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Highlights 

 Poly(AAm-MAPTAC) and Poly(AAm-MAPTAC-SMA) polyelectrolytes were 
synthesized and characterized. 

 Their flocculation performance was evaluated in an industrial oily effluent from an olive 
oil mill. 

 Hydrophobic modification of the polymers improved the treatment efficiency. 

 Turbidity removal of 90%, COD removal of 47% and total solids removal of 34% were 
achieved. 

 

 

Abstract  

Olive oil production involves a significant annual release of industrial olive oil mill effluent 

(OME) to the environment. These discharges bring serious environmental problems since they are 

extremely hazardous for the aquatic environment due to their organic matter and high turbidity 

levels. The present study comprises the development of new, hydrophobically modified, cationic 

ACCEPTED M
ANUSCRIP

T



 3 

flocculants directed to oily effluents application. A health-friendly formulation was used in their 

synthesis process, performed by inverse-emulsion. In particular, Poly(AAm-MAPTAC) was 

synthesized in two different polymer compositions and, as well, with the presence of a 

hydrophobic monomer (Poly(AAm-MAPTAC-SMA)) at several compositions up to 8 wt%. The 

obtained polyelectrolytes were characterized in terms of final composition, hydrodynamic 

diameter, zeta potential and molecular weight. Their flocculation performance was evaluated in an 

industrial oily effluent from an olive oil mill. Results revealed that the hydrophobic modification 

improves noticeably the flocculation performance of cationic polyelectrolytes in the treatment of 

olive oil mill effluents. In the best conditions, it was possible to achieve 90% turbidity reduction, 

47% COD removal and 34% total solids removal with only 53 mg/L of flocculant. Moreover, 79% 

of turbidity was reduced after addition of 13 mg/L. 

 

Keywords 

Flocculation, olive oil mill effluent, wastewater treatment, polyelectrolytes 

  

1. Introduction 

Olive oil mill effluents (OME) have increased significantly in the last years as a result of the 

quick increasing demand for olive oil, and the existing oil extraction techniques that involve high 

amounts of water[1].  

The composition of the produced wastewater change with climate, cultivation conditions and 

milling processes[2]. Typically, OME possess the following characteristics: a high concentration 
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of solids resulting from washing actions, an intense dark color, an acidic pH and a strong odor. 

These effluents, when disposed off in the environment, lead to acute problems including coloration 

and pollution of waters, changes in soil quality and phytotoxicity, plants growth inhibition and 

odor nuisance[3]. Moreover, direct discharge on fields decreases the amount of dissolved oxygen, 

harming aquatic fauna[4].  

Therefore, OME must be treated before disposal and several treatment technologies and 

integrated processes have been offered to shape a suitable and effective method to deal with the 

produced wastewater[5]. Open evaporation ponds, or lagooning, lead to insect reproduction and 

increase the risk of surface and groundwater contamination[6]. Biological methods include 

microbiological treatment, co-digestion, aerobic and anaerobic digestion. However the OME has 

high concentration of fats, lipids and phenols that can compromise the growth of microorganisms 

and, consequently, the OME degradability[7].  

Co-digestion consists in the co-treatment of one wastewater with other wastewater, which has 

the advantage of providing the necessary pH or nutrients level for further treatment[8,9]. The 

aerobic treatment stage is able to reduce the toxicity through the reduction of phenols. Several 

species can be used for this purpose. Hamdi et al.[10] and Cereti et al.[11] used Aspergillus niger 

and removed COD in about 52.5% and 35–64%, respectively. Aspergillus terreus, Azotobacter 

chroococcum and Geotrichum candidum were also used in different studies[12–14], and were able 

to reduce COD in 63.3, 74.3 and 70% and phenols in 65.6, 90 and 94.3%, respectively. Anaerobic 

digestion is performed by anaerobic microorganisms, generally bacteria, in the absence of 

molecular oxygen. This process has low energy requirements and produces low amount of sludge. 

Recent studies using anaerobic sludge bed reactors reported COD removals of 70-80%[15,16]. 

