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PV Cell Angle Optimization

for Energy Generation-Consumption Matching

in a Solar Powered Cellular Network

Doris Benda, Student Member, IEEE, Sumei Sun, Fellow, IEEE, Xiaoli Chu, Senior Member, IEEE,

Tony Q.S. Quek, Senior Member, IEEE, and Alastair Buckley

Abstract—An inherent problem of solar-energy-powered-small-
cell base stations (SBSs) is that the energy generation of the
photovoltaic (PV) cell does not match the energy consumption
of the SBS in time. In this paper, we propose to optimize the
PV cell orientation angle to achieve a good match between
the energy generation and consumption profiles on a daily
time scale. The optimization is formulated as an integer linear
programming problem. We also derive an expression for the
correlation between the energy generation and consumption
profiles to evaluate their general interaction independent of the
exact PV cell or SBS deployment setup. The numerical evaluation
of the proposed angle optimization in a business area in London
in summer/winter shows that the optimal PV cell orientation in
summer contradicts the conventional assumption of south facing
being optimal in the northern hemisphere. Instead, a southwest
orientation should be chosen in summer due to its ability to shift
the energy generation peak towards the energy consumption peak
in the afternoon at a SBS in central London. This is in accordance
with the prediction given by our derived correlation between the
solar energy generation and consumption profiles.

Index Terms—Green cellular network, PV cells, orientation
angle, inclination angle, and downlink

I. INTRODUCTION

A. Background

The information and communications technology (ICT)

accounts for 3% of the global electricity costs with an annual

increase rate of 15-20% [2]. Base stations are responsible for

more than half of the energy costs in the cellular network

infrastructure [3], indicating a huge demand to take advantage

of renewable energy generation. Experts estimated that energy

harvesting technology can reduce 20% of the CO2 emissions

in the ICT industry [4].
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The next generation cellular network requires a massive

expansion of the small-cell base station (SBS) deployment

[5]. In contrast to the increased energy consumption for

operating large numbers of SBSs, many countries have set

green taxation and incentive schemes to achieve ambitious

CO2 emission reduction targets, making renewable energy

harvesting technologies attractive for cellular network oper-

ators. PV-cell-powered-SBSs have been considered for future

cellular networks due to their small physical footprint in dense

built environments, technology maturity, low maintenance cost

and production cost reduction in recent years [4].

Main grid energy is always on demand whereas renewable

energy faces the problem of spatial [6] and temporal variations

[4]. These variations have to be managed properly and mit-

igation strategies such as combining wind and solar energy

[4] have to be exploited to make efficient use of renewable

energies. To the best of our knowledge, there has not been any

reported study considering photovoltaic (PV) cell orientation

angle optimization to mitigate the temporal variation of solar

energy in a cellular network context. In addition, we could

not find a study about a cellular network with a mixture of

different orientated and/or inclined PV cells, which represents

a more realistic cellular network.

B. Motivation - Energy Generation Profiles of PV Cells

The energy generation profile of a PV cell depends on the

installed orientation θ and inclination γ angle. The inclination

angle of a PV cell is defined as the angle between the horizon-

tal plane and the PV cell panel. The orientation angle of a PV

cell is defined as the angle between the southern direction and

the projection of the line that points perpendicular out of the

PV panel in the horizontal plane (cf. Fig. 1). Orientating the

PV cell to the east (west) is indicated by a negative (positive)

algebraic sign added to the orientation angle. For example, a

SBS is depicted in Fig. 1 with θ = −45° and γ = 38°.



Fig. 1: Definition of the orientation angle θ and inclination angle γ of a PV

cell

PV cells can be classified into fixed, sun tracking and

adjustable PV cells (cf. Fig. 2). A fixed PV cell (cf. Fig. 2(a))

has fixed orientation and inclination angles which cannot be

changed anymore after the initial installation. A single-axis

tracking PV cell (cf. Fig. 2(b)) can mechanically track the

sun throughout the day via adjusting the orientation angle. The

single-axis tracking PV cell improves herein its daily energy

yield compared to a fixed PV cell. A two-axis tracking PV

cell (cf. Fig. 2(c)) can mechanically track the sun throughout

the day and the season (e.g., winter and summer) via adjusting

both the orientation and inclination angles. The two-axis track-

ing PV cell improves herein its yearly energy yield compared

to a single-axis tracking PV cell. An adjustable PV cell (cf.

