
This is a repository copy of On the inadmissibility of non-evolutionary shocks .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1242/

Article:

Falle, S.A.E.G. and Komissarov, S. (2001) On the inadmissibility of non-evolutionary 
shocks. Journal of Plasma Physics, 65 (1). pp. 29-58. ISSN 1469-7807 

https://doi.org/10.1017/S0022377801008856

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

See Attached 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


J. Plasma Physics (2001), vol. 65, part 1, pp. 29–58. Printed in the United Kingdom

� 2001 Cambridge University Press

29

On the inadmissibility of non-evolutionary
shocks

S. A. E. G. FALLE and S. S. KOMISSAROV

Department of Applied Mathematics,
The University of Leeds,
Leeds LS2 9JT, UK

(Received 2 September 1999 and in revised form 26 January 2000)

Abstract. In recent years, numerical solutions of the equations of compressible mag-

netohydrodynamic (MHD) flows have been found to contain intermediate shocks

for certain kinds of problems. Since these results would seem to be in conflict with

the classical theory of MHD shocks, they have stimulated attempts to reexamine

various aspects of this theory, in particular the role of dissipation. In this paper,

we study the general relationship between the evolutionary conditions for discon-

tinuous solutions of the dissipation-free system and the existence and uniqueness

of steady dissipative shock structures for systems of quasilinear conservation laws

with a concave entropy function. Our results confirm the classical theory. We also

show that the appearance of intermediate shocks in numerical simulations can be

understood in terms of the properties of the equations of planar MHD, for which

some of these shocks turn out to be evolutionary. Finally, we discuss ways in which

numerical schemes can be modified in order to avoid the appearance of intermediate

shocks in simulations with such symmetry.

1. Introduction

It is well known that not all discontinuous solutions of hyperbolic conservation laws

are admissible. Some of these can be excluded on physical grounds. For example,

expansion shocks in gas dynamics must be discarded, since they do not satisfy the

second law of thermodynamics. Others can be excluded for purely mathematical

reasons, such as the fact that they do not satisfy uniqueness and existence con-

ditions or are structurally unstable with respect to small perturbations of the initial

data. These mathematical conditions are usually called evolutionary conditions. For

example, intermediate shocks in magnetohydrodynamics (MHD) satisfy the second

law but are not evolutionary.

This subject was extensively studied between the late 1940s and early 1960s

(see e.g. Courant and Friedrichs 1948; Lax 1957; Akhiezer et al. 1959; Germain

1960; Polovin 1961; Gel’fand 1963), and a full account can be found in numerous

textbooks (see e.g. Jeffrey and Taniuti 1964; Cabannes 1970; Somov 1994). Until

recently, there was general agreement that admissible shocks must both satisfy the

evolutionary condition and possess a steady dissipative shock structure, although

the relation between these conditions was not entirely clear. There the matter rested

until time-dependent numerical solutions of the dissipative MHD equations showed

that certain types of intermediate shocks can arise from smooth initial data (Wu
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1987). Shortly thereafter, Brio and Wu (1988) found intermediate shocks in their

numerical solution for a particular MHDRiemann problem. More recently, interme-

diate shocks have been also been found in two-dimensional simulations (De Sterck

et al. 1998). Furthermore, Chao et al. (1993) have reported the detection of an in-

terplanetary intermediate shock in the Voyager 1 data. All this has caused some

authors to reject the classical theory and to suggest that the evolutionary condition

is not relevant to dissipative MHD (Wu 1987, 1988a,b, 1990; Kennel et al. 1990;

Hada 1994; Myong & Roe 1997a,b), and has led to a reexamination of the whole

question of the existence, or otherwise, of non-classical shocks (see Glimm 1988;

Freistuhler and Liu 1993; Myong & Roe 1997a; and references therein). There are,

however, others who argue that there is nothing wrong with the classical theory

(see e.g. Barmin et al. 1996; Falle and Komissarov 1997; Markovskii 1998a,b).

The matter clearly needs to be resolved, particularly since the existence, or other-

wise, of intermediate shocks not only is of crucial importance for fundamental

MHD processes such as reconnection (Wu 1995), but also is relevant to many other

astrophysical applications. The purpose of this paper is to try and clear the matter

up by showing that there is neither a real conflict between the classical shock theory

and the results of numerical calculations nor any incompatibility between ideal and

dissipative MHD. Furthermore, we show that the classical theory is of great utility

in analysing the results of numerical calculations in order to determine whether

the numerical solutions are physically correct. In order to make the discussion

complete, we have put together and extended a number of results from the literature

that have tended be ignored or misunderstood.

This paper is organised as follows. In Sec. 2, we briefly review the classical shock

theory and the evolutionary conditions. In Sec. 3, we study the relationship between

these conditions and the uniqueness and existence of steady dissipative shock struc-

tures for systems with a concave entropy function. In Sec. 4, we apply these results

to the full system of MHD equations and to the reduced system of planar MHD.

In Sec. 5, we present the results of numerical calculations that show that, for both

these systems, the behaviour of the shocks is entirely consistent with the predictions

of the classical shock theory. In Sec. 6, we consider various aspects of the problem

of intermediate shocks, and discuss ways in which to avoid their appearance in

MHD simulations with planar symmetry. In particular, we present the results of

one dimensional simulations using a modified Glimm scheme (Glimm 1965) in which

these shocks do not appear.

2. General theory of shocks

In this section, we give a brief review of the classical theory of discontinuous solu-

tions of hyperbolic conservation laws. For our purposes, it is sufficient to consider

only the one-dimensional equations of the form

∂u

∂t
+

∂f

∂x
= 0, (2.1)

where u ∈ R
n is a vector of conserved variables and f (u) ∈ R

n is a vector of the

corresponding fluxes.

As is well known, the system (2.1) is called hyperbolic if the Jacobian matrix

A =
∂f

∂u
.
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has n real eigenvalues, λk (k = 1, . . . , n) corresponding to n linearly independent
right-eigenvectors rk and is called strictly hyperbolic if all the λk are different. The

physical significance of the λk is that they are the speeds of small-amplitude waves.

Waves are classified as linear or nonlinear according to the behaviour of

Ck(u) ≡ rk(u) ·∇uλk(u).

If Ck(u) = 0 for all u, then the k-wave is called linear, whereas if the dimension
of the surface defined by Ck(u) = 0 is less then n, then it is called nonlinear or
genuinely nonlinear.

The states ul and ur on either side of a discontinuity travelling with speed smust
satisfy the shock equations

s(ul − ur) = f l − fr. (2.2)

The number ns of independent shock equations can be less than n. For example,
a contact discontinuity in gas dynamics has ns = 3, whereas n = 5. Since A is

the Jacobian, we clearly have s → λk for some k as ul → ur, which means that

one can associate each discontinuity that allows this limit with one of the waves

of the system. A discontinuity is called linear if the corresponding characteristic

speed does not change across it; otherwise it is called nonlinear. The mere fact that

a discontinuity satisfies (2.2) does not necessarily imply that it is either stable or

that it can arise from continuous initial data.

For some hyperbolic systems, (2.2) allow nonlinear shocks that propagate with

a characteristic speed associated with a nonlinear wave, which means that they

can be attached to such a wave to form compound waves. Systems with such shock

solutions are called non-convex. Compound waves may arise from continuous initial

data if the system allows single simple waves in which Ck(u) changes sign along the

phase curve of a simple wave. This condition is therefore often used as an alternative

definition of non-convexity. Although these definitions are equivalent for a single

conservation law, they are not necessarily so for systems.