Procedure using an anaerobic sequencing batch reactor reached COD removals up to 80%[17].  
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Advanced oxidation processes, consisting in Fenton and Fenton-like oxidation and ozonation, 

can also be applied[18–20]. Physico-chemical treatment methods such as ultrafiltration, reverse 

osmosis, sedimentation, centrifugation, coagulation-flocculation and electro-coagulation are 

actually the most used methods[21–24]. Nevertheless, most of these treatment processes, on their 

own, are not cost effective and reported results present significant drawbacks, indicating that 

combined technologies are needed in order to reduce the organic load, and thus reducing the 

operating costs. These hybrid systems can include ozonation and aerobic biological treatment, 

coagulation-flocculation combined with anaerobic biological process, electron-Fenton and 

anaerobic digestion or chemical oxidative procedure in combination with aerobic biological 

treatment, among others[25,26].  

In particular, coagulation-flocculation processes have proved to be very useful has a pre-

treatment stage in the OME processing procedures[27,28], involving low  CO2 emissions[29]. The 

addition of organic and inorganic compounds stimulate the destabilization of colloidal materials 

and promote the agglomeration of small particles in large flocs that are able to quickly settle. 

Coagulants, such as alum, ferric, starch, chitosan and lime, and cationic or anionic flocculants, like 

poly(diallyldimethylammonium chloride) (PDADMAC), [poly(allylamine) (PAA) or 

poly(allylamine) hydrochloride (PAH), have been tested [23,30,31]. Experiments showed 

considerable reduction of solids, color and chemical oxygen demand (COD). However, usually a 

combination of both (inorganic and organic additives) is required or, when in single use, a very 

high concentration of polymer is used, which generates large amount of sludge[32]. Minimization 

of sludge production is important considering the costs related with consequent sludge treatment 

and disposal[33].  
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Synthesis of the aforementioned treatment products commonly comprises the presence of 

aromatic compounds, even at very low concentrations, that exhibit human and aquatic toxicity 

levels[34]. Health-friendly formulations for production of polyelectrolytes by inverse-emulsion 

polymerization[35] were tested and presented in a previous work [36]. The polymers are 

synthesized using alternative oils that are listed in the International Nomenclature for Cosmetics 

Ingredients (I.N.C.I.) under the designation “Paraffinum Liquidum” and comply with many 

pharmacopoeia and FDA regulations. The main characteristics include non-irritating, high boiling 

point, high stability and high purity, free of harmful ingredients, color, odor and taste. These oils 

have high-interest in industry, due to their physical properties and level of purity, which is required 

for use in personal care, food and pharmaceutical products[37]. 

In this work, cationic polyelectrolytes were synthesized using two different health-friendly 

formulations and applied as low dosage flocculation agents in the pre-treatment step for olive oil 

mill wastewater, and their performance was studied. The main objective of this paper was to 

examine the feasibility of using low dosage of high molecular weight polymers, specially designed 

for this type of effluents, in order to reduce the cost of the treatment. Moreover, the influence of 

hydrophobic content in the polymers, as well as the concentration of polyelectrolyte for different 

pH values were assessed. Turbidity reduction, chemical oxygen demand and total solids content 

were the selected criteria to screen the effectiveness of the process.  

 

2. Materials and methods   

2.1 Materials 

Acrylamide solution (AAm), at 50 wt %, was purchased from Kemira (Botlek, Netherlands). 

The monomer [3- (Methacryloylamino) propyl] trimethyl ammonium chloride (MAPTAC) was 
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purchased from Qingdao Finechem Chemical Co. (Qingdao, China) and used as received. Stearyl 

methacrylate (SMA) was purchased from BASF (Ludwigshafen, Germany). Tert-butyl 

hydroperoxide (TBHP) was purchased from Acros Organics (Geel, Belgium). Meta bisulfite 

(MBS) was purchased from Brenntag (Esseco, Italy). Diethylenetriaminepentaacetic acid 

pentasodium salt solution (Pentasodium DTPA) was purchased from Keininghaus Chemie (Essen, 

Germany). Adipic acid was purchased from Merck (Hohenbrunn, Germany). The surfactants 

Sorbitan isostearate (Crill 6) and Synperonic LF/30 were purchased from Croda (Goole, England). 