Fig. 2(d)) requires an engineer to visit the site on a seasonable

basis to adjust the angles manually.

Despite the potentially higher energy yield of sun tracking

PV cells than fixed and adjustable PV cells, they are currently

not widely deployed. The reasons are mainly the additional

parts needed (e.g., axis motor), the higher maintenance (e.g.,

mechanical parts like the axis and the motor break more

often than static parts), and the energy needed to operate the

axis motor, which can be higher than the additional energy

generated due to the sun tracking for some locations [7].

As a result, we do not consider sun tracking PV cells for

deployment at a base station.

An engineer has to visit the adjustable PV cell on a seasonal

basis to adjust the angles. Frequent/infrequent adjustments of

the angles will result in higher/lower operational expenditure

in combination with a higher/lower energy yield of the PV

cell. In this paper, we will consider an adjustable PV cell

which only needs to be visited twice a year (in spring and

autumn equinox) to minimize the operational expenditure.

Nonetheless, our derived optimization process can equivalently

be used to optimize the angles more frequently or to optimize

the fixed angles of a fixed PV cell. Fixed PV cells can be seen

as a special case of an adjustable PV cell that does not require

additional visits of engineers after its initial installation.

(a) (b) (c) (d)

Fig. 2: Depiction of a fixed PV cell (a), single-axis tracking PV cell (b), two-

axis tracking PV cell (c) and adjustable PV cell (d)

There exist a default optimal PV cell orientation and incli-

nation angle for a given geographical location of a SBS, which

provides the highest average solar energy yield per day [8].

TABLE I gives an overview of the default optimal orientation

and inclination angles for a PV cell located at the equator,

in the northern hemisphere and in the southern hemisphere.

However, the default energy generation profile may differ from

the energy consumption demand profile.

TABLE I: Default optimal orientation and inclination angle for different

locations [8]

Location Default optimal ori-
entation angle θ

Default optimal incli-
nation angle γ

Northern hemisphere 0° similar to the loca-
tion’s latitude

Southern hemisphere 180° similar to the loca-
tion’s latitude

Equator any angle between
−180 and 180°

0°

PV cells with suboptimal orientation and/or inclination

angles generate less solar energy in total. Adjusting the ori-

entation angle has been shown to shift the daily solar energy

generation profile in the time domain (cf. Fig. 3). Changing

the inclination angle, on the other hand, shifts the solar energy

generation profile on a yearly time scale. Locations directly at

the equator have a default optimal inclination angle of 0°.

Therefore, all orientation angles have the same daily solar

energy generation profile at the equator.

C. Motivation - Energy Consumption Profiles of SBSs

The energy consumption profile at a SBS is linked to

the traffic load profile of the deployment area. For exam-

ple, residential and business areas have anti-correlated traf-

fic load profiles, because during the time of the day when

people are usually at work/at home, the traffic load in the

business/residential area rises while the traffic load in the

residential/business area declines [9].



Fig. 3: Daily global irradiance profiles of differently orientated PV cells in

London in December (no marker, solid line data series, left y-axis) and in June

(vertical bar marker, solid line data series, left y-axis). PV cell orientation

to the southeast, south and southwest are colored black, gray and white,

respectively. The default optimal orientation (inclination) angle is 0° (38°)

for London. Daily user density λ%(t) profile in a business area (dashed line

data series, right y-axis). The user density is given as a percentile of the

maximum user density per hour.

Data source: [9], [10]

D. Contributions

In this paper, we optimize the PV cell orientation angle

to achieve a good match between the energy generation and

consumption profiles at a PV-cell-powered-SBS on a daily

time scale.

The contributions of the paper can be summarized as

follows:

• We present an analytical framework incorporating the

effects of different inclination and orientation angles at

a PV-cell-powered-SBS.

• We develop an integer linear programming problem to

optimize the orientation angle for any given PV cell and

SBS deployment setup.

• We derive a mathematical expression for the correlation

factor between the energy generation and consumption

profiles to evaluate the general interaction between both

profiles independent of the exact PV cell and SBS de-

ployment setup.

• We evaluate the effects of different PV cell orientation

angles on the solar energy utilization of the SBS in

different seasons based on a case study in London.