The evolutionary condition is directly related to the question of existence and

uniqueness of discontinuous solutions. It is well known that, for hyperbolic equa-

tions, there is a general way of deciding this question, which is to use the com-

patibility conditions that must be satisfied along the characteristics (Friedrichs

1955). If a characteristic with wave speed λk enters one side of a discontinuity then

the state on that side must satisfy the compatibility relation associated with that

characteristic,

lk(u) · du = 0,

where lk(u) is the left-eigenvector of A corresponding to that characteristic. These

equations are independent provided that the lk are linearly independent, i.e. for

all hyperbolic systems. If the wave speeds on either side of the discontinuity are

such that mi compatibility relations have to be satisfied, then there are ns + mi

equations relating the 2n + 1 unknowns associated with the discontinuity, ul, ur,
and the shock speed s. A discontinuous solution can therefore only exist and be
unique if

mi = 2n− ns + 1. (2.3)

Obviously, when ns = n, (2.3) reduces to

mi = n + 1. (2.4)
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It is clear from this that if a characteristic is parallel to the shock curve, then

it is counted as incoming, since the corresponding compatibility relation must be

satisfied (Gel’fand 1963).

If mi > 2n− ns + 1, then the system is overdetermined and there is no solution

except for certain special initial conditions. There will therefore always be arbi-

trarily small perturbations of this data that will destroy such a discontinuity by

splitting it into a number of waves, just as an arbitrary initial dicontinuity splits

in a Riemann problem. If mi < 2n − ns + 1, then the solution exists, but is not

unique, and one might hope that this non-uniqueness can be removed by includ-

ing dissipative terms. In the following, we shall call the condition (2.3) the strong

evolutionary condition and the condition

mi 6 2n− ns + 1,

which allows non-unique solutions, a relaxed evolutionary condition.

An equivalent way of obtaining (2.3) is by a linear stability analysis of shock

solutions (see e.g. Landau and Lifshitz 1959; Jeffrey and Taniuti 1964). A discon-

tinuity that is exposed to a small-amplitude incident wave will only survive if it

can respond by changing its speed and emitting small-amplitude waves. Each such

wave is described by one parameter, and we also have the perturbation in the shock

speed, which means that there are mo + 1 unknowns in this problem, where mo is

the number of outgoing characteristics. Since these are related to the amplitude

of the incoming wave by the ns shock relations, the discontinuity can only have a

unique response if

mo = ns − 1. (2.5)

It is worth pointing out that, contrary to what is claimed inMyong andRoe (1997a),

this analysis does not assume that the discontinuity is weak. This suggests that

non-unique discontinuous solutions should spontaneously self-destruct by emitting

waves even if they are not perturbed (Anderson 1963). However, since the pertur-

bations are incident on a discontinuity, this analysis is only valid for perturbations

whose wavelength is large compared with the width of the structure. Roı̌khvarger

and Syrovatskii (1974) and Markovskii (1998a, b) have considered the much more
difficult problem of the interaction of MHD shocks with perturbations whose wave-

length is short compared with the shock width. They find that, in this case also,

evolutionary shocks are stable, whereas non-evolutionary ones are not.

Although the conditions (2.3) and (2.5) appear to be different, the fact that

mo +mi = 2n means that they are entirely equivalent (Gel’fand 1963). Note that,
if the system of shock and compatibility equations splits into independent subsets,

then the discontinuity is only evolutionary if each of these subsets has the same

number of equations as variables (Jeffrey and Tanuiti 1964).

Finally, as far as the evolutionary conditions are concerned, it does not matter

whether or not the system (2.1) is strictly hyperbolic and convex, since these prop-

erties are not used in the derivation of (2.3) and (2.5). However, it is only in the case

of strictly hyperbolic systems that these conditions reduce to the Lax conditions

(Lax 1957)

λk−1(ul) < s < λk(ul),
λk(ur) < s < λk+1(ur)

for a nonlinear discontinuity associated with the kth characteristic (here we have
assumed that λ1 < λ2 < . . . < λn).
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3. Evolutionary conditions and dissipative shock structure

In order to assess recent claims that non-evolutionary shocks become admissible if

dissipative terms are included, we need to look at the general relationship between

the evolutionary conditions and the uniqueness and existence of steady dissipative

shock structures. Godunov (1961) has shown that it is much easier to explore this

question if the equations can be transformed into a symmetric form. Although

this is not possible for arbitrary hyperbolic systems of conservation laws, it can

certainly be done for gas dynamics, MHD, and the shallow-water equations, and

probably for any system that can arise in nature.

3.1. Symmetric form of the ideal equations

We start by summarizing some of the results described by Friedrichs (1954), Fried-

richs and Lax (1971), and Boillat (1974, 1982). As before, it is only necessary to

consider the one-dimensional case.

Consider a dissipation-free system of conservation laws described by (2.1). Sup-

pose now that there exists a quantity h(u), which is also conserved as long as the
solution to this system is continuous. For example, h(u) is the entropy in gas dy-
namics or MHD, whereas it is the total energy for the shallow-water equations. If

such a quantity exists, then there must exist a flux function g(u) such that

∂h

∂t
+

∂g

∂x
= 0, (3.1)

Equations (2.1) and (3.1) can only be consistent if

∂h

∂ui

∂fi
∂uj

=
∂g

∂uj
, (3.2)

(the summation convention is assumed), since then

∂h

∂t
+

∂g

∂x
=

∂h

∂ui

(

∂ui

∂t
+

∂fi
∂x

)

= 0

for any C1 solution satisfying (2.1).

If we now use h to define the Legendre transformation

u′
i = −

∂h

∂ui
, (3.3)

ui =
∂h′

∂u′
i

, (3.4)

h′ = h + u′
iui, (3.5)

then (3.2) allows us to write the fluxes as

fi =
∂g′

∂u′
i

,

where

g′ = g + u′
ifi.

In terms of the variables u′, (2.1) becomes a symmetric system

P
∂u′

∂t
+ Q

∂u′

∂x
= 0, (3.6)
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where the symmetric matrices P and Q are given by

Pij =
∂ui

∂u′
j

=
∂2h′

∂u′
i ∂u

′
j

= −
∂2h

∂ui ∂uj
,

Qij =
∂fi
∂u′

j
=

∂2g′

∂u′
i ∂u

′
j

. (3.7)

Note that h is usually a strictly concave function, in which case (3.7) ensures that P
is positive-definite and the transformation is non-singular. In ordinary gas dynamics

or MHD, h is the entropy per unit volume, and is therefore guaranteed to be concave
by the second law of thermodynamics. For the shallow-water equations, h = −e,
where e is the sum of the kinetic and potential energies, and dissipation ensures

that this is also concave.

3.2. Dissipative equations

If we now assume that the dissipative fluxes are proportional to the spatial gradi-

ents of the dependent variables, then the dissipative version of (3.6) is

∂u

∂t
+

∂f

∂x
= P

∂u′

∂t
+ Q

∂u′

∂x
=

∂

∂x
D
∂u′

∂x
(3.8)

where D is a matrix of dissipation coefficients. Multiplying this on the left by u′t

(the superscript t denotes the transpose) and using (3.1)–(3.3) gives the evolution

equation for h:

∂h

∂t
+

∂g

∂x
= −u′t

∂

∂x
D
∂u′

∂x
,

Integrating this over an arbitrary fixed interval [a, b] and integrating the dissipa-
tive term by parts gives

d

dt

b
∫

a

h dx +

[

g + u′tD
∂u′

∂x

]b

a

=

b
∫

a

∂u′t

∂x
D
∂u′

∂x
dx.

Since the term on the right-hand side of this equation represents a source term for

h and the second law of thermodynamic requires that this be positive if h is the
entropy per unit volume, the matrix D must be positive-definite for gas dynamics

and MHD. The dissipative shallow-water equations must also satisfy this condition

if we set h = −e, where e is the total energy.
One can also show that all linear waves decay if D is positive-definite and h is a

strictly concave. The linear version of (3.8) is simply

P
∂u′

∂t
+ Q

∂u′

∂x
= D

∂2u′

∂x2

where P,Q, andD are now constant matrices. Multiplying this by u′t and integrating

over [a, b] gives

d

dt

∫ b

a

u′tPu′ dx +

[

u′tQu′ − 2u′tD
∂u′

∂x

]b

a

= −2

∫ b

a

∂u′t

∂x
D
∂u′

∂x
dx,

after integrating the dissipative term by parts. Since P is positive-definite if h is
strictly concave, the term on the right-hand side ensures that all linear waves decay

if D is positive-definite.
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3.3. Steady shock structures

Now consider a solution of the steady version of (3.8),

d

dx
f =

d

dx
D

d

dx
u′, (3.9)

with the boundary conditions

u′ →

{

u′l (x → −∞),
u′r (x → +∞).

