioactivity distributions prior to simulating the 

projection data will provide similar result as simulating 

continuous projection data and gating afterwards. 

 
Fig. 5. The 4D simulation is based on a motion model that describes the 3D 

trajectory (b), of each point in a grid covering the torso (c), as a function of the 

displacement of the diaphragm (a). The 4D description of the motion in the 

torso is then used to create the 4D computational phantom (d). 

 

F. Attenuation maps 

Similarly to the procedure described in section II.D, an 

anatomical 511 keV attenuation map was generated by 

assigning appropriate attenuation values in the segmented 

regions of the high resolution MRI image. Attenuation values 

were assigned as following: 0 cm
-1 

for air, 0.096 cm
-1 

for soft 

tissue, 0.15 cm
-1

 for bone and 0.028 cm
-1 

for lung tissue. The 

motion model for a respiratory signal was then applied and 

attenuation images for each of the eight respiratory positions 

have been created with the same procedure described above for 

the activity distributions. In this way, a 4D attenuation map was 

constructed with the attenuation values remaining fixed for 

each tissue type along the eight gated images, regardless the 

respiratory position and the existence of motion. This is an 

approximation that most studies in the literature have adopted 

[6]. However, as observed by Holman et al. [6] changes arise 

from the density variations in the lung as a result of motion. To 

enhance the realism of the simulations, the attenuation maps 

have been processed to include changes in lung attenuation 

values at different respiratory positions. The lung at expiration 

has an average HU: -700, which is converted to 0.028 cm
-1

 at 

511 keV [43]. Therefore, for lung tissue simulations, an 

attenuation value of 0.028 cm
-1

 was used for the most extreme 

expiration position of the phantom. However, for any other 

respiratory position, the total lung volume was calculated and 

the appropriate attenuation value was assigned by using the 

inverse proportionality law. In this way, a 4D attenuation map 

was created with variable attenuation values according to the 

motion state [43]. 

G. Analytic simulations and reconstructions 

Each gate of the 4D generated activity distribution was used 

as input to an analytic PET-acquisition simulation to generate 

projection data in the form of sinograms for the Philips Gemini 

scanner as described in [20]. The projection data accounted for 
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photon attenuation, scatter (approximately 33% of the total 

counts) but not for random coincidences. Statistical (Poisson) 

noise was added to the projection data such that the overall 

counts of the whole dataset corresponding to 30 million 

unscattered coincidences for 
18

F-FDG [44] and 10 million 

unscattered coincidences for 
68

Ga-PSMA [45] (i.e. 3 min 3D 

PET clinical thorax acquisition). Noise in the gated data was 

accounted for the duration of each corresponding gate. Each 

respiratory histogram value shows the duration that the patient 

spends in the specific breathing position (i.e. how many times 

the specific amplitude was repeated in a respiratory signal).  

Each dataset was reconstructed with and without motion 

correction using the ordered subsets expectation maximization 

(OSEM) algorithm. All iterative reconstructions were 

performed with 23 subsets and for a low number of iterations 

(i.e. 2) as typically used in the clinic. Each slice consisted of 

250×250 pixels with size 2×2 mm
2
 each, and the entire volume 

consisted of 87 slices with 2 mm thickness. Both attenuation and 

scatter corrections were applied. A motion compensated image 

reconstruction method (MCIR) was used to obtain the motion 

corrected images by incorporating the motion information 

within the reconstruction via the forward and backward 

warping transformation operators, as described in [46]. 

III.! RESULTS 

A. 
18

F-FDG and 
68

Ga-PSMA computational phantoms 

Realistic simulated numerical phantoms with variable 

diaphragm motion amplitude and breathing patterns were 

created. Figs. 6-7 show examples of slices through the images 

of the simulated radioactivity distribution for the 
18

F-FDG and 
68

Ga-PSMA, respectively. In addition, Figs. 6-7 illustrate the 

effect of motion in PET acquisitions: the average of the 

simulated radioactivity distribution for 1800 respiratory 

positions as created with the use of the motion model combined 

with a respiratory signal of 3 min of 0.1 s duration for each time 

point. The selected respiratory signals for the three breathing 

types are illustrated for the 20 mm maximum motion amplitude. 

The tumors are blurred out by the effect of motion. Tumors in 

images representing breathing type-2 and type-3 are affected 

more by motion than those tumors in images representing 

breathing type-1. 