The rest of the paper is organized as follows. Sections II-A

to II-C present a general energy generation, storage and

consumption model of a PV-cell-powered-SBS, which includes

the effects of PV cell orientation and inclination. Section II-D

derives the mathematical expression for the correlation factor

between the energy generation and consumption profiles. Sec-

tion III outlines the integer linear programming problem to

optimize the energy performance of the SBS throughout the
day. Section IV presents and discusses the numerical results of

the integer linear programming problem based on a case study

in a London business area. Section V evaluates the general

interaction between the energy generation and consumption

profiles on the basis of the correlation factor. Finally, the paper

is concluded in Section VI.

Notations: All matrices are denoted by bold capital letters,

all vectors are denoted by bold lowercase letters, and an

asterisk is added to the letter if it is an optimized matrix,

vector or value.

II. SYSTEM MODEL

A. SBS Model

The SBS has a coverage area radius of r and is completely

powered by a PV cell with no main grid energy supply. The

SBS becomes inactive if no user equipment (UE) is in its

coverage area or when the SBS runs out of energy. If the SBS

cannot serve its UEs, we assume that the UEs are offloaded to

a different tier in the heterogeneous cellular network, e.g., a

main grid connected macro base station. It is not in the scope

of this paper to analyze the performance of this macro base

station tier. The setups of the SBS and PV panel will be fixed

except that we alter the orientation angle to achieve a daily

shift in the energy generation profile.

B. Solar Energy Generation Model

There are four astronomical events (equinox in March and

September, solstice in June and December), which signifi-

cantly affect the solar energy arrival in most geographical

areas. Therefore, the solar energy harvesting model has to

take these annual differences into account and be evaluated

throughout the year to represent the different seasons accord-

ingly.

A day is divided into T time steps. Denote t as the index

of a time step, t ∈ {1, ..., T}. The energy harvesting profile

of the SBS correlates with the solar irradiance. The generated

solar energy g
(t)
θ at the SBS in the tth time step is given by

g
(t)
θ = G

(t)
θ · η ·A · t (1)

where G
(t)
θ [W/m2] is the global irradiance value on the PV

cell deployed with orientation angle θ in the tth time step

[10], η is the PV cell energy conversion efficiency coefficient,

A[m2] is the surface area of the PV cell, and t[s] is the length

of one time step.

The global irradiance value G
(t)
θ is derived from the data

base [10], which provides data for any combination of orienta-

tion angle, inclination angle, month and location in Europe and

Asia, with a 15-minute time resolution. The harvested solar

energy in each time step can either be immediately consumed

by the SBS or stored in a battery of capacity bmax.



C. Solar Energy Consumption Model and Traffic Load Model

The energy consumption of a SBS can be divided in a

load-independent part and a load-dependent part. The load-

independent energy consumption is constant throughout all

time steps and is donated as cfix. It includes the energy con-

sumption of the baseline operations, such as transmitting signal

beacons and circuit cooling operations. The load-dependent

energy consumption per time step increases with the number

of UEs connected to the SBS due to the increased traffic load.

Accordingly, the total energy consumption c(t) of the SBS in

the tth time step is given by

c(t) = cfix + cuser · l
(t) (2)

where cfix and cuser ·l
(t) denote the load-independent and load-

dependent energy consumption, respectively, whereas cuser is

the average energy consumed by the SBS for serving one UE

during a time step, and l(t) is the total number of UEs located

in the coverage area of the SBS in the tth time step.

The total number of UEs located in the coverage area of the

SBS in the tth time step is calculated based on the downlink

traffic distribution over time in a business district (cf. Fig. 3)

as follows

l(t) = ⌊λ%(⌊t⌋h) · umax⌉ ∀t ∈ {1, ..., T} (3)

where the time step t is rounded down to the nearest full hour,

λ%(⌊t⌋h) is the user density at ⌊t⌋h according to Fig. 3, and

umax is the maximum number of UEs in the coverage area of

the SBS. l(t) is rounded to the nearest integer value indicated

by the rounding-brackets “⌊⌉”.