(3.10)

If this represents a shock structure, then u′l and u
′
r must satisfy the shock relations

in the shock frame

f (u′l) = f (u
′
r). (3.11)

Integrating (3.9) and applying the boundary conditions (3.10) gives

D
du′

dx
= f (u′)− f (u′l) = f (u

′)− f (u′r). (3.12)

A steady shock structure therefore corresponds to a solution of (3.12) that connects

the equilibrium points u′l and u
′
r. We now show that there is no guarantee that this

solution is unique and structurally stable unless the corresponding discontinuous

solution of the ideal system satisfies the evolutionary conditions (2.3).

Let Lu be the unstable manifold of the point u
′
l and Rs the stable manifold of

the point u′r. Then the trajectories in Lu and Rs are described by dim(Lu) − 1

and dim(Rs) − 1 parameters respectively. Since any trajectory that lies in both

has to satisfy n − 1 matching conditions, this means that, in general, there will

only be a unique trajectory connecting u′l and ur if dim(Lu) + dim(Rs) = n + 1.
If dim(Lu) + dim(Rs) > n + 1, then the trajectory may not be unique, whereas if
dim(Lu) + dim(Rs) < n + 1, then any trajectory that does exist can be destroyed
by perturbations of u′l and u

′
r, i.e. it is not structurally stable.

The following theorem relates dim(Lu) and dim(Rs) to the number of character-

istics entering the shock:

Theorem 3.1. If u′e is an equilibrium point of the dissipative shock equations (3.12)

at which none of the characteristic speeds vanish, then the equilibrium point is hyperbolic

and the dimension of its stable (unstable) manifold is given by the number of positive

(negative) characteristic speeds in the state u′e.

Proof. Suppose that u′e = u
′
l (the proof for u

′
r is identical). Then linearizing (3.12)

in the neighbourhood of u′l gives

Dl
dv

dx
= Qlv,

where v = u′−u′l, Ql = Q(u′l) and Dl = D(u′l). If this equilibrium point is hyperbolic,

then the dimension of its stable (unstable) manifold is given by the numbers of

eigenvalues µk satisfying

|Ql − µDl| = 0 (3.13)

and with positive (negative) real parts.

On the other hand, the characteristic speeds for the system (3.6), λk, in the state

u′l are given by

|Ql − λPl| = 0. (3.14)
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A standard result (see e.g. Gantmacher 1959) tells us that, since Pl and Ql are sym-

metric and Pl is positive-definite, Ql has the same number of positive, negative and

zero eigenvalues as the set λk. If, like Godunov (1961), we assumed that Dl is sym-

metric as well as positive-definite, then the theorem would follow immediately from

(3.13) and (3.14). However, the following lemma shows that this is an unnecessary

restriction.

Lemma 1. Let Q be a non-singular symmetric matrix, D a positive-definite matrix,

and µk the solutions of

|Q − µD| = 0.

Then the number of µk with positive (negative) real parts is the same as the number of

positive (negative) eigenvalues of Q.

Proof. Define

Dǫ = Ds + ǫDa,

where ǫ ∈ [0, 1] and

Ds =
1
2
(D + D

t), Da =
1
2
(D − D

t).

It easy to see that Dǫ is also positive-definite.

Now consider the eigenvalue problem

|Q − µ(ǫ)Dǫ| = 0.

The conclusion of the lemma is certainly true for ǫ = 0, since then Dǫ is symmetric.

If we can show that the µk(ǫ) are continuous functions of ǫ and thatℜ{µk(ǫ)}� 0 ∀k
for ǫ ∈ [0, 1], then it will also be true for ǫ = 1.
The µk(ǫ) are the roots of a polynomial of degree n whose coefficients are poly-

nomials in ǫ. A root can therefore only change discontinuously by going to infinity,
which can only occur if the coefficient |Dǫ| of the highest power of µ vanishes.
However, this cannot happen, since Dǫ is positive-definite for ǫ ∈ [0, 1]. The µk(ǫ)
must therefore be continuous functions of ǫ for ǫ ∈ [0, 1].
In order to prove that the µk cannot cross the imaginary axis, suppose that for

some k, µk(ǫ) = iη, where η is real. If a + ib is the corresponding eigenvector, we
have

Qa + ηDǫb = 0,
Qb− ηDǫa = 0.

Multiplying the first of these by bt and the second by at, and subtracting gives

η(btDǫb + a
t
Dǫa) = 0.

Since Dǫ is positive-definite, this requires η = 0 and hence µk = 0, which cannot be

true if the eigenvalues of Q are non-zero. This completes the proof of the lemma.

Equations (3.13) and (3.14) and Lemma 1 show that the theorem is true even if

D is not symmetric.

This is a somewhat more direct proof of a result that has also been obtained

by Kulikovsky and Lyubimov (1965). In their analysis of viscous shock structures,

Myong and Roe (1997a) assumed that Theorem 3.1 holds for MHD, but did not

give a proof.
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This analysis tells us that if the shock relations (3.11) have a solution such that

none of the characteristic speeds given by (3.14) vanish in both the left and the

right states and mi is the number of characteristics entering the shock, then

(a) for mi = n + 1, the shock can have a unique structurally stable dissipative
structure;

(b) for mi > n + 1, the dissipative structure is not guaranteed to be unique;

(c) for mi < n + 1, there might be a unique dissipative structure, but it cannot be
structurally stable.

These conditions are not only compatible with the evolutionary conditions, they

are complementary to them. Shocks for which mi > n + 1 have a dissipative shock
structure and could therefore be regarded as admissible on these grounds. However,

the left and right states of such shocks must be carefully tuned, since they cannot

adjust themselves to an arbitrary small perturbations of their left and right states.

Shocks that satisfy the relaxed evolutionary condition mi < n + 1 are apparently
permitted by the ideal equations, but cannot establish a dissipative structure and

must spontaneously self-destruct. It is therefore clear that the only physically ad-

missible shocks are those those that satisfy the strong evolutionary conditions (2.3)

or (2.4).

Theorem 3.1 gives us no information in those cases for which the shock speed

coincides with at least one of the characteristic speeds. The corresponding criti-

cal point is then no longer hyperbolic, and its type depends on the details of the

particular system.

4. Application to magnetohydrodynamics

As we shall see, the mathematical properties of the full system of MHD and the

reduced planar system of MHD are somewhat different, and this has to be clearly

understood when the evolutionary conditions are applied. We therefore discuss

these systems separately.

4.1. Full system of MHD

It is well known that the one-dimensional equations of MHD can be written in

the form (2.1) (see e.g. Brio and Wu 1988). The conserved quantities u and the

corresponding fluxes f are

u =





















ρ
ρvx
ρvy
ρvz
e
By

Bz





















, f =





















ρvx
ρv2x + pg +

1
2
B2 −B2

x

ρvxvy −BxBy

ρvxvz −BxBz

(e + pg +
1
2
B2)vx −Bx(v · B)

vxBy − vyBx

vxBz − vzBx





















.

Here pg is the gas pressure,

e = i + 1
2
B2 + 1

2
ρv2

is the total energy per unit volume, and i is the enthalpy per unit volume. Here we
use units such that the velocity of light and the factor 4π do not appear.
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As we have already discussed, ideal MHD has a supplementary conservation

law representing the conservation of thermodynamic entropy. The second law of

thermodynamics guarantees that the function h = ρS, where S is the entropy per
unit mass, is strictly concave (see e.g. ter Haar and Wergeland 1966), and hence

that the matrix P defined by (3.7) is positive-definite. The system of MHD equations

can therefore be written in the symmetric form (3.6) and is hyperbolic. Although

this has been demonstrated for relativistic MHD by Ruggeri and Strumia (1981),

we have been unable to find an account of the corresponding analysis for classical

MHD in the literature. However, since the derivations are similar to those for the

relativistic case, we shall simply give the symmetric variables. They are

u′
1 =

1

T

(

w

ρ
−
1

2
v2
)

, u′
2 =

vx
T
, u′

3 =
vy
T
, u′

4 =
vz
T
,

u′
5 = −

1

T
, u′

6 =
By

T
, u′

7 =
Bz

T
.