PEG-7 Hydrogenated Castor Oil (Cremophor WO7) was purchased from BASF (Ludwigshafen, 

Germany).  The oil Puresyn 4, a hydrogenated polydecene, was purchased from ExxonMobil 

(Switzerland). Carnation, an iso-paraffin, was purchased from Sonneborn (Amsterdam, 

Netherlands). Oily wastewaters tested include effluent obtained from olive oil mill (provided by 

Adventech Group, Portugal).  

 

2.2 Inverse-emulsion polymerization 

Inverse-emulsion polymerization was carried out in a 500 mL glass reactor. Prior to reaction, 

the aqueous phase was prepared with deionized water, acrylamide (AAm), [3- 

(Methacryloylamino) propyl] trimethyl ammonium chloride (MAPTAC) and 0.625 wt% of adipic 

acid for hydrolytic stability of the polymers. The copper was chelated with 334 ppm of 

Pentasodium DTPA. The total monomer level of the initial emulsion was 34.0 wt%. Sorbitan 

isostearate and PEG-7 Hydrogenated Castor Oil were the surfactants blended to obtain a 

hydrophilic–lipophilic balance (HLB) between 5.0 and 5.3 according with the monomers 

composition. Carnation and Puresyn 4 were used as organic phases. The aqueous phase was added 

to the organic phase under mechanical stirring for 30 min. In the case of the hydrophobically-
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modified polymers (Poly(AAm-MAPTAC-SMA)), the desired amount of hydrophobic monomer, 

stearyl methacrylate (SMA), was added at this point to the emulsion. The monomers emulsion was 

then degassed with nitrogen for 60 min under mechanical stirring (700 rpm), at room temperature. 

Polymerizations were initiated by injecting 100 ppm of tert-butyl hydroperoxide (TBHP) aqueous 

solution to the reactor and then a solution of MBS 1.0 wt%. TBHP and sodium MBS were used as 

the initiator redox couple. The peak temperature was between 45 and 52 ºC, being the exact 

maximum temperature of the exotherm dependent on comonomer composition. Additional 

quantities of TBHP and MBS were added to scavenge residual monomer. After the batch had 

cooled down to 32 ºC, 2.20 wt% wetting agent (Synperonic LF/30) was added to allow a rapid 

inversion of the flocculant when added to water. A schematic representation of the synthesis 

reaction of the hydrophobically-modified cationic polyelectrolytes is shown in Scheme 1.  

 

 

2.3 Isolation of polymers 

All polymers were isolated by dilution of 3 g of emulsion in 9 ml of hexane and following 

addition to a mixture of 240 ml of acetone and 18 ml of isopropanol under stirring. After 15 min, 

the precipitate was filtered under vacuum, washed with fresh acetone and dried in an oven at 60ºC 

overnight. The samples were stored in a desiccator.  

 

2.4 Polyelectrolytes characterization 

FTIR spectra were recorded on a Bruker Tensor 27 spectrometer, equipped with an attenuated 

total reflection (ATR) MKII Golden Gate accessory with a diamond crystal 45º top plate. The 
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spectra were collected in the 500-4000 cm−1 range with a resolution of 4 cm−1 and a number of 

scans of 128. For the measurements, polymers in the powder state were used.  

Charge density was determined by the colloid titration method with potassium polyvinyl 

sulphate (PPVS) using methylene blue as indicator, as described in the literature previously[37]. 

At least three measurements for each sample were performed. 