D. Correlation Factor

To facilitate the analysis of the energy generation and

consumption matching, we give a mathematical expression for

the correlation factor (g ⋆ c)[θ] between an energy generation

profile g with orientation angle θ and a consumption profile

c. In general, a correlation factor is defined in the range of

[0, 1], whereas a value close to 0 (1) represents a strong

anti-correlation (correlation) between the two profiles. We

normalize both profiles on the basis of the consumption profile

and denote the normalized energy generation/consumption at

time step t as Ng
(t)
θ / Nc(t). As a result, the area under the

normalized consumption profile in Figs. 5(a)-5(c) is 1.

Ng
(t)
θ =

g
(t)
θ

∑T

t=1 c
(t)

(4)

Nc(t) =
c(t)

∑T

t=1 c
(t)

(5)

We use the following definition of the correlation factor

which is bounded by 1 due to the normalization. The justifi-

cation for using this definition is given in Appendix A.

0 ≤ (g⋆c)[θ]
def
=

T∑

t=1

min{Ng
(t)
θ ,N c(t)} ≤

T∑

t=1

Nc(t) = 1 (6)

The correlation factor (g ⋆ c)[θ] can be graphically de-

picted as joint area under the two profiles (cf. black area

in Figs. 5(a)-5(c)). Therefore, (g ⋆ c)[θ] is a measure for

the ability of the energy generation profile g to provide

temporally enough energy for the consumption profile c. Using

an oversized PV cell (large PV cell surface area) will result in

a high (g⋆c)[θ] value. But if the PV cell settings are fixed and

only the orientation angle alters, a higher (g ⋆ c)[θ] value rep-

resents a better correlation between the energy generation and

consumption profiles. The orientation angle which achieves

the highest correlation factor for a specific PV cell setting is

denoted as θ∗(g⋆c) and refereed to as optimized orientation on

the basis of the correlation factor.

θ∗(g⋆c) = arg max
θ∈{−90°,−85°,...,85°,90°}

(g ⋆ c)[θ] (7)

The gap ∆ between the optimized correlation factor

(g ⋆ c)[θ∗(g⋆c)] and the default correlation factor with PV cell

orientation to the south (g ⋆ c)[0] is defined as follows

∆ = (g ⋆ c)[θ∗(g⋆c)]− (g ⋆ c)[0]. (8)

III. PV CELL ORIENTATION ANGLE OPTIMIZATION WITH

AN INTEGER LINEAR PROGRAM

The aim of the optimization is to maximize the total load

that can be supported by the SBS during T time steps. It is

achieved by optimizing the on = 1/off = 0 statuses of the

SBS, which are described as Boolean variables o
(t)
θ ∈ {0, 1}

for t ∈ {1, ..., T}. The SBS serves every UE in its coverage

area with one load block per time step when it is on. That

means the SBS needs cuser Joules of energy to serve one

load block. The SBS does not serve any UE when it is off.

Therefore, the total load blocks served per day Rθ can be

calculated as

Rθ =

T∑

t=1

o
(t)
θ l(t). (9)

The SBS is equipped with a battery of capacity bmax. The

battery levels in two successive time steps are linked through

b
(t)
θ = b

(t−1)
θ + g

(t−1)
θ − w

(t−1)
θ − c(t−1) · o

(t−1)
θ

∀t ∈ {2, ..., T}
(10)

where b
(t)
θ and b

(t−1)
θ (∈ [0, bmax]) donate the battery levels

of the SBS in the tth and (t − 1)th time step, respectively,

g
(t−1)
θ is the amount of generated solar energy by the SBS in

the (t − 1)th time step, c(t−1) and w
(t−1)
θ denote the energy



consumption and the wasted energy due to battery overflow at

the SBS in the (t− 1)th time step, respectively.

Let the vector oθ = {o
(1)
θ , o

(2)
θ , . . . , o

(T )
θ } denote the on/off

statuses of the SBS over T time steps. The optimization

problem is formulated as follows

o∗

θ
= argmax

oθ

Rθ. (11)

subject to

0
⊺ ≤ b

(0)
θ

⊺

+ M1 · (gθ
⊺ −wθ

⊺)− Mc · oθ
⊺ ≤ bmax

⊺ (12)

g
(t)
θ , w

(t)
θ ≥ 0 ∀t ∈ {1, ..., T}

(13)

l(t) ∈ N0 ∀t ∈ {1, ..., T}
(14)

o
(t)
θ ∈ {0, 1} ∀t ∈ {1, ..., T}

(15)