There is no need to verify that the matrix D of dissipation coefficients is positive-

definite, since this must be true for any system that obeys the second law of ther-

modynamics. Indeed, this condition is used to derive the dissipative equations in

the first place (see e.g. Landau and Lifshitz 1960). The exact form of symmetrized

equations is also of no importance for our purposes. Their existence, does, however,

allow us to apply the conclusions of the general theory described in Secs 2 and 3

to dissipative MHD.

4.1.1. Characteristic wave speeds. Since there are seven variables in this system,

there are seven waves, whose speeds are

λf∓ = vx ∓ cf (fast waves),

λa∓ = vx ∓ ca (Alfvén waves),

λs∓ = vx ∓ cs (slow waves),

λe = vx (entropy wave),

where the Alfvén speed ca and the slow and fast speeds cs and cf are given by

ca = |Bx|ρ
−1/2,

c2s,f =
1

2

{

a2 +
B2

ρ
∓

[(

a2 +
B2

ρ

)2

−
4a2B2

x

ρ

]1/2}

,

where a is the adiabatic sound speed. Note that 0 6 cs 6 ca 6 cf . If Bx = 0, then

cs = ca = 0, whereas if the transverse component of the magnetic field, Bt, vanishes

then cf = ca if ca > a, cs = ca if ca < a, and cs = cf = ca if ca = a. The MHD
equations are therefore not strictly hyperbolic. Brio andWu (1988) also argued that

they are non-convex, but we shall postpone discussion of this until later.

4.1.2. Shock types. The MHD shock equations allow two linear solutions and several

distinct types of nonlinear solutions that satisfy the entropy principle that the

entropy of a fluid element always increases. A convenient way of classifying these

is to use the jump in the transverse component of the magnetic field, Bt. From the

shock equations, one finds (Jeffrey and Taniuti 1964)

[Bt(c
2
a − v2x)]l = [Bt(c

2
a − v2x)]r, (4.1)



Non-evolutionary shocks 39

where vx is the velocity in the shock frame. Note that if c
2
a − v2x does not vanish,

then Bt on one side of the discontinuity must be either parallel or antiparallel to

that on the other.

The nonlinear solutions are as follows.

(a) Slow/fast shocks have non-zero Bt in the same direction on both sides. Equa-

tion (4.1) then implies that there is no change in the sign of c2a−v2x. The magni-
tude of the magnetic field is larger on the downstream side for fast shocks and

smaller downstream for slow shocks.

(b) Intermediate shocks also have non-zero Bt, but in opposite directions on either

side of the shock (Anderson 1963; Cabannes 1970). Equation (4.1) then implies

that c2a − v2x changes sign.

(c) Switch-on shocks have vanishing Bt upstream. Equation (4.1) then implies that

v2x = c2a on the downstream side.

(d) Switch-off shocks have vanishing Bt downstream. Equation (4.1) then implies

that v2x = c2a on the upstream side.

The linear discontinuities are as follows.

(a) Alfvén discontinuities have v2x = c2a on both sides. Equation (4.1) then allows an
arbitrary change in the direction of Bt. However, the magnitude of Bt remains

unchanged, which is why these are sometimes called rotational discontinuities.

(b) Contact discontinuities have the same value of vx on both sides, but v
2
x � c2a.

Equation (4.1) then requires that Bt be continuous unless Bx = 0, and the

other shock conditions require all other variables, except for the density, to be

continuous.

We shall also find occasion to use the following classification of nonlinear MHD

shocks, which is due to Germain (1960). The states in the shock frame are divided

into four types:

(1) |vx| > cf ;

(2) cf > |vx| > ca;

(3) ca > |vx| > cs;

(4) cs > |vx|.

A shock is defined to be of type m → n if the upstream and downstream states

are of types m and n respectively. From the MHD shock equations, one finds that

pressure and specific volume τ (τ = 1/ρ) on each side of a nonlinear shock satisfy
the following equations:

p +G2τ +
1

2

F 2
y

(τ − τa)2
= Fx,

wτ +
1

2
G2τ 2 +

τ

2τa

F 2
y

(τ − τa)2
= H,

where G is the mass flux, Fx, Fy and H are shock invariants, and τa = B2
x/G

2.

The analysis in Anderson (1963) can be used to show that the function H(τ ) is as
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Figure 1. The shock invariant H as a function of specific volume τ for three different cases.

shown in Fig. 1. τ − τi has the same sign as v
2
x − c2i , where i = s, a, f . One can

see that there are six different types of compressive shocks: fast shocks (1 → 2),

slow shocks (3 → 4), and four intermediate shocks 1 → 3, 1 → 4, 2 → 3, and

2→ 4. Depending on the relative position of the maxima of H, there are also limit
shocks that propagate with the fast speed relative to the upstream state and/or the

slow speed relative to the downstream state (see Figs 1b,c). We shall denote such

such shocks by f → n and n → s respectively. These shocks turn out not to be
evolutionary, but if they were, then MHD would be a non-convex system.

4.1.3. Evolutionary conditions.When we apply the evolutionary conditions to MHD

discontinuities, we have to take into account the fact that the system of shock

and compatibility equations split into two independent subsets for all types of

discontinuities, except the Alfvén discontinuity. If we choose a reference frame

such that, on one side of a discontinuity, Bz = 0, and vz = 0, then the system of

shock equations contains two equations involving Bz and vz. These are

Bzl = Bzr

and

vzl = vzr.

The compatibility relations along the Alfvén characteristics only involve Bz and vz,
and they are also the only ones that do so. An evolutionary discontinuity that is not

an Alfvén discontinuity must therefore not only satisfy the general condition (2.3),

but also have exactly two incoming, and hence two outgoing, Alfvén characteristics.

These conditions also follow from the linear stability analysis (Syrovatskii 1959;

Jeffrey and Tanuiti 1964).

In the rest of this subsection, we simply state the well-known results on the

evolutionary properties of MHD discontinuities. We do, however, pay particular

attention to those cases in which there are characteristics travelling with the same

speed as the discontinuity. As we have pointed out in Sec. 2, such characteristics

must be counted as incoming.

There is no dispute about the fact that fast and slow shocks are evolutionary,

because they have eight incoming characteristics, two of which are Alfvén waves.

Furthermore, since their speed can never be equal to a characteristic speed, Theo-

rem 3.1 tells us that they also have a unique structurally stable dissipative structure.
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All intermediate shocks are super-Alfvénic with respect to the upstream state and

sub-Alfvénic with respect to the downstream state, which means that they have too

many (> 2) incoming Alfvén characteristics. They are therefore non-evolutionary,

and can be destroyed by interactions with Alfvén waves.

The same argument applies to switch-on and switch-off shocks, which also have

too many (nine) incoming characteristics, three of which are Alfvén characteristics.

However, these solutions are clearly limits of fast and slow shocks, and therefore

have evolutionary solutions in their immediate neighbourhood, which is why Jeffrey

and Taniuti (1964) call them weakly evolutionary. That they are not strictly evo-

lutionary can also be understood from the following example. Consider a switch-on

shock overtaking a weak switch-off fast rarefaction travelling in the same direction.

Once these have merged, the shock is no longer propagating into a state with zero

transverse magnetic field. Since the shock is superfast, it has no way of modifying

its upstream state, and therefore cannot remain a switch-on shock. Instead, such

an interaction leads to the appearance of a neighbouring fast-shock solution, to-

gether with some other waves, at least one of which must, in general, be an Alfvén

wave.

