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Abstract. The goal of this study is to determine the number of i terations (ݎ) 

required in a Monte Carlo based space-time interaction analysis of crime data 

sets, in order to test the adequacy of using a  single va lue of 999 i terations. A 

case s tudy of burglary crime data sets is presented in which Knox test is used 

for the analysis of space-time interactions. The outcomes of this analysis 

demonstrate that the use of a  single value, such as 999, does not always re p-

resent the most appropriate number of i terations especially when multiple ST 

neighbourhood s izes are involved. This analysis opens further research oppor-

tunities into determining the best s trategy to defining the expected distribu-

tion in a  space-time interaction analysis of crime.  

Keywords: ST neighbourhoods, Monte Carlo simulation, crime, Knox test 

1 Introduction 

The use of a Monte Carlo (MC) simulation in space-time interaction analysis 

using the Knox test (Knox, 1964) usually involves 999 iterations in order to 

generate the expected distribution under the assumption of no space-time 

interactions. Despite the potentials of varying reliabilities relating to the un-

derlying normal distribution for different pairs of spatial and temporal 

thresholds, the same number of iterations is usually employed in crime ap-

plications (Johnson et al., 2007). This study therefore aims to test the ade-

quacy of the generally adopted 999 iterations at a chosen reliability level for 

different spatial and temporal thresholds. 

One way to test the reliability of a MC simulation for a normal distribution is 

to specify a desired percentage error for the computed mean value of the 
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random variables (in this case, the Knox statistic), while the iterations are 

continuously repeated (Driel and Shin, 2004). Thus, the number of iterations 

needed (ݎ) to attain the specified error can be determined by monitoring the 

convergence of ݎ in relation to the actual number of iterations being per-

ĨŽƌŵĞĚ͘ TŽ ƚŚĞ ďĞƐƚ ŽĨ ƚŚĞ ĂƵƚŚŽƌ͛ Ɛ ŬŶŽǁůĞĚŐĞ͕ ƚŚŝƐ ƚǇƉĞ ŽĨ ĂŶĂůǇƐŝƐ ŚĂƐ ŶŽƚ 
been carried out for space-time interaction analysis in relation to a crime 

data set. Therefore, the major goal of this study is to address this research 

gap by determining the number of iterations (ݎ) required for different spatio-

temporal (ST) neighbourhoods of crime, and subsequently, examine the ade-

quacy of using a single value of 999 iterations in the context of the generated 

results.  

2 Space-time interaction analysis with the Knox test 

The Knox test is the most commonly used technique for the analysis of the 

spatio-temporal interactions of crime data sets (Johnson et al., 2007). The 

Knox test measures whether there are disproportionate instances of ob-

served pairs of events within a defined spatio-temporal neighbourhood than 

would be expected if the events had occurred randomly. Therefore, the hy-

pothetical random occurrences represent the expected distribution, which is 

generally modelled as a normal distribution.  

MĂƚŚĞŵĂƚŝĐĂůůǇ͕ ƚŚĞ KŶŽǆ ƐƚĂƚŝƐƚŝĐ ŝƐ Ă ƉƌŽĚƵĐƚ ŽĨ ƚǁŽ ͚ĐůŽƐĞŶĞƐƐ ŵĂƚƌŝĐĞƐ͛͘  
The first matrix ( ௜ܺ௝) describes the closeness of all pairs of events in space, 

while the second matrix ( ௜ܻ௝) describes the closeness of all the pairs of events 

in time. The closeness is defined by specifying a spatial neighbourhood (Ɂ) 

and a temporal neighbourhood (ɒ), within which event j is considered close 

to event ݅ in space and time dimensions, respectively. Technically, each 

neighbourhood is the intersection of two distance thresholds; ሾߜଵǡ  ଶሿߜ
and ሾɒଵǡ ɒଶሿ, where ߜଶ ൐ ଵ, and ɒଶߜ ൐  ɒଵ (see Fig. 1 for an illustration).  