0 ≤ b
(0)
θ ≤ bmax (16)

where the vectors are of size T and are defined as

gθ = {g
(1)
θ , g

(2)
θ , . . . , g

(T )
θ }, 0 = {0, . . . , 0

︸ ︷︷ ︸

T

},

oθ = {o
(1)
θ , o

(2)
θ , . . . , o

(T )
θ }, bmax = {bmax, . . . , bmax

︸ ︷︷ ︸

T

},

wθ = {w
(1)
θ , w

(2)
θ , . . . , w

(T )
θ }, and b

(0)
θ

= {b
(0)
θ , . . . , b

(0)
θ

︸ ︷︷ ︸

T

}

and the two matrices M1 and Mc are of size TxT , with the

element in the ith row and the jth column given by

M1(i, j) =

{
1 if i ≥ j
0 otherwise

(17)

Mc(i, j) =

{
c(j) if i ≥ j
0 otherwise

(18)

Equation (12) keeps the battery level within the range of

[0, bmax] in every time step. The tth(t ∈ {1, ..., T}) row in M1

and Mc describes time step t. The tth row of Equation (12) is

obtained by recursively substituting (10) into 0 ≤ b
(t)
θ ≤ bmax

for t times. The values of g
(t)
θ and l(t) are input parameters

to the optimization problem. As described in Subsections II-B

and II-C, the values of g
(t)
θ can be derived from the database

[10], and the values of l(t) are based on Fig. 3. Network

operators can more reliably determine the values of g
(t)
θ by

contacting the local meteorological forecast service and the

values of l(t) by using their historical records of the local

traffic load distribution.

IV. NUMERICAL SOLUTION TO THE INTEGER LINEAR

OPTIMIZATION

To evaluate the effects of different PV cell

orientations on the performance of the SBS,

we investigate three different orientation angles

θ ∈ {−45° (southeast), 0° (south), 45° (southwest)} with the

integer linear programming problem. The default optimal

inclination angle for London is fixed to 38° [10]. The

optimization problem (11) is solved for the three orientation

angles separately. TABLE II shows the input parameters of the

optimization problem (11) assuming that the SBS deployment

is in London in December and June. The justification for

used battery capacity is given in Appendix B.

TABLE II: Input parameters to the optimization problem (11)

Parameter Value

θ ∈ {−45°, 0°, 45°}
γ 38° [10]

Month June and December

Latitude (London) 51°30′26′′ North

Longitude (London) 0°7′39′′ West

T 96

t 15min = 900s
cfix 34965J

cuser 80J

bmax 86400J

b
(0)
θ

0J

umax 471 UE
r2π

A 1m2

η 0.15

g
(t)
θ

cf. (1)

l(t) cf. (3)

The optimization problem (11) is an integer linear program-

ming problem and can be solved using the simplex algorithm

and the branch & bound method, which are available as an

integer linear optimization solver in mathematical software

packages such as MATLAB.

TABLE III: Percentage of load blocks served by the SBS during one day

Percentage of load blocks served by the SBS

December (southeast) 17.40%

December (south) 20.60%

December (southwest) 17.60%

June (southeast) 65.76%

June (south) 74.84%

June (southwest) 80.34%

Fig. 4: On=light gray/off=dark gray status values of the simulated southeast,

south and southwest orientated SBS in December and June



A. Comparison of different orientations

The southwest/southeast orientated SBS is more likely to

be on later/earlier in the day than the south orientated SBS in

both months (cf. Fig. 4). This is caused by the solar energy

profile output, which is shifted towards the afternoon/morning

hours for the southwest/southeast orientated SBS compared to

the southern SBS.
1) Comparison of different orientations in winter: South-

east and southwest orientated PV cells can serve 17.40% and

17.60% of their load blocks, respectively, whereas the southern

PV cell can serve with 20.60% the most load blocks from all

three different orientations in winter (cf. TABLE III). This is

caused by the fact that the southeast and southwest orientated

PV cells generate less energy during this time of the year

compared to the default south orientated one (cf. Fig. 3),

therefore they can serve fewer load blocks. The performance

of the southeast and southwest SBS is nearly the same in

winter because they generate the same amount of energy

during the day (cf. Fig. 3) and all this energy is used to serve

load blocks. This is only the case because battery overflows

occur very rarely in winter due to the significantly lower

energy generation profile than the energy consumption profile

in winter.
2) Comparison of different orientations in summer: The

situation is different during the summer month June, where

the southwest orientated PV cell has the best performance

and can serve 80.34% of its load blocks (cf. TABLE III).