If we count the two entropy characteristics as incoming on the grounds that

they have the same speed as the discontinuity, then contact discontinuities have

eight incoming characteristics, two of which are Alfvén characteristics. They are

therefore evolutionary.

Alfvén discontinuities also have eight incoming characteristics if we include the

two Alfvén characteristics that have the same speed as the discontinuity. The total

number of incoming Alfvén characteristics is three, but this is allowed since the fact

that the shock equations for these discontinuities couple the y and z components
of velocity and magnetic field means that this is the one case for which the shock

equations do not decompose into two sets.

Theorem 3.1 cannot be applied to contact and Alfvén discontinuities, since they

propagate with a characteristic speed. However, they would in any case not pos-

sess a steady dissipative structure, simply because they are linear and therefore

have no nonlinear steepening to balance the spreading due to dissipation. For this

reason, Wu (1988b) considers them to be inadmissible, but since their width grows

like t1/2, whereas the separation between the waves in a Riemann problem grows

like t, they must be regarded as admissible components of the solution for large
times.

4.2. Reduced system of planar MHD

In this subsection, we discuss the system of equations that describes MHD in a

world in which the plane defined by the velocity and the magnetic field is invariant.

There are several reasons for doing this. First, it has some interesting properties.

Secondly, we want to show that the general classical theory of shocks is as valid

for this system as it is for the full system. Finally, the numerical simulations that

gave rise to the current controversy surrounding intermediate shocks reflect the

properties of this system.

When the z components of the magnetic field and velocity vanish, the equa-

tions reduce to a system of five variables with the following vectors of conserved
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quantities and fluxes:

u =













ρ
ρvx
ρvy
e
By













, f =













ρvx
ρv2x + pg +B2/2−B2

x

ρvxvy −BxBy

(e + pg +
1
2
B2)vx −Bx(v · B)

vxBy − vyBx













.

This is still a hyperbolic system, but it is fundamentally different from the full

system of MHD, because it does not have Alfvén waves. However, the other char-

acteristic fields are still present, with the same eigenvalues and with eigenvec-

tors that are the same apart from the reduced number of components. Moreover,

it has the same solutions of the shock equations, including the Alfvén discon-

tinuity, except that these are now only allowed to change the direction of the

transverse magnetic field by π. This follows from the remarkable property of the

full system of MHD that there exists an inertial frame in which the variations

of the transverse components of the magnetic field and velocity induced by all

characteristic waves and shocks, except for Alfvén waves, are confined to single

plane. Note that the Alfvén discontinuity still propagates with the Alfveń speed,

but this is no longer one of the characteristic speeds. The Riemann problem for

this system has been analysed in considerable detail by Myong and Roe (1997b),

who came to the conclusion that the classical evolutionary conditions are inade-

quate for this system. However, we intend to show that this claim is based on a

failure to recognize the essential difference between the reduced system and full

MHD.

4.2.1. Evolutionary conditions. Since the number of equations is reduced by two

and it is the Alfvén waves that are lost, we can conclude that all evolutionary

discontinuities that have two incoming Alfvén characteristics in the full system

remain evolutionary in the planar system. This implies that fast, slow, and contact

discontinuities are evolutionary.

On the other hand, discontinuities that are evolutionary in the full system,

but that do not have exactly two incoming Alfvén characteristics, must be non-

evolutionary in the planar system. There is only one such discontinuity, the Alfvén

discontinuity, which now only has five incoming characteristics and should there-

fore spontaneously self-destruct even if it is not perturbed.

Another interesting feature is that some of the shocks that are non-evolutionary

in the full system become evolutionary in the reduced system. 1 → 3 shocks now

satisfy the strong evolutionary condition; in fact, they have the same incoming and

outgoing characteristics as fast and switch-on shocks. As far as the characteristic

count is concerned, these three shocks are therefore indistinguishable, so that one

can use a single name, plane fast shock, say, for all of them. Similarly, 2→ 4 shocks,

switch-off shocks, and slow shocks become slightly different versions of evolution-

ary plane slow shocks.

However, 1→ 4 shocks remain non-evolutionary even in the plane system, since

they have seven incoming characteristics. Such shocks, which have too many in-

coming characteristics, are often called overcompressive in the literature. As we
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have shown, although they do have a steady dissipative structure, it is not unique

and it does not help them to survive interactions with external perturbations.

2 → 3 shocks have only five incoming characteristics, and are therefore non-

evolutionary. Such shocks, which have too few incoming characteristics, are often

called under-compressive. Since they do not have a structurally stable steady dissi-

pative structure, they should disintegrate spontaneously even without any external

perturbation.

Now consider shocks that propagate at one of the characteristic speeds in either

the upstream or downstream state. 1 → s, f → 4, and f → s shocks are non-
evolutionary, since they have seven incoming characteristics. On the other hand,

2 → s and f → 3 shocks have six incoming characteristics, and are therefore

evolutionary. The planar system of MHD is therefore genuinely non-convex, and

admits two evolutionary compound waves: a slow compound wave consisting of a

2→ s shock with an attached slow rarefaction, and a fast compound wave consisting
of a fast rarefaction with an attached f → 3 shock.

Finally, we list the evolutionary shocks and compound waves of the planar sys-

tem along with the notation used in Myong and Roe (1997b):

slow planar shock (S1);

fast planar shock (S2);

slow compound wave (C1);

fast compound wave (C2);

contact discontinuity (not considered here).

Myong and Roe (1997b) found that some Riemann problems only have a solution

if non-evolutionary shocks are permitted. However, as we discuss in Sec. 6, these

Riemann problems are confined to regions of parameter space with zero volume,

which is exactly what is meant by the statement that non-evolutionary shocks are

structurally unstable.

In the next section, we show that the results of numerical calculations are entirely

consistent with these conclusions.

5. Numerical calculations

The numerical calculations were carried out using the scheme described in Falle

et al. (1998). This is an upwind shock-capturing scheme that is capable of dealing

with shocks of arbitrary strength even without the inclusion of any dissipation

other than that introduced by the truncation errors. Careful test simulations have

shown that this scheme provides accurate solutions for all types of MHD waves in

all regimes. One can argue that if a numerical scheme works well, then its numerical

dissipation must have the same qualitative properties as the physical dissipation.

However, in order to remove any doubts, we modified our scheme so that it can

now handle dissipative MHD, and all the calculations described here have a fully

resolved dissipative shock structures (about 15 mesh points wide). For this, we used

a simple scalar form for the dissipation for which (2.1) become

∂u

∂t
+

∂f

∂x
=

∂g

∂x
,
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Table 1. Riemann problems for the numerical calculations.

2→ 3 intermediate shock: Fig. 2 (left panels)
Left state: ρ = 1, pg = 1, v = (−0.95, 0, 0), B = (1, 0.5, 0)
Right state: ρ = 0.837, pg = 0.705, v = (−1.135, 1.266, 0), B = (1,−0.7, 0)

Alfvén shock: Fig. 2 (right panels)
Left state: ρ = 1, pg = 1, v = (−1, 1, 0), B = (1, 1, 0)
Right state: ρ = 1, pg = 1, v = (−1, 3, 0), B = (1,−1, 0)

1→ 3 intermediate shock: Figs 3 (left panels), 5, 7 (left panels)
Left state: ρ = 1, pg = 1, v = (−0.925, 0, 0), B = (1, 0.5, 0)
Right state: ρ = 0.498, pg = 0.258, v = (−1.857, 0.648, 0), B = (1,−0.1, 0)

2→ 4 intermediate shock: Figs 3 (right panels), 5, 7 (right panels)
Left state: ρ = 1, pg = 1, v = (−0.4, 0, 0), B = (0.5, 0.5, 0)
Right state: ρ = 0.561, pg = 0.155, v = (−0.714, 2.252, 0), B = (0.5,−1.3, 0)

1→ 4 intermediate shock: Fig. 4
Left state: ρ = 1, pg = 1.2, v = (−0.842, 0.0, 0.0), B = (1.0, 0.4, 0)
Right state: ρ = 0.390, pg = 0.161, v = (−2.16, 0.644, 0), B = (1.0,−0.142, 0)

Brio and Wu Problem: Fig. 8
Left state: ρ = 1, pg = 1, v = (0, 0, 0), B = (0.75, 1, 0)
Right state: ρ = 0.125, pg = 0.1, v = (0, 0, 0), B = (0.75,−1, 0)

where the diffusive fluxes are
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,

where µ is the dynamic viscosity, κ the thermal conductivity, and νm the resistivity.
The Riemann problems considered in the numerical calculations are summarized

in Table 1, while other parameters used are listed in Table 2.