 

Fig. 1. An illustration of the spatio-temporal neighbourhood around a point ݅  (in a Knox test). 

The event ݅  is  the reference, while events  ଵ݆, ଶ݆͕ ͙͕͘͘ ଼݆  ĂƌĞ ĞǆĂŵŝŶĞĚ ĨŽƌ ͚ĐůŽƐĞŶĞƐƐ͛ ƚŽ ݅.  
Events ݆ ଷ ǡ ସ݆ǡ ǥ Ǥ Ǥ ଼݆  fall within the spatial neighbourhood ߜ ൌ ଶߜ െ -ଵ and temporal neighߜ

bourhood ɒ ൌ ɒଶ െ ɒଵ, and are therefore considered close to ݅  in space and time (Diagram 

from: Adepeju, 2017a). 

For each pair of spatial and temporal neighbourhood, the closeness is eval u-

ated for every point (݅) across the entire study area and finally added togeth-

er in order to derive the Knox statistic as follows:  

݊ஔǡத ൌ  ͳʹ ෍ ෍ ௜ܺ௝ ௜ܻ௝୬ିଵ
୨ୀଵ

୬
୧ୀଵ  

(1) 

௜ܺ௝ ൌ  ቄͳǡͲǡ  if event ݆ is within Ɂ of ݅  otherwise  

௜ܻ௝ ൌ  ቄͳǡͲǡ  if event ݆ is within ɒ of ݅  otherwise  

The ݊ ஔǡத is referred to as the observed, with which the expected statistics ݁ஔǡத  are compared to estimate the critical value (݌) through using the formu-

la: 

݌ ൌ ͳ ൅ σ ሺ݊Ɂǡɒܫ ൒ ݁Ɂǡɒሻ௥௩ୀଵݎ ൅ ͳ  
(2) 
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Where ݎ is the number of iterations generated, ݁ ஔǡத is the equivalent list of 

expected statistics, and I(.) is the indication function.  

An expected statistic is calculated via a new replica of the original data set, 

which is generated by randomising the time attribute of the events, while 

the spatial locations are kept constant. This process is the MC simulation 

(also called the iteration process). If each ݁ஔǡத is considered a random varia-

ble, a plot of all ݁ ஔǡத͛Ɛ ƐŚŽƵůĚ ĂƐƐƵŵĞ Ă ŶŽƌŵĂů ĚŝƐƚƌŝďƵƚŝŽŶ ĚĞĨŝŶĞĚ ďǇ Ă ŵĞĂŶ 
value, and standard errors which can be evaluated at varying confidence 

ůĞǀĞůƐ͘ TŚĞŽƌĞƚŝĐĂůůǇ͕ ƚŚĞ ŵĞĂŶ ǀĂůƵĞ ŽĨ ƚŚĞ ͚ŽďƚĂŝŶĞĚ͛ ŶŽƌŵĂů ĚŝƐƚƌŝďƵƚŝŽŶ ŝƐ 
close to the mean value of the hypothetical normal distribution within an 

error bound. Hence, it is assumed that this hypothetical normal distribution 

can only be attained if the iteration is run infinitely. However, both distribu-

tions can be compared in order to examine the reliability of the obtained 

normal distribution.  

3 Determining the number of iterations (࢘) needed to attain a 

specified error bound. 

It is possible to determine the minimum number of iterations (ݎ) needed to 

provide a desired degree of reliability for the expected distribution (݁ஔǡத), as 

described in section 2. This process was used in Driel and Shin (2004) so as to 

estimate the r required in a precision analysis of military weapon effective-

ness. Firstly, it is argued that ݎ needs to be large enough to obtain sufficient 

granularity in the cumulative density function of the ݁ஔǡத. For example, if ݎ ൌ ͵Ͳ, it would not be possible to obtain a 1% rank. This is because an ana-

lyst needs at least 100 iterations. Using the Driels and Shin (2004) approach 

therefore requires a continuous generation of large number of replicas in 

which a plot of r against the number of replicas, at a specified maximum ac-

ceptable percentage error of the mean value can be used to monitor the 

convergence of ݎ.   