This is due to the shifted PV cell energy generation profile

of the southwestern PV cell towards the afternoon hours,

which is similar to the traffic load profile. This proves that

the southwestern orientation has a positive effect by adjusting

the energy generation profile of the SBS to the consumption

profile, so that less green energy is wasted due to less

battery overflow. The second best performance in summer is

achieved by the southern PV cell with 74.84%, followed by the

southeastern PV cell with 65.76% (cf. TABLE III). Despite the

southeast PV cell generates the same total amount of energy

throughout the day than the southwest PV cell (cf. Fig. 3), it

wastes more energy than the southwest PV cell due to battery

overflow in the morning hours when the energy consumption

is low but the energy generation profile of the southeast PV

cell is already high.

B. Comparison of different seasons

In general, all PV cells serve more load blocks during

summer than winter due to their higher solar irradiance yield

in this month (cf. TABLE III). The misalignment of the

southwestern and southeastern PV cell in summer has not such

a negative effect on the total energy generation of these PV

cells throughout the day than in winter (cf. Fig. 3) because

the sun is higher up on the horizon in summer.

C. Additional comments

It can be observed that for example the SBS (Jun/southwest)

is suddenly on at time step 85 (cf. white arrow in Fig. 4), but

there is not a lot of energy arriving at that time. This is due to
the fact that the SBS has accumulated energy for many time

steps so that there is sufficient energy available to serve load

blocks for one time step.

V. CORRELATION FACTOR COMPARISON

We evaluate the correlation factor of the energy generation

and consumption profiles defined in Section II-D. Data from

London in summer (June) is used for the analysis, but the

model considered is generic. The following three cases are

investigated separately.

• Case 1: Energy generation significantly lesser than energy

consumption (G << C) as depicted in Fig. 5(a).

• Case 2: Energy generation similar to energy consumption

(G = C) as depicted in Fig. 5(b).

• Case 3: Energy generation significantly greater than en-

ergy consumption (G >> C) as depicted in Fig. 5(c).

(a) Case 1: A = 0.5m2 (G << C)

(b) Case 2: A = 1.2m2 (G = C)



(c) Case 3: A = 2m2 (G >> C)

Fig. 5: Normalized energy generation and consumption profiles for London in

summer (Case 1-3). The correlation factor is depicted as black area. The PV

cell surface areas A = 0.5m2, A = 1.2m2 and A = 2m2 are used for Case

1, 2 and 3, respectively. All other input parameters are given in TABLE II.

Fig. 6: Correlation factor (g ⋆ c)[θ] for different orientation angles θ

for all three Cases 1-3. The data points associated with the optimal cor-

relation factor (g ⋆ c)[θ∗
(g⋆c)

] and optimal orientation angle θ∗
(g⋆c)

are

marked with a circle for each data series. Input parameters: London (June),

A = 0.5m2, 1.2m2 or 2m2 and remaining parameters from TABLE II.

Fig. 6 shows the correlation factor for different orientation

angles for all three Cases 1-3. The circled marked data points

are the optimal correlation factors for each data series. The

orientation angles associated with these circle marked data

points are the optimal orientation angles θ∗(g⋆c) for each PV

cell surface area setting A = 0.5m2, 1.2m2 or 2m2.

Each data series is carried out with the same PV cell setting

(same PV cell surface area). Therefore, the change in the

correlation factor within one data series is only caused by

a change in the correlation between the energy generation and

consumption profile for the different orientation angles.
The shape of the data series curves are different for each

case. The energy generation profile is under the energy con-

sumption profile in Case 1. Therefore, the greatest correlation

factor is achieved in this data series by the energy generation

profile with the greatest area under its profile which is close

to the south orientated energy generation profile in London.

Because the energy generation and consumption profiles

have similar amplitudes in Case 2, the highest correlation

factor is achieved by an orientation angle which shifts the

energy generation peak towards the energy consumption peak

in this data series. The optimal orientation angle is 60° for

A = 1.2m2.