As expected, the outcomes of all the simulations presented here did not not

depend on the size of dissipation, and were the same even when only numerical

and/or artificial dissipation was present. The only effect of changing the dissipation

was to alter the form and width of the shock structures.

First of all, we need to establish whether the behaviour of numerical MHD shocks

agrees with the predictions of the evolutionary theory. In order to do this, we

adopt the following procedure. First, we test whether a shock has a steady dis-

sipative structure by setting up the relevant Riemann problem and running the

calculation until a well-resolved steady dissipative shock structure is established,
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Table 2. Other parameters for the numerical calculations. n is the number of mesh points,
µ is the kinematic viscosity, κ is the thermal conductivity, and νm is the resistivity.

Problem Domain n µ/ρ κ/ρ νm

Fig. 2 (left panels) [−4, 1] 250 0.02 0.01 0.01
Fig. 2 (right panels) [−2, 1] 150 0.02 0.01 0.01
Fig. 3 [−4, 1] 250 0.02 0.01 0.01
Fig. 4 [−4, 1] 250 0.02 0.01 0.01
Fig. 5 [−1, 1] 200 0.01 0.005 0.005
Fig. 6 [−2, 1] 300 0.01 0.005 0.005
Fig. 7 (left panels) [−8, 2] 500 0.02 0.01 0.01
Fig. 7 (right panels) [−14, 1] 750 0.02 0.01 0.01
Fig. 8 [2.5, 4.5] 200 0.0 0.0 0.0
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Figure 2. Planar simulations of shocks that should not have a steady dissipative structure
in planar MHD: 2 → 3 shock (left panels); Alfvén shock (right panels). In both cases, the
outcome is a slow compound wave (SCW). The dashed lines show the corresponding initial
solutions. The continuous lines show the final solutions.

as expected for evolutionary and overdetermined shocks, or a completely different

solution emerges, as expected for underdetermined shocks. If a steady structure

exists, then we test to see whether it can survive small perturbations. This can be

accomplished by considering a slightly different Riemann problem, as in Barmin

et al. (1996) or, like Wu (1988a), allowing a small-amplitude wave to interact with

the shock.
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Figure 3. Planar simulations of the interaction between evolutionary shocks and
small-amplitude fast rarefactions (δBt = 10%): fast (1→ 3) shock (left panels); slow (2→ 4)
shock (right panels). In both cases, the outcome is a shock of the same type, together with
some other waves. Here FR denotes a fast rarefaction and Vx is the x component of velocity
as measured in the shock frame. The dashed lines show the initial solutions. The continuous
and dotted lines show the final solutions.

5.1. Planar MHD

We start by discussing the results of the planar simulations. They show that if

the initial discontinuity corresponds to a slow planar shock, then a smooth steady

shock structure connecting the initial left and right states finally develops, and it

does not matter whether the shock is 3→ 4 or 2→ 4. The same thing happens for

the fast planar shock and the overdetermined (overcompressive) 1 → 4 shock. In

contrast, Fig. 2 shows that 2→ 3 shocks and Alfvén shocks always turn into a slow

compound wave. All this is exactly as predicted by the theory described in Secs 3

and 4. Our simulations cannot be used to determine whether limit shocks (such

1 → s and f → 3) have a steady dissipative shock structure, simply because it is
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Figure 4. Planar simulations of a 1 → 4 shock subjected to a small variation of pressure
(±10%) in the left state. This shock is non-evolutionary even in planar MHD, and splits
as the result of the perturbation into two evolutionary shocks plus other small-amplitude
waves The outcome is 1 → 3 and 3 → 4 shocks if δp = −10% (left panels) and 1 → 2 and
2 → 4 shocks if δp = +10% (right panels). The dashed lines show the initial solutions. The
continuous and dotted lines show the final solutions. Vx is the x component of velocity as
measured in the frame of the emerged intermediate shock.

impossible to set up a shock whose speed is exactly equal to a characteristic speed.

However, if we compute a Riemann problem that corresponds to a compound wave

of any of the types discussed above, the wave that is expected – or, strictly speaking,

a solution close to such a wave – always emerges. This is hardly surprising, because

all of them have neighbouring solutions containing shocks with a steady dissipative

structure.

As shown in Fig. 3, evolutionary shocks always survive interactions with small-

amplitude waves and persist if the Riemann problem is perturbed. Figure 4 shows

how a small variation of the initial data forces an overdetermined 1 → 4 shock

to split into two evolutionary shocks. Depending on the form of the perturbation,
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the shock splits either into a 1 → 2 shock followed by a 2 → 4 shock or into a

1 → 3 shock followed by a 3 → 4 shock. This is to be expected, because, as one

can see from Fig. 1, a 1 → 4 shock is exactly equivalent to one or other of these

shock pairs propagating with the same speed. In fact, this result is in complete

agreement with the analysis of the Riemann problem for planar MHD in Myong

and Roe (1997b). 1 → 4 shocks (O shocks in their notation), are only required on

the boundary between the two domains of parameter space in which their solution

involves a combination of fast and slow planar shocks (S2 and S1).

The results for compound waves involving non-evolutionary shocks are similar.

Figure 1 shows that the non-evolutionary 1→ s limit shock can be understood as
a double-layer shock composed of two evolutionary shocks: a 1 → 2 and a 2 → s.
Indeed, if the Riemann problem corresponding to a compound wave containing

such a shock is perturbed, then in some cases the outcome is a 1→ 2 shock and a

slow compound wave, while in other cases it is a 1→ 3 shock and a detached slow

rarefaction.

All of this can be summed up by saying that, for planar MHD, the behaviour of

shocks in our numerical simulations is entirely consistent with the classical evolutionary

theory of shocks and the theory of dissipative shock structures as described in Sec. 2

and 3.

5.2. Full MHD

Since both fast (1 → 2) and slow (3 → 4) shocks satisfy the strong evolutionary

condition in full MHD, they are expected to have unique dissipative structure and

be stable with respect to small perturbations of any kind. This is precisely what we

find from our simulations.

1 → 3 and 2 → 4 shocks are overdetermined in full MHD, and it is therefore

possible that they might have a non-unique steady dissipative structure – indeed,

it turns out that they do. These shocks, as well as 1 → 4 shocks, can now have a

non-vanishing z component of magnetic field inside the shock layer even if Bz = 0

outside. For, given the dissipative coefficients, their stucture can be parametrized

by the value of the following integral:

Iz =

∫ ∞

−∞

Bz dx.

We can gradually increase or decrease the value of Iz by sending from the down-

stream side of the shock an Alfvén wave that first rotates the magnetic field by

a small angle and then restores the original state. This wave is absorbed by the

shock, which develops a new steady structure (see the left-hand panels of Fig. 5).

However, like Kennel et al. (1990), we found that there is a maximum value of |Iz|
that the shock can manage. If this limit is exceeded, then the shock disintegrates

(see the right-hand panels of Fig. 5). This does not occur in the case of fast and slow

shocks, because the Alfvén waves do not get trapped inside the shocks, but instead

pass straight through.