Table 1 shows the values of the confidence coefficient ݖ௖ for different confi-

dence levels of a normally distributed random variable. The ranges for a gi v-

en ݖ௖ are usually expressed in the form of an upper (U) and lower bound (L), 

whereby: 



ܷ ൌ ௫ߤ ൅ ௖ݖ ܮ ௫ (3)ߪ ൌ ௫ߤ െ ௖ݖ  ௫ (4)ߪ

Where ߤ௫ the population is mean and ߪ௫ is the population standard devia-

tion of the random variables ݔ.  

Table 1. Values of ݖ௖ for different confidence levels for a normally dis tributed random 

variable.  

Confidence 
level (C.L) 

% 
99.75 99 98 96 95.5 95 90 80 68 50 

 ௖ 3 2.58 2.33 2.05 2 1.96 1.65 1.28 1 0.6745ݖ

Given a confidence level of 95% for example, the confidence interval  of the 

mean is therefore as follows: ሺܮǡ ܷሻ଴Ǥଽହ ൌ ௫ߤ േ ͳǤͻ͸ߪ௫ (5) 

This is stated as: we are 95% confident that the true mean is within (ܮǡ ܷ) of 

a sample of the mean of ݔ. The general form of equation 5 can then be writ-

ten as:  ሺܮǡ ܷሻ஼Ǥ௅ ൌ ௫ߤ േ ௖ݖ  ௫ (6)ߪ

If the simulation is run for a finite number of iterations (ݎ), the sample mean ݔҧ and the standard error ܵ ௫ are thus estimates of the population statistics.  ሺܮǡ ܷሻ ൌ ҧݔ േ ௖ݖ ሺܵ௫Ȁξݎሻ (7) 

By considering the confidence interval as representing twice this maximum 

error, we have: ݁ݎ݋ݎݎ௠௔௫ ൌ ҧݔ േ ௖ݖ ሺܵ௫Ȁξݎሻ (8) 

Hence, the percentage error of the mean becomes: 

ܧ ൌ ͳͲͲ ൈ ௖ݖ ܵ௫ݔҧξݎ  
(9) 

By solving the equation 9 for ݎ, we have: 



ݎ ൌ ൤ͳͲͲ ൈ ௖ݖ ܵ௫ݔҧܧ ൨ଶ
 

(10) 

 in equation 5.10 is the number of iterations needed to be carried out for a ݎ

given error bound ܧ and a confidence interval whose coefficient is ݖ௖ ͘ LĞƚ͛Ɛ 
imagine we want a confidence level of 95% at an error percentage of 1% of 

the mean, ݖ௖ and ܧ will be 1.96 and 1, respectively, ݔҧ and ܵ௫ can be estimat-

ed from the generated random samples. The value of ݎ can thus be calculat-

ed continuously as the replicas increase. Furthermore, the required value of ݎ can be taken as the point where ݎ stabilises or converges in a plot of r 

against number of replicas.  

4 Case study: data sets and experimental parameters 

This test is demonstrated using the burglary crime data set of the San Fran-

cisco area of the United States for the year 2015. The two most prominent 

sub-ĐĂƚĞŐŽƌŝĞƐ ŽĨ ďƵƌŐůĂƌǇ ĂƌĞ ƵƐĞĚ͘ TŚĞǇ ĂƌĞ͕ ͚ďƵƌŐůĂƌǇ-in-ƌĞƐŝĚĞŶĐĞ͛ ;Ϯ͕ϵϵϬ 
ƌĞĐŽƌĚƐͿ ĂŶĚ ͚ďƵƌŐůĂƌǇ-of-ƐŚŽƉƐ͛ ;ϭ͕ϭϲϲ ƌĞĐŽƌĚƐͿ͘ TŚĞ ĐŚŽŝĐĞ ŽĨ ƚŚĞƐĞ ĚĂƚĂ 
sets is based on a previous finding that demonstrates that sub-categories of 