The energy generation is significantly larger than the energy

consumption in Case 3. As a result, shifting the energy

generation completely to the afternoon (θ∗(g⋆c) = 90°) achieves

the highest correlation factor because the energy consumption

at the transition between both profiles is higher in the afternoon

hours (cf. right gray circle in Fig. 5(c)) than in the morning

hours (cf. left gray circle in Fig. 5(c)).

An increase in the PV cell surface area A results in an

increase of the correlation factor as it can be seen in Fig. 6

where the Case 3 data series is above Case 2 data series and

Case 2 data series is above Case 1 data series. Nonetheless, the

increase slows down because the correlation factor is bounded

by 1. That means even if A goes to infinity the correlation

factor will be bounded by 1. That is the reason why the in-

crease between the Case 1/2 data series is greater than between

the Case 2/3 data series. It can be explained by the fact that

(g ⋆ c)[θ] sums up the expression “min{Ng
(t)
θ ,N c(t)}” over

all time steps. The expression “min{Ng
(t)
θ ,N c(t)}” increases

for all time steps between the Case 1/2 data series whereas it

increases only at the transition time steps (cf. gray circles in

Fig. 5(c)) between the Case 2/3 data series.

Fig. 6 explains the results which we observed at the nu-

merical results evaluation in Section IV. The conditions in

London during winter are similar to Case 1 with G << C.

The analytical evaluation in this Section confirms that θ∗(g⋆c)
is around the south orientation for Case 1 (cf. circled marked

data point around the square marker in Fig. 6). The numerical

results evaluation in Section IV proves the same by favoring

the south orientation over the southeast and southwest orienta-

tion. The conditions in London during summer are similar to

Case 2 with G = C. The analytical evaluation in this Section

confirms that θ∗(g⋆c) is shifted towards the west orientation

for Case 2 (cf. circled marked data point around the diamond

marker in Fig. 6). The numerical results evaluation in Section

IV proves the same by favoring the southwest orientation over

the southeast and south orientation.



Fig. 7: The left y-axis shows the correlation factor for the default south

orientation and the correlation factor for the optimized orientation for different

PV cell surface sizes. The right y-axis shows the optimized orientation angle

for different PV cell surface sizes. The circled marked data point around the

square, diamond and triangle marker in Fig. 6 correspond to the two circled

marked data points in the Case 1, 2 and 3 sector in Fig. 7, respectively.

The correlation factor gap ∆ and the Case 1, 2 and 3 sectors are depicted

graphically. Input parameters: London (June) and remaining parameters from

TABLE II.

Fig. 7 shows the correlation factor for the default south

orientation (g ⋆ c)[0] and the correlation factor for the opti-

mized orientation (g ⋆ c)[θ∗(g⋆c)] for different PV cell surface

sizes A on the left y-axis. In addition, it depicts the optimized

orientation angle θ∗(g⋆c) on the right y-axis for different PV

cell surface sizes A.

It can be seen that the optimized orientation angle is close

to the south orientation (θ∗(g⋆c) = 0°) in the Case 1 sector

and therefore both correlation factor curves are above each

other (g ⋆ c)[0] = (g ⋆ c)[θ∗(g⋆c)]. In addition, the correlation

factor curves rise linear in the Case 1 sector. Doubling the PV

cell surface area, doubles the area under the energy generation

profile which doubles the correlation factor in the Case 1 sector

because the energy generation profile is completely under the

energy consumption profile in the Case 1 sector.

The Case 2 sector is the transition phase. The optimized

orientation angle θ∗(g⋆c) moves from the south orientation to

the west orientation with rising PV cell surface size. As a

result, the gap ∆ between (g⋆c)[θ∗(g⋆c)] and (g⋆c)[0] increases

accordingly.

The optimized orientation angle θ∗(g⋆c) has settled down to

the west orientation in the Case 3 sector. The gap between (g⋆
c)[0] and (g ⋆ c)[θ∗(g⋆c)] is not changing significantly anymore

with rising PV cell surface size. The rise of both correlation

factors slow down because they are bounded by 1.