 Fig. 8 illustrates the effect of positron range for 
68

Ga-PSMA: 

simulated radioactivity distribution, with and without the 

presence of kernel convolution. The synthetic tumors were 

blurred out by the effect of the positron range influenced by the 

presence of the 3 T magnetic field. Table 2 lists the 

characteristics of the tumors and the maximum, mean and 

standard deviation of the SUV before and after blurring. The 

values were derived by a segmented tumor using a threshold of 

34% to SUVmax. The values represent the underestimation of 

uptake value and the overestimation of tumor volume that may 

be caused by the effect of the positron range. 

 

 

 
Fig. 6. Examples of coronal planes of the 

18
F-FDG distribution for one 

respiratory position and for the average of 1800 respiratory positions showing 

the motion artifacts. Arrows indicate the tumors. All three breathing types are 

presented. 

 

 

 
Fig. 7. Examples of coronal planes of the 

68
Ga-PSMA distribution for one 

respiratory position and for the average of 1800 respiratory positions showing 

the motion artifacts. Arrows indicate the tumors. All three breathing types are 

presented. 

 

 
 

Fig. 8. Simulated radioactivity distribution for the 
68

Ga-PSMA (a) without 

blurring and (b) with blurring for 
68

Ga at 3 T. 
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B. Demonstration of data reconstruction 

Fig. 9 shows example reconstructed 
18

F-FDG images, of two 

different scenarios: all single positions were averaged and 

reconstructed without and with motion correction using MCIR. 

The impact of motion correction is illustrated for breathing 

type-3 which is the case mostly affected by motion artifacts. 

Tumors can be visually observed in the images only after 

motion correction, with MCIR whilst hardly seen in the images 

with motion. 

 

Fig. 9. Example of two selected coronal planes of reconstructed images for 
18

F-

FDG distribution with and without motion correction. Arrows indicate the 

tumors. Results for the breathing type-3 are presented. 

IV.! DISCUSSION 

This paper presents a methodology that can be followed to 

create realistic PET datasets with aperiodic and even 

continuous motion, based on a sequence of real MRI 

acquisitions and a combination of segmentations and image 

registrations. Although there are various methodologies for 

producing PET radioactivity distributions with motion, most of 

them only model a single respiratory cycle, whilst in reality the 

breathing cycle is not periodic and has cycle-to-cycle variations 

in magnitude as well as longer inter-cycle variations in both 

magnitude and period [47-48], particularly in long PET 

acquisitions. In this work, PET datasets are produced by 

incorporating motion modelling based on real representative 

respiratory signals of three breathing patterns, in line with 

observations during actual PET acquisitions. Thus, a 4D 

phantom is created using estimated motion information and 

transformation of a 3D tracer uptake distribution to any 

respiratory position as dictated by the signal (Figs 6-7). 

 

The motion model has the advantage of being able to 

simulate realistic motion data at any respiratory position, as 

observed in real human subjects during image sessions. 

Considering that in real studies respiratory motion is only in not 

periodic, the method presented in this manuscript enables the 

realistic simulation of motion trajectories, according to the 

amplitude and frequency of motion. The model is applicable to 

any respiratory signal (i.e. different time frames or pattern) by 

simply replacing the signal used for this study and following the 

predescribed procedure. Therefore, this investigation can be 

extended to longer PET acquisitions, e.g. 60-90 min, and 

integrate further different types of motion. In addition, this 

method allows simulations of temporal resolution similar to the 

PET imaging system.  In this paper, a subject-specific motion 

model was used. The proposed simulation scheme could be 

further extended by the use of a global population-based motion 

model to provide motion information without the need for 

patient specific MRI acquisitions [49]. 

In the example of motion model in Fig. 1, the plot represents 

the displacements for a specific control point in the image as a 

function of the head-foot diaphragm translation signal. 

Although the plot for the specific control point shows an almost 

identical relationship between inspiration and expiration, this is 

only an example and it is not the case for all control points in 

the image. In the specific motion model used in this paper, the 

variation of the motion fields as a function of the surrogate are 

modelled separately for inspiration and expiration. 

In the current study, eight respiratory gates have been used, 

which are common in clinical practice. Based on literature, six 

to eight respiratory gates appear to be sufficient, but the optimal 

number of gates is related with the scanner resolution and 

motion amplitude [50], which is beyond the scope of the current 

study. Nevertheless, the proposed methodology can be applied 

to higher number of gates, though it has to be noted that as the 

number of gates increases, the process becomes even more 

computationally demanding. 

The substantial travel of the high energy positron emitted by 
68

Ga results in underestimation of the uptake values and 

overestimation of volume as shown in the quantitative analysis 

presented in Table 2 [38]. Fig. 8 highlights the positron range 

importance when simulating 
68

Ga radioactivity distribution. 

0

6

No motion correction After motion correction

Table 2: Synthetic tumor characteristics before and after applying blurring for 
68

GA-PSMA. 