2→ 3 shocks have the right number of incoming characteristics, and may there-

fore have a unique dissipative structure in full MHD. Since such a structure does

not exist in planar MHD, we can only expect to find them in our simulations by

allowing a non-zero Bz. In order to do this, we modified the initial data by inserting

a layer in which the transverse field rotates smoothly from that in the original left

state to that in the original right state. We found that the solution never relaxed
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to a smooth steady 2 → 3 transition, and were about to conclude that no steady

structure exists until we realized that the solution shown in the right-hand panels

of Fig. 5 actually contains a 2 → 3 shock, which was produced by the disintegra-

tion of the 1 → 3 shock. We therefore studied the reaction of a 1 → 3 shock to

an increase in Iz. After absorbing another Alfvén wave, the shock splits, and one
of the emerging waves is again a 2 → 3 shock but of smaller amplitude (Fig. 6).

This behaviour is consistent with the existence of a unique dissipative structure

for 2 → 3 shocks. In fact, what happens is that, as Iz increases, the shock tends
to an Alfvén shock that rotates the transverse field by π. This situation has been
considered by Wu and Kennel (1992), who showed that if Iz increases linearly with
time, then the width of the shock increases like t1/2 and its strength decreases like
t−1/2.
Finally, we have also verified that all intermediate shocks and compound waves

disintegrate when exposed to perturbations that render the left and right states

non-coplanar. For example, Fig. 7 shows how 1 → 3 and 2 → 4 shocks split into

evolutionary waves after interaction with a small-amplitude Alfvén wave. After the

Alfvén wave has been absorbed, the transverse fields on either side of the shock are

no longer parallel or antiparallel, as required by the shock equations. The shock

can only become coplanar by emitting Alfvén waves, which, for an intermediate

shock, can only be done in the downstream direction. However, since there is no

downstream-travelling Alfvén wave that can restore the original post-shock state,

the shock must split. This argument is not new – in fact it was used by Kantrowitz

and Petschek (1966) to prove that intermediate shocks are unphysical. The wave

designated as AW in Fig. 7 can be called a dissipative Alfvén wave, but it could also

be described as an evolving 2→ 3 shock with a gradually increasing value of Iz.
There appears to be little danger that any of these results are artefacts of our

numerical method, since it seems that all numerical calculations of which we are

aware give similar results. In particular, our results are enirely compatible with

those that Wu (1998a) obtained for the interaction of an Alfvén wave with a 2→ 4

shock using an entirely different numerical method.

We therefore conclude that, for full MHD, the behaviour of shocks in our numerical

simulations is also entirely consistent with the classical evolutionary theory of shocks

and the theory of dissipative shock structures as described in Secs 2 and 3.

6. Discussion

The results described in the previous sections have clarified many aspects of shock

theory in general and MHD shocks in particular, and provide a basis upon which

we can discuss other important, related, issues.

The first question is the sense in which the ideal theory is a useful approximation

to the real world – a subject about which there appears to be some confusion. Since

the dissipation coefficients are the coefficients of the highest-order derivatives in the

dissipative equations, it is clear that we have a singular perturbation problem when

the dissipation is small. The classical inviscid theory gives the the large-scale, or

outer, solution, which is valid outside shock structures, and this has to be matched

to an inner, steady solution for the shock structure. Uniqueness of the inviscid

solutions requires that all shocks be evolutionary, and the dissipation must also be

such that shocks possess a steady shock structure. We have pointed out that these

conditions are compatible in the sense that if an evolutionary shock has a steady
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shock structure, then it is unique, whereas this is not true for non-evolutionary

shocks. Furthermore, the fact that in all physical systems in which they are known

to occur, MHD shocks are indeed very thin compared with the scale of the flow

means that the small-dissipation limit is the appropriate one.
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6.1. Riemann problems and evolutionary conditions

One of the arguments in favour of non-evolutionary shocks used in the current

literature is that some Riemann problems do not have a solution unless non-

evolutionary shocks are admitted (see e.g. Glimm 1988; Myong and Roe 1997a,b).

This is presumably based on the belief that any Riemann problem must have a

physically admissible solution. Although this is certainly true for gas dynamics,

there is surely no reason why it has to be so for any system. As Markovskii (1998a)
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has pointed out, it all comes down to the notion of structural stability. One has to

ask the following question: Is it, or is it not, possible to carry out the relevant exper-

iment in a laboratory? If the qualitative result of the experiment does not change

when the initial conditions are slightly changed, then the problem is structurally

stable and the experiment is possible – at least in principle. However, if this is not

true, then the problem is structurally unstable and no appropriate experiment is

possible. It therefore follows that the set of structurally unstable Riemann prob-

lems are confined to regions of parameter space whose total volume is zero. Now

suppose that there is an MHD Riemann problem that has no other solutions than

those containing non-evolutionary shocks. Since there are arbitrary small pertur-

bations of the parameters that cause these shocks to split into evolutionary shocks,

this Riemann problem must be structurally unstable. In full MHD, the only known

case for which a non-evolutionary shock, a 1 → 4 shock, is required is a piston

problem in which the piston velocity is parallel to the magnetic field (Jeffrey and

Taniuti 1964). If this condition is not exactly satisfied, then the non-evolutionary

shock does not arise. Close inspection of the solution of the Riemann problem for

planar MHD presented by Myong and Roe (1997b) shows that non-evolutionary

shocks are required only on the boundaries between domains in parameter space

that contain only evolutionary shocks.

It is evident from the above that intermediate shocks are not structurally stable,

but the linear stability analysis discussed in Sec. 2 also shows that they are unstable

to linear perturbations whose wavelength is either large or small compared with the

shock width. This would in itself be sufficient to preclude their existence even if

they were structurally stable.

6.2. Steepening of continuous waves

Another argument that appears to justify the existence of intermediate shocks

is based on the results of numerical simulations by Wu (1987), which suggest that

intermediate shocks can be formed by nonlinear steepening of simple magnetosonic

waves. Since the transverse component of the magnetic field changes sign across an

intermediate shock, the simple wavemust have the same property, whichmeans that

the transverse component of the magnetic field must vanish somewhere within the

wave. However, at this point, the magnetosonic speed is equal to the Alfvén speed,

and it is impossible to assign a unique eigenvector to the simple wave. As a result,

the direction of the tangential component of the field can rotate by an arbitrary

angle at this point, so that a simple wave really consists of two distinct parts,

which are disconnected as far as the direction of the magnetic field is concerned.

This can be put in a slightly different way. Alfvén waves propagating in the same

direction as such a simple wave cannot pass throught the Alfvén point. During the

steepening, they will accumulate near this point, giving rise to a net field rotation,

so that the discontinuity that forms has non-coplanar left and right states and

therefore cannot be a single shock. Instead, it must split into evolutionary shocks,

one of which must be an Alfvén shock. Incidentally, this seems to be the only way

of generating Alfvén shocks.

However, in planar MHD, the transition through the Alfvén point is unique, and,

as we have seen, some of the intermediate shocks are in fact evolutionary. This is

the explanation for the outcome of the planar simulations performed by Wu (1987).

He also found that the results were not very different if the initial data was per-

turbed so that it was no longer exactly coplanar. However, because of the periodic
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boundary conditions used in this simulation, there was no net rotation in the per-

turbed problem, which makes it rather artificial. The reason why this perturbation

did not destroy the intermediate shock is that these boundary conditions, together

with the initial data, only allowed a small value of Iz per shock. It is therefore
hardly surprising that an intermediate shock appeared, since, as we have shown,

these shocks can survive if Iz is small enough.

6.3. Time scale for disintegration

Let us suppose that an intermediate shock has somehow been formed, and then

interacts with an Alfvén wave that rotates the magnetic field by a small angle δφ.
It is clearly of some importance to know how long it takes for the shock to split.

Our simulations show that it splits when the value of Iz associated with the shock
structure becomes comparable to lBy, where l is the shock thickness. If the incident
Alfvén wave has a small amplitude, δφ, then this gives us the following estimate for
the disintegration time ts:

ts ≈
l

caδφ
, (6.1)

where we have used the Alfvén speed as a characteristic fluid velocity in the shock

frame. This also tells us that the shock will only propagate for a distance ≈ l/δφ
before it falls apart. We conclude from this that, in all cases for which the dissipative

scale is much smaller than the characteristic length scale of the flow, intermediate

shocks can only appear as very short lived time-dependent phenomena.