Hydrodynamic diameter, molecular weight and zeta potential of isolated and redissolved 

polymers were determined by dynamic light scattering, static light scattering and electrophoretic 

light scattering, respectively, in a Malvern Zetasizer Nano ZS, model ZEN3600 (Malvern 

Instruments Ltd, UK). For the hydrodynamic diameter, stock solutions of 0.1 g/L for non-

hydrophobically-modified polymers and 0.05 g/L for hydrophobically-modified polymers were 

prepared in Milli-Q water and stirred overnight. All samples were sonicated during 2 min and 

passed through 0.45-µm syringe filters prior to analysis. The measurement temperature was set to 

25 ºC and backscatter detection was used (173º angle), with at least three measurements for each 

sample performed. Molecular weight measurements of polymers were performed using stock 

solutions (0.5 g/L) of each polymer prepared in NaCl 0.1 M and stirred overnight. The samples for 

analysis were then obtained by diluting the stock solutions at several concentrations from 0.02-0.5 

g/L. All samples were sonicated during 2min and passed through 0.45-µm syringe filters prior to 

analysis. For zeta potential measurements, 1 mL of each stock solution (0.1 g/L) in Milli-Q water 

was carefully injected with a syringe into a folded capillary cell, closed by cell stoppers. At least 

three measurements were conducted for each sample.  

Table 1 summarizes the composition of the developed polyelectrolytes.  

 

 

ACCEPTED M
ANUSCRIP

T



 10 

 

2.5 Flocculation tests  

A 200-mL polymer stock solution at a 0.4 wt% concentration was prepared with distilled water 

using magnetic stirring for sixty minutes. 75-mL samples of pre-agitated wastewater (industrial 

effluent) were adjusted to three different pHs using HCl or NaOH aqueous solutions, specifically 

3 mL of HCl 1 mol/L were added for pH 3, and 0.2 mL and 5.5 mL of NaOH 1 mol/L were added 

for pH 5 and 10, respectively. Polymer solution samples with different volumes were added to the 

wastewater sample, with a successive increase of flocculant concentration from 13 mg/L until a 

maximum of 180 mg/L. In each addition, the suspension-polymer mixture was manually agitated 

for 10 seconds, allowed to settle for 2 min and the turbidity of the supernatant assessed with at 

least three repetitions, using a Photometer MD600 (Lovibond, UK). The variance in the 

measurements of turbidity was always below 1.0%. Solids content and chemical oxygen demand 

(COD) of the treated supernatant water were measured for the polymers that showed better results 

in turbidity reduction. A commercially available polymer flocculant provided by Aqua+Tech 

Specialities SA (Geneva, Switzerland) was also tested in the same conditions as a reference – this 

was the polymer under the commercial name AlpineFloc DHMW, a high molecular weight 

cationic polyacrylamide with 60 wt% charged fraction. 

  

3. Results and discussion 

3.1 Polyelectrolytes characterization 

The feasibility of carrying out polymerizations in health-friendly formulations has already been 

studied in a previous work[36]. The choice of Carnation and Puresyn 4 as organic phases in the 

inverse-emulsion polymerization of these polyelectrolytes was mainly related with economic 
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issues. Since Carnation and Puresyn 4 led to very similar copolymer characteristics, subsequent 

hydrophobic modification was conducted only using the oil Carnation.  

After purification of the polymers their compositions were assessed (Table 2). The amount of 

charged groups and the corresponding actual charge density of all synthesized polymers was 

evaluated by titration. For non-hydrophobic polyelectrolytes, it was observed that the amount of 

charged groups was slightly lower in the final polymer than the initial monomer ratios of the 

formulation, which can be due to both a difference in monomer reactivity ratios and a non-

complete polymerization of the feed monomers. In the case of the hydrophobically-modified 

polyelectrolytes, it is clear that charged fraction is increased as compared to the corresponding 

polyelectrolytes that do not contain any hydrophobic monomers.  

  

ATR-FTIR spectroscopy was used to characterize the copolymers for their main structural 

features. The spectra of the copolymers (Figure 1) showed bands at ca. 3330 cm-1 and 3190 cm-1, 

attributed to the N-H stretching vibrations in the monomers. The characteristic amide I band (C=O 

stretching in the amide groups) of the monomers appeared as a very strong band with maximum 

at 1651-1660 cm-1. The frequency of this absorption maximum changed slightly between 

copolymer samples depending on the relative content of each monomer, i.e., acrylamide (primary 

amide) and MAPTAC (secondary amide) in the sample, whose amide functions absorb at a slightly 

different frequency. Bands showing clearly the presence of MAPTAC were observed at 1532 cm-