The circled marked data points associated with the optimal

correlation factor (g ⋆ c)[θ∗(g⋆c)] and optimal orientation angle

θ∗(g⋆c) for the three PV cell surface area settings from Fig. 6

can be found in Fig. 7 as well. The circled marked data point

around the square, diamond and triangle marker in Fig. 6

correspond to the two circled marked data points in the Case

1, 2 and 3 sector in Fig. 7, respectively.

The three Cases 1-3 are summarized in TABLE IV. Boxes

which are associated with low cost or high gain are highlighted

in dark gray. The dark gray boxes are the desired boxes.

TABLE IV helps to identify the best deployment strategy

(Case 1, 2 or 3) if the exact PV cell module cost, orientation

optimization cost and main grid energy cost are known.

TABLE IV: Cost and gain comparison for the different Cases

Cost Gain

PV cell
size cost

PV cell angle
optimization

cost

Correlation factor gap ∆
(Energy saving due to
optimized correlation)

Case 1
G << C

low low
(θ∗

(g⋆c)
= 0°)

low

Case 2
G = C

medium high
(θ∗

(g⋆c)
has to

be calculated)

medium

Case 3
G >> C

high low
(θ∗

(g⋆c)
= 90°)

high

VI. CONCLUSIONS

We have investigated the effects of different orientated PV

cells on the solar energy utilization of a SBS. Our numerical

results show that southwest orientated PV cells (θ = 45°)

can serve more load blocks throughout the day than south or

southeast (θ = −45°) orientated ones in London in summer

(business area). The southwest orientation of the PV cell shifts

the energy generation peak towards the energy consumption

peak of the SBS and therefore serves more load blocks.

This result contradicts the conventional assumption that the

southern orientation is the optimal orientation in the northern

hemisphere. It is therefore important to take into account the

exact energy generation profile and consumption profile of

the SBS’s deployment site to determine the optimal PV cell

orientation. Our analytical evaluation of the correlation factor

between the energy generation profile of the PV cell and the

energy consumption profile of the SBS concluded the same

results.

APPENDIX A

JUSTIFICATION FOR THE USED DEFINITION OF THE

CORRELATION FACTOR

Normally the cross-correlation is used as correlation factor

(cf. Eq. (19)).

θ∗(g⋆c)
def
=

T∑

t=1

g[t+ θ]c[t] (19)

Eq. (19) would shift the energy generation profile g only θ
steps in the time domain and not represent the decline of the

amplitude in the energy generation profile when shifting the

profile θ steps away from the default south orientation (θ =
0°). We could include the amplitude change in the definition

(cf. Eq. (20)).



θ∗(g⋆c)
def
=

T∑

t=1

g
(t)
θ c(t) (20)

Eq. (20) can not be bounded by 1 even after normalization.

If the PV cell surface size goes to infinity, the energy

generation profile amplitude goes to infinity and as a result

the correlation factor goes to infinity. As a result, we decided

to define the correlation factor as given in Eq. (6), because it

represents the amplitude change correctly and can be bounded

by 1 after normalization.

APPENDIX B

JUSTIFICATION FOR THE USED BATTERY CAPACITY

The derived results in this paper depend on the used battery

capacity due to the fact that a greater battery capacity can

store more energy over a longer period of time. Increasing the

battery capacity improves the energy utilization of the SBS

in a similar way to orientation angle optimization in terms

of shifting the energy from a surplus time period to a deficit

time period. The reader is referred to our paper [11], which

investigates this dependency in more detail. In general, PV cell

orientation angle optimization is more important for PV-cell-

powered-SBSs with small battery capacities in relationship to

their energy profiles.

From a practical point of view, we can achieve a good

match of the profiles by either installing a small battery with

orientation angle optimization or installing a large battery

without orientation angle optimization. Nonetheless, batteries

are expensive (25-250e, 220e and 1500e per kWh for the

battery types Lead-Acid, NaS and Li-Ion, respectively [12])

and have a short lifetime (3 - 9 years [13]) compared to

the warranty lifetimes of PV cells (PV cell manufacturers

guarantee a 80% system performance warranty for around

20 years [14]). Therefore, battery replacements significantly

contribute to the system lifetime cost [13]. Small batteries

with orientation angle optimization are practically the more

cost-effective option. This is why we have chosen low-capacity

batteries in this paper and make use of orientation angle opti-

mization for matching the energy generation and consumption

profiles.
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