It is instructive to apply (6.1) to the interplanetary intermediate shock for which

Chao et al. (1993) claim to have found evidence in the Voyager 1 data. In this case

ca = 40 km s−1 and l = 5 × 104 km, which gives ts = 1.2 × 10
3δφ−1 s. The flow

time for the solar wind at this distance (≈ 9 AU) is ≈ 3 × 107 s. It is therefore

clear that δφ would have to be ridiculously small for the shock to survive for a
significant fraction of a flow time. This is most unlikely, since the flow of the solar

wind is sufficiently complex to contain plenty of Alfvén waves for which δφ ≈ 1,

and indeed Chao et al. find plenty of evidence for strong Alfvén waves in the data.

Actually, the evidence for an intermediate shock is not really very convincing. The

uncertainties are such that it could just as well be a slow shock.

Exactly the same arguments can be applied to MHD shocks in the interstellar

medium. Not only does the theory of collisionless shocks (see e.g. Tidman and

Krall 1971) predict that, under these conditions, such shocks are extremely thin

compared with the scale of the flow, but also there are numerous observations that

confirm that this is indeed true (see e.g. Draine and McKee 1993).

6.4. Convexity of MHD

It is quite clear from the above discussion that a hyperbolic system is genuinely

non-convex if it allows structurally stable compound waves that only contain evolu-

tionary shocks. Planar MHD is therefore genuinely non-convex, whereas full MHD

is convex.

6.5. Non-evolutionary shocks in numerical simulations

The appearance of non-evolutionary shocks in numerical calculations is not some-

thing that is unique to MHD, since it is well known that, even in gas dynamics,

some numerical schemes can generate expansion shocks in certain circumstances.

However, this phenomenon is both more subtle and more interesting in the case of
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MHD. The essential point is that, unlike gas dynamics, planar MHD is very dif-

ferent from full MHD in the sense that there are shocks that are non-evolutionary

in full MHD but evolutionary in planar MHD, and vice versa. Unfortunately, this

property means that the results of planar MHD simulations can be very mislead-

ing, because, although most upwind schemes seem to give perfectly good solutions

for planar MHD, these are of no relevance to the real universe with its three spa-

tial dimensions. This is not at all unusual – indeed, it may very well be the rule

rather than the exception. For example, the properties of fluid turbulence are very

different in two and three dimensions, as are those of MHD dynamos.

The other properties of non-evolutionary MHD shocks that are not shared by

gas-dynamical expansion shocks are that all of them satisfy the second law of ther-

modynamics and most of them also possess a steady dissipative structure. This,

together with the fact that the ratio of the thickness of numerical shock struc-

tures to the overall scale of the flow is almost always many orders of magnitude

greater than in the corresponding physical system, means that they can persist for

a significant time, even in non-planar problems. For example, if the piston problem

discussed by Jeffrey and Taniuti (1964, pp. 256–258) is slightly modified so that it

has a small transverse component of the field, then the evolutionary solution con-

tains fast, slow, and Alfvén shocks, all propagating with very similar speeds. In a

numerical simulation, this complex would remain unresolved for some time, during

which it would be classified as a 1→ 4 shock.

The only truly satisfactory solution to this difficulty is to devise schemes that

only allow evolutionary shocks. Figure 8 shows that there are schemes that will

do this. Here we have a numerical solution to the Brio and Wu problem obtained

with our MHD version of Glimm’s scheme (Glimm 1965). This method requires a

nonlinear Riemann solver, and we employ the one described in Falle et al. (1998),

which specifically excludes intermediate shocks. In fact, we do not use Glimm’s

scheme everywhere, but only to track the Alfvén shock. One can see that, in this

way, we can avoid the appearance of intermediate shocks even in planar problems.

Unfortunately, it is not a simple matter to generalize this to more than one dimen-

sion.

The only viable option that we can think of is to subject all numerical calculations

to a careful analysis using the theory described in this paper. As an example of this,

it is instructive look at some recent calculations of steady MHD flow past a cylinder.

6.6. 2D bow-shock simulations

Recently, De Sterck et al. (1998) have carried out numerical MHD calculations of

the flow past an infinite, perfectly conducting cylinder. These are planar simulations,

and must therefore be interpreted in the light of the theory of planar MHD. The

parameters are chosen in such way that the usual convex bow shock is impossible.

Instead, the analysis given in Steinolfson and Hundhausen (1990) suggests that the

shock has a dimple. They assumed that there is only a single shock, in which case a

consistent solution requires the shock type to change from 1→ 2 to 1→ 3 and then

to 1 → 4 as the distance from the symmetry axis decreases. Although the 1 → 4

shock is non-evolutionary even in planar MHD, it seems in this case that such a

shock must occur on the symmetry axis for the same reason that it occurs when a

piston moves parallel to the magnetic field. However, one would expect it to split

into 1 → 2 and 2 → 4 or 1 → 3 and 3 → 4 shocks further away from the the axis.

Indeed, De Sterck et al. (1998) find that, not far from the axis, the 1 → 4 shock
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Figure 8. Brio and Wu problem (Brio and Wu 1988). Left panels: Numerical solution found
using a Godunov-type scheme. This is a proper solution of the reduced system of planar
MHD but is inadmissible in full MHD. Right panels: Numerical solution found using Glimm’s
scheme to track Alfvén discontinuities (markers) and the exact solution involving only evo-
lutionary shocks (lines). This is a proper solution for full MHD, and is the only physically
admissible solution for this problem.

splits and the leading shock (ED in their notation) is a 1→ 2. At some distance from

this branching point, the other shock (EG) is identified by them as f → s, but this
is unlikely to be true everywhere for such an inhomogeneous flow. One would also

expect another branching at the point where Steinolfson and Hundhausen (1990)

predict a transition from 1 → 3 to 1 → 4. The results of De Sterck et al. (1998)

do, indeed, show this branching (DE and DG), with the trailing shock being clearly

identifiable as a 2→ 4 shock.

7. Conclusions

Both our analysis and numerical results show that the evolutionary conditions for

existence and uniqueness of discontinuous solutions of the equations of ideal MHD

are not only compatible with the conditions for existence and uniqueness of steady

dissipative shock structures – they are actually complementary to them. The gen-

eral theory suggests that this will be true for all nonlinear hyperbolic systems that

can arise in nature. Non-evolutionary shocks can have a non-unique dissipative

structure, and may, perhaps, appear under some exceptional circumstances as tran-

sient phenomena. However, they are not persistent, and are bound to split when
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subjected to small perturbations. In the case of MHD, Alfvén waves are the most

effective killers, since not only our calculations but also those described by Wu

(1988a) show that intermediate MHD shocks are destroyed by interactions with

Alfvén waves. It is true that it takes a finite time for this interaction to take place,

but, in any physical system of which we know, this time is so short that it is most

unlikely that such shocks can be detected.

The occurrence of intermediate MHD shocks in planar numerical simulations is

consistent with the mathematical properties of planar MHD, in which 1 → 3 and

2→ 4 shocks become evolutionary but the Alfvén shock becomes non-evolutionary.

However, the planar limit is a singular limit of full MHD, and we suggest that

planar numerical simulations should be avoided, especially since they are hardly

any cheaper than those for full MHD.

Intermediate shocks may even pollute full MHD simulations, because numerical

shock structures are usually not very thin compared with the length scale of the

flow. It is therefore essential that the results of such simulations be subjected to a

careful analysis in order to make sure that they do not contain any intermediate

shocks. If they do, then additional work is required to determine the extent to

which they are corrupted. The ideal solution would be to devise an algorithm that

does not generate intermediate shocks, but, although we have shown that a variant

of Glimm’s scheme can do this in one dimension, there is no obvious way to extend

it to multidimensional cases.
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