1 (amide II of secondary amide), 1479 cm-1 (asymmetric bending of CH3 groups), 967 cm-1 and 

915 cm-1 (asymmetric stretching of C4-N bonds), with an increased intensity for the samples with 

a higher content of MAPTAC (60MC, 60MP, 60M1SC and 60M2SC). 
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It is noteworthy that FTIR spectroscopy confirmed the aforementioned results of the monomer 

composition in the copolymers determined by colloidal titration (Table 2), as demonstrated by the 

similar spectra obtained for samples 25MC and 25MP or 60MC and 60MP (of comparable 

monomer composition) and samples 25M1SC and 25M2SC, and samples 60M1SC and 60M2SC.  

Results also confirmed the reduced influence of the oil used as medium in the copolymerization 

reactions (similar FTIR spectra were obtained for the 25MC and 25MP samples or between the 

60MC and 60MP samples, produced with different oils: MC series in Carnation and MP series in 

Puresyn 4).  

The presence of the hydrophobic monomer used in the preparation of Poly(AAm-MAPTAC-

SMA) samples was revealed by the appearance of two sharp bands in the region of the C-H 

stretching bands, at 2922 and 2852 cm-1, which were better resolved in the spectra of 60M1SC and 

60M2SC samples. These bands are due to the asymmetric and symmetric stretching of the CH2 

groups of the hydrophobic chain, respectively. Additionally, for the 60M1SC and 60M2SC 

samples, a band of small intensity at 1729 cm-1 was visible in the FTIR spectra, due to the C=O 

stretching in the ester bonds of the hydrophobic monomer. 

 

A summary of the polyelectrolytes characterization, including zeta potential, hydrodynamic 

diameter and molecular weight is given in Table 3. The zeta potential values for the different 

polymers are consistent with the charge density of the polyelectrolytes evaluated by titration (Table 

2). Charged groups are the crucial parameter affecting this value. Comparing the co-polymers 

produced in the two different formulations, it is possible to observe that polyelectrolytes 

synthesized using Puresyn 4 oil present higher zeta potential values, and also higher charged 

fraction (Table 2), when compared with polyelectrolytes synthesized using Carnation oil. 
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Furthermore, comparing polyelectrolytes developed using the same oil in formulation (Carnation), 

when hydrophobic content is present the zeta potential increases, as well as the charged fraction 

in the final polymer is also higher (compare 25MC with 25M1SC and 25M2SC, and 60MC with 

60M1SC and 60M2SC). The hydrodynamic diameter supplies information about the polymer 

conformation in solution. There is a good correlation between hydrodynamic diameter and 

polymer molecular weight for polymers with identical charge density. Also, when charge density 

increases for similar molecular weight, the hydrodynamic diameter increases, as expected 

(compare 25M2SC and 60M2SC). Since the hydrodynamic diameters where measured in water 

solutions, the hydrophobicity present in the polyelectrolytes can affect their conformation in water, 

leading to similar diameters even when charge density increases (compare 25M2SC and 60M1SC). 

The molecular weight values of polymers produced are in accordance with the molecular weight 

range presented in the literature for polymers used in the same application[28,31].   

 

3.2 Flocculation efficiency in an industrial effluent  

The characteristics of the olive oil effluent sample used in the flocculation tests are summarized 

in Table 4.  

Cationic flocculants have inherent positively charged groups, which are active in neutralization 

of negative charges on suspended colloidal particles and oil droplets during the flocculation 

process of oily wastewater[38]. Average-zeta potential of the suspended particles and droplets in 

the effluent sample was -12.6 mV, with a distribution from -25.4 to 0.9 mV, indicative of a 

heterogeneous effluent, confirming nonetheless the adequacy in the use of cationic flocculants. 

Also, long polymer chains with medium charge density can promote the bridging effect between 
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the particles, due to the polymer adsorption on the particle surface in a way that is extended and 

can interact with other particles[39–41].  