burglary crimes possess distinct spatio-temporal interactions (Adepeju, 

2017b). Besides, the 3-D visual exploration of both data sets illustrates that 

͚ďƵƌŐůĂƌǇ-in-ƌĞƐŝĚĞŶĐĞ͛ ŝƐ ĚĞŶƐĞƌ ƚŚĂŶ ͚ďƵƌŐůĂƌǇ-of-ƐŚŽƉƐ͛ ƐƉĂƚŝŽ-temporally; 

indicating a potential for two distinct spatial and temporal interactions (Fig. 

2). 

 
Fig. 2. A 3-D scatterplot of the case s tudy data  sets  
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In order to ensure a robust analysis, three common levels (sizes) of spatial 

and temporal neighbourhoods in both dimensions are considered. These 

include small, medium and large levels. Thus, the following lists are can be 

defined: 

 Spatial neighbourhoods, ߜ = [0-200m], [301-500m], [701-900m] 

 Temporal neighbourhoods, ߬  = [0-2days], [7-21days], [30-60days] 

The three levels are as demarcated with the brackets. Based on the two lists, 

corresponding spatio-temporal neighbourhood are formed by pairing each 

spatial neighbourhood with a temporal neighbourhood. Hence, a total of 

nine ST neighbourhoods are formed. This covers a range of levels commonly 

used in crime analysis. 

In this study, the percentage error of 1% is chosen for the mean value, and a 

confidence interval of 95%. Both the mean value (ݔҧ) and the standard devia-

tion (ܵ௫) are calculated after each iteration step. The values, ݔҧ and ܵ௫ are 

then substituted into equation 10, where 1 = ܧ and ݖ௖= 1.96. 

5 Results and discussions 

Fig. 3 shows the plot of the number of iterations needed (ݎ) for the specified 

error parameters against the actual number of iterations (replicas) carried 

out. These plots enable the convergence of ݎ to be monitored. 



 

Fig. 3. The number of i terations  needed (ݎ) aga inst the number of i terations  (repl icas ) .  

Each plot shows the results generated for the selected temporal thresholds 

at each spatial threshold. For example, the top-most left and the top-most 

right plots are the results of the three temporal thresholds at the spatial 

ƚŚƌĞƐŚŽůĚ ŽĨ ϮϬϬŵ͕ ĨŽƌ ƚŚĞ ͚ďƵƌŐůĂƌǇ-in-ƌĞƐŝĚĞŶĐĞ͛ ĂŶĚ ͚ďƵƌŐůĂƌǇ-in-ƐŚŽƉƐ  ͛
crimes, respectively. The general pattern across all the plots is that the num-

ber of iterations needed (ݎ) reduces as the sizes of the spatial and temporal 

thresholds increase. That is, in each crime sub-category, the highest value of 



 is obtained at the smallest spatiotemporal neighbourhood (i.e. intersection ݎ

of 0-200 = ߜm and ߬ = 0-2 days), while the lowest ݎ is obtained at the largest 

ST neighbourhood (i.e. 701-900 = ߜm and ߬ = 30-60days. Technically, at large 

ST neighbourhoods, the mean values become relatively large in comparison 

to the standard error, thereby allowing ݎ values to converge faster. Whereas, 

there is higher variabilities at smaller ST neighbourhoods because of the rela-

tively small values of mean in comparison the standard error, thereby requi r-

ing larger replicas to converge.   