 

Tumor 1 

! 16 mm 

Liver 

Tumor 2 

! 16 mm 

Lung 

Tumor 3 

! 16 mm 

Lung 

Tumor 4 

! 16 mm 

Liver 

Tumor 5 

! 16 mm 

Lung 

Tumor 6 

! 16 mm 

Lung 

Tumor 7 

! 10 mm 

Liver 

Tumor 8 

! 10 mm 

Lung 

Tumor 9 

! 10 mm 

Lung 

Ideal SUVmax 20 6 6 20 6 6 20 6 6 

Blurred SUVmax 19.99 4.83 4.83 19.99 4.98 4.83 19.77 4.14 4.12 

Mean/std SUV 16.34/2.88 3.30/0.94 3.3/0.94 16.23/2.85 3.32/0.93 3.3//0.93 15.07/2.81 2.72/0.80 2.61/0.80 

Theoretical 

Volume (cm
3
) 

2.1 2.1 2.1 2.1 2.1 2.1 0.5 0.5 0.5 

Measured 

volume with 

34% SUVmax 

threshold (cm
3
) 

2.2 2.5 2.5 2.0 2.5 2.5 0.9 1.2 1.0 
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Most blurring is observed in the lungs, where electrons are 

sparser, causing positrons annihilation distance to increase. For 

example the corresponding SUVmax for the tumor in the lung 

was 6 before blurring and decreased to 4.13 after blurring. The 

overestimation of the tumor volume was 71% for a 10 mm 

diameter liver tumor and 123% for a 10 mm diameter lung 

tumor. As a consequence, small metastatic cancerous tumors 

may be missed. For the 
68

Ga datasets, both motion and positron 

range, in strong magnet, are anisotropic effects with their 

largest impact along the same direction, causing blurring in the 

images and significantly limiting the PET performance. In a 

previous study [51], for the clinical tracer 
18

F-FDG, we have 

shown that the benefit of increasing the scanner resolution is 

small for imaging the torso, unless motion correction is applied. 

However, for the clinical tracer 
68

Ga-PSMA, even if respiratory 

motion is successfully corrected, the benefit from the potential 

improved spatial resolution of future PET scanners will be 

limited due to the positron range. Therefore, proper correction 

of the positron range effect should be included in future 

reconstruction algorithms [52]. 

Our methodology and the synthetic datasets can provide a 

useful tool to evaluate the accuracy of motion correction 

methods [51,53] as shown in Fig. 9. The realistically simulated 

datasets can provide a comprehensive tool for pioneering more 

accurate and precise management of variable types of motion, 

including bulk motion [53], which are expected to be necessary 

particularly in relatively long acquisition protocols. 

One limitation of the current datasets is the lack of 

anatomical detail in the lungs which may not provide 

sufficiently realistic information of the motion vectors. 

Methods how to retrieve information from the lungs need to be 

considered in future dataset generation by utilizing high 

resolution MRI acquisitions capable to include sufficient signal 

even in the region of the lungs [55]. Another issue is the limited 

temporal resolution of the MRI images. The current dynamic 

images could not be acquired with time window faster than a 

700 ms, which contributes to an inherent loss of accuracy in the 

estimation of motion, particularly for the generation of 100 ms 

frames. An additional issue to consider in the future, is the use 

of human atlases for simulation of bone structures [56] since the 

UTE sequences require long acquisition times and consequently 

are subject to motion artifacts, as well [57-58]. 

As illustrated, the proposed methodology can be extended to 

synthesize a large number of PET datasets with realistic motion 

for several types of patient protocols, radiotracers, number of 

patients and diseases. An extension of this concept can integrate 

other types of motion (e.g. cardiac beating [59-60]) for event by 

event motion correction [61] of continuously moving humans 

or even animals [62], which is another active research area. 

V.! CONCLUSION 

We presented a scheme to simulate realistic synthetic (i.e. 

100 ms) PET data of two different radiotracers using a 

combination of dynamic and static MRI acquisitions of healthy 

volunteers. This approach allows incorporation of models of 

respiratory motion to generate temporally and spatially 

correlated MRI and PET datasets, as expected in simultaneous 

PET-MRI acquisitions. Simulations with realistic anatomy and 

motion trajectories as those observed in human subjects can 

help investigate the performance of different reconstruction and 

motion correction methods. The synthetic images, the 

corresponding PET datasets will become accessible to the 

scientific community under the collaborative computational 

project on synergistic PET-MRI reconstruction: 

http://www.ccppetmr.ac.uk and / or STIR. The main framework 

to simulate the data utilized the open source STIR library. 
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