The influence of pH and dosage of each flocculant was evaluated. Herein, the supernatant water 

turbidity was used to evaluate the oil removal efficiency. Figures 2 and 3 show the effect of pH on 

polyelectrolytes performance in OME treatment at different concentrations from 0-180 mg/L, until 

the turbidity reduction reaches a stable value, for the different polyelectrolytes produced. As can 

be seen, with increasing dosage, gradual increase was observed in the reduction of turbidity. Acidic 

conditions always appear to lead to higher removal efficiencies, and the addition of focculant did 

not change the effluent pH. Furthermore, adjustment of the effluent to pH 3 decreased, by itself, 

the turbidity in about 20%. At pH 3, turbidity reduction was at the highest level for all the polymers 

tested, and was almost complete for dosages above 80 mg/L for all polyelectrolytes with the 

highest charge density (60 series). When these four flocculants were used for different pHs, the 

wastewater needed much higher concentrations of polymer to reduce turbidity. Moreover, 

adjusting pH to basic conditions increased the turbidity of the initial wastewater by itself, severely 

reducing the flocculant efficiency.  

When the charge density is lower, the concentration of polymer required to achieve the same 

turbidity reduction is higher. This may be attributed to the fact that lower cationic charge density 

is less effective in neutralizing the negative charge on the oil droplets. Besides the charge density, 

these polymers present a higher hydrodynamic diameter, favoring, also, the bridging mechanism.  

When the hydrophobic monomer in introduced in the polymer chain, higher levels of oil removal 

were achieved with lower polymer dosages. In addition, better performance is obtained for the 

higher charge densities. When the amount of the hydrophobic monomer increased, the 
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performance of the polymer improved slightly, a lower dosage of flocculant being required for the 

same removal efficiency, particularly in the case of the higher charge density polymers.  

The use of either Carnation, iso-paraffin, or Puresyn 4, hydrogenated polydecene, in the 

synthesis process did not affect the performance of the polyelectrolytes (compare the graphs for 

the MC and MP series of polymers), which is consistent with the similarity of the characterization 

parameters (zeta potential, hydrodynamic diameter and molecular weight) for these two types of 

polyelectrolytes for similar amounts of the cationic monomer (see Table 2). A more structural 

analysis regarding the influence of the organic phases used has already been presented in a 

previous study[36]. 

Considering that molecular weight of the higher charge density hydrophobically-modified 

polymers is lower, improvement of performance must be justified by the affinity between the 

hydrophobic part of the polymer and the oil droplets in the effluent. Previously Lü et al.[42] and 

Bratskaya et al.[43] demonstrated that oil removal efficiency was significantly enhanced using 

hydrophobically-modified cationic flocculants.  

 

 

The performance of the new polyelectrolytes developed in this study was compared with the 

reference polymer (Figure 4) commercially available from Aqua+Tech. AlpineFloc DHMW, 

which has a similar charge density to the 60 series in this work. Looking at the results for pH 3, 

which provided the highest oil removal efficiency, the reference polymer showed a similar 

behavior as the newly developed copolymer with analogous charge density. Nevertheless, 60MC 

and 60MP achieved higher turbidity reduction values than DHMW when comparing the same 

dosages. When comparing the performance of the hydrophobically-modified polyelectrolytes 
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developed (25M1SC, 25M2SC, 60M1SC and 60M2SC) with this reference commercial polymer, 

the former show a much higher removal efficiency. This evidence proves once again that addition 

of a hydrophobic monomer to the copolymers highly improves the flocculation performance of 

cationic polyelectrolytes in the treatment of industrial olive oil mill effluents.   

Additionally, it must also be stressed the new polymers developed present always better 

performance than the reference commercial polymer when testing at all other pHs, particularly for 

pH 5. In fact, the commercial flocculant shows almost zero removal for these pH values.  