TŚĞ ƌĞƐƵůƚƐ ŽĨ ͚ďƵƌŐůĂƌǇ-in-ƌĞƐŝĚĞŶĐĞ͛ ƐŚŽǁƐ ƚŚĂƚ ƚŚĞ ŶƵŵďĞƌ ŽĨ ŝƚĞƌĂƚŝŽŶƐ ;ݎ) 

needed at the ߬  = 2days across all spatial thresholds is multiple times larger 

than all of the other temporal thresholds. The largest value of ݎ ൌ ͷͻͲ is 

obtained at the spatial threshold of 0-200m; a value which stabilises after 

only around 500 iterations. At the other spatial thresholds, ݎ stabilises much 

faster; converging even before 250 iterations. In this case, the values of ݎ are 

generally between 20 and 300. These are relatively small numbers compared 

ƚŽ ƚŚĞ ĐŽŵŵŽŶůǇ ƵƐĞĚ ϵϵϵ ŝƚĞƌĂƚŝŽŶƐ͘ A ƐŝŵŝůĂƌ ƌĞƐƵůƚ ŝƐ ŽďƚĂŝŶĞĚ ĨŽƌ ͚ďƵƌŐůa-

ry-of-ƐŚŽƉƐ͕͛ ĞǆĐĞƉƚ ǁŝƚŚ Ă ƐůŝŐŚƚůǇ ŚŝŐŚĞƌ ǀĂůƵĞ ŽĨ ݎ for each corresponding 

ST neighbourhoods. Thus, this indicates that tŚĞ ͚ďƵƌŐůĂƌǇ-of-ƐŚŽƉƐ͛ ĐƌŝŵĞ 
possesses a relatively higher variability in the ST distribution compared to the 

͚ďƵƌŐůĂƌǇ-in-ƌĞƐŝĚĞŶĐĞ͛ ĐƌŝŵĞ͘ TŚŝƐ ŝƐ ĂƉƉĂƌĞŶƚ ŝŶ ƚŚĞ ϯD ƐĐĂƚƚĞƌƉůŽƚƐ ;FŝŐ. 2), 

ŝŶ ǁŚŝĐŚ ͚ďƵƌŐůĂƌǇ-of-ƐŚŽƉƐ͛ ĂƉƉĞĂƌƐ ƐƉĂƌƐĞƌ ĐŽŵƉĂƌĞĚ ƚŽ ƚŚĞ ĨŝŶĚings for the 

͚ďƵƌŐůĂƌǇ-in-ƌĞƐŝĚĞŶĐĞ͛ ĐƌŝŵĞ͘ TŚĞ ƌĞƐƵůƚ ŽĨ ͚ďƵƌŐůĂƌǇ-of-ƐŚŽƉƐ͛ Ăƚ ƚŚĞ ƐŵĂůůĞƐƚ 
spatial and temporal neighbourhoods also shows that ݎ could exceed 999. 

Additionally, this demonstrates that if the percentage error E value is re-

duced or the confidence level increased, the value of ݎ can be much greater 

than 999. In summary, it is observed that the ST distribution of a data set, as 

well as the ST neighbourhood sizes used, influence the reliability of the ex-

pected distribution in a MC based space-time interaction analysis of crime 

data sets. Thus, the use of a single value, such as 999, may not represent the 

most appropriate number of iterations in the case of multiple ST neighbour-

hood sizes. 



6 Conclusion and recommendations 

This study has examined the number of iterations required for different sizes 

of spatio-temporal neighbourhoods of crime data sets. The aim was to test 

how reliable the practice of using a single value, such as 999 in a MC simul a-

tion process. The result obtained shows that given some specified errors, 

different spatio-temporal neighbourhoods require different numbers of iter-

ations in order to generate reasonable expected (normal) distribution. This is 

in contrary to the general practice in which a uniform (single) value, particu-

larly 999, is often used. Hence, it is argued that this is generally a practice 

used for convenience and to ensure the uniformity of precision in the re-

ported critical values. In the future, the author would like to investigate how 

the findings of this study could be employed to achieve a more reliable result 

using a Knox test. 

It is therefore recommended that this type of analysis should first be carried 

out in any spatial and temporal point pattern analysis. It will help to establish 

the reliability of the MC simulation process. 
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