 

  

The total solids and COD removal efficiencies were measured (figure 5) for the polymers that 

presented higher turbidity reduction and in the optimized conditions of pH and concentration, in 

order to confirm that pre-treatment was also efficient regarding these two parameters. For both 

parameters, the removal for the different polymers tested was very similar with a slightly better 

performance of the polyelectrolyte 60M1SC. Comparing these results with previous publications 

for coagulation/flocculation of olive oil mill effluents, the removal range is similar, however much 

lower dosage was needed to reach a similar effect. In Sarika et al.[44], four cationic and two 

anionic polyelectrolytes were tested in direct flocculation and shown to be capable to remove 

nearly completely TSS and reduce considerably COD (55%) with a minimum dosage of about 

2500-3000 mg/L, is the best cases.  Michael et al.[45] studied coagulation/flocculation as pre-

treatment in the application of a solar-driven advanced oxidation process (solar Fenton), using 

ferrous sulfate (FeSO4) (6670 mg/L) as the coagulant, and an anionic polyelectrolyte (287 mg/L) 

as flocculant, leading to approximately 44% of COD removal and TSS was removed by 94%, in 

line with the results obtained in the present work, for COD removal. Rizzo et al.[30] investigated 
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the coagulation of olive mill wastewater by natural organic coagulants, as possible alternative to 

conventional metal based coagulants. Chitosan was chosen and provided high performances in 

terms of turbidity (94%) and TSS (81%) removals under an optimized dosage of 400 mg/L.  

 

 

The digital micrographs displayed in figure 6 show the flocs structure after addition of the 

suitable dosage of 60MC (b), 60MP (c), 60M1SC (d) and 60M2SC (e) to the initial effluent sample 

(a), at pH 3. Flocs resulting from the flocculation with the new developed polyelectrolytes had 

very fast growing and settling performance, presenting a high resistance to breaking actions and 

strong and compact structure after formation, suggesting a low water content in the flocculated 

fraction.     

 

 

4. Conclusions  

 

Direct-flocculation is  a simple and easily applicable method for treatment of wastewaters. The 

health-friendly formulations used in the development of the flocculation agents, presented in this 

work, led to polyelectrolytes with suitable characteristics for the final application. The 

characterization of the polyelectrolytes produced proved the success of the hydrophobic content 

integration, without affecting the factors that have the main influence in the flocculation process, 

like zeta potential or molecular weight.  

The cationic polyelectrolytes produced revealed to be very promising as pre-treatment agents for 

treatment of olive oil mill effluents. Moreover, the hydrophobic modification of the polymers 
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improves the treatment efficiency, reducing, simultaneously, the associated treatment cost, since 

lower dosages are needed to reach the same treatment effectiveness. 

The application of hydrophobically-modified polyelectrolytes, with 41-47 wt% of charged 

fraction, in dosages around 53 mg/L, were the most effective in the flocculation process. Turbidity 

removal of 90%, COD removal of 47% and total solids removal of 34% were achieved. 

Furthermore, encouraging results were obtained after addition of only 13 mg/L of flocculant, with 

reduction of turbidity around 79%. 

In summary, the polyelectrolytes developed for direct flocculation proved to be an effective pre-

treatment solution for the harsh effluent targeted (olive oil mill effluent), considering the different 

parameters usually analyzed, and also a more economic method when compared with 

alternative/standard coagulation-flocculation procedures which use larger amounts of flocculant 

and generate high volumes of sludge, expensive to treat 
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Figure 1. ATR-FTIR spectra for the polyelectrolytes prepared. Poly(AAm-MAPTAC): 25MC, 

25MP, 60MC and 60MP. Poly(AAm-MAPTAC-SMA): 25M1SC, 25M2SC, 60M1SC and 

60M2SC. 

 

Figure 2. Turbidity reduction curves for the industrial olive oil mill effluent treated by 

polyelectrolytes Poly(AAm-MAPTAC): 25MC, 25MP, 60MC and 60MP, at three different pHs.  
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Figure 3. Turbidity reduction curves for the industrial olive oil mill effluent treated by 

polyelectrolytes Poly(AAm-MAPTAC-SMA): 25M1SC, 25M2SC, 60M1SC and 60M2SC, at 

three different pHs. 

 

Figure 4. Turbidity reduction curves for the industrial olive oil mill effluent treated by reference 

polymer, AplineFloc DHMW, at various pHs.  
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Figure 5. COD and total solids removal after the treatment of the industrial olive oil mill effluent 

with 60MC, 60MP, 60M1SC and 60M2SC flocculants, in optimized conditions of pH and 

concentration. 

 

Figure 6. Initial effluent (a) and effluent after treatment with flocculants 60MC (b), 60MP (c), 

60M1SC (d), and 60M2SC (e), in optimized conditions of pH and concentration. 
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Scheme 1. Representation of the synthesis reaction for Poly(AAm-MAPTAC-SMA), using 

monomers of acrylamide, MAPTAC and stearyl methacrylate. 

Table 1. Summary of the polyelectrolytes initial composition at the beginning of the 

polymerization. Poly(AAm-MAPTAC): 25MC, 25MP, 60MC and 60MP. Poly(AAm-MAPTAC-

SMA): 25M1SC, 25M2SC, 60M1SC and 60M2SC. 

Copolymer 
designation 

Monomer 
1 

Ratio 
(wt%) 

Ratio 
(mol%) 

Monomer 
2 

Ratio 
(wt%) 

Ratio 
(mol%) 

Monomer 
3 

Ratio 
(wt%) 

Ratio 
(mol%) 

Organic 
phase 

25MC AAm 75 90 MAPTAC 25 10    Carnation 

60MC AAm 40 67 MAPTAC 60 33    Carnation 

25MP AAm 75 90 MAPTAC 25 10    Puresyn 4 

60MP AAm 40 67 MAPTAC 60 33    Puresyn 4 

25M1SC AAm  73 90 MAPTAC 23 9 SMA 4 1 Carnation 

25M2SC AAm  71 89 MAPTAC 21 9 SMA 8 2 Carnation 

60M1SC AAm  38.5 67 MAPTAC 58.5 32 SMA 3 1 Carnation 

60M2SC AAm  37 66 MAPTAC 57 32 SMA 6 2 Carnation 

Table 2. Charged fractions calculated from the initial mass balance and estimated by titration. 

Poly(AAm-MAPTAC): 25MC, 25MP, 60MC and 60MP. Poly(AAm-MAPTAC-SMA): 25M1SC, 

25M2SC, 60M1SC and 60M2SC. 
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Copolymer Charged fraction from the 
initial mass balance (wt%) 

Charged fraction estimated from 
titration method (wt%) 

25MC 25 22.7 ± 0.8 

60MC 60 41.5 ± 2.2 

25MP 25 23.4 ± 0.7 

60MP 60 42.9 ± 0.2 

25M1SC 23 29.3 ± 0.1 

25M2SC 21 28.2 ± 0.1 

60M1SC 58.5 46.7 ± 0.2 

60M2SC 57 45.6 ± 0.2 

 

Table 3. Polyelectrolytes characterization: zeta potential, hydrodynamic diameter and molecular 

weight. Poly(AAm-MAPTAC): 25MC, 25MP, 60MC and 60MP. Poly(AAm-MAPTAC-SMA): 

25M1SC, 25M2SC, 60M1SC and 60M2SC. 

Copolymer Zeta Potential 

(mV) 

Hydrodynamic 
diameter (nm) 

Molecular weight  

(106 Da) 

25MC 44 ± 2 70 ± 2 0.5 ± 0.02 

60MC 75 ± 1 234 ± 9 2.9 ± 0.7 

25MP 66 ± 1 51 ± 2 0.4 ± 0.04 

60MP 79 ± 2 287 ± 13 3.1 ± 0.03 

25M1SC 61 ± 1 101 ± 5 1.1 ± 0.03 

25M2SC 62 ± 1 138 ± 1 1.1 ± 0.2 

60M1SC 97 ± 1 138 ± 9  1.0 ± 0.09 

60M2SC 89 ± 1 159 ± 7 1.3 ± 0.01 

 

Table 4. Characteristics of the industrial olive oil mill effluent. 
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Parameter Values 

pH 4.7 

COD (gO2/L) 11.8 

Total solids (g/L) 5.99 

Turbidity (NTU) 3440 

Colour Dark brown 
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