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An existing modelling framework is leveraged to create a driver braking model for use in simulations of 
critical longitudinal scenarios with a slower or braking lead vehicle. The model applies intermittent brake 
adjustments to minimize accumulated looming prediction error. It is here applied to the simulation of a set 
of lead vehicle scenarios. The simulation results in terms of brake initiation timing and brake jerk are 
demonstrated to capture well the specific types of kinematics-dependencies that have been recently reported 
from naturalistic near-crashes and crashes.  
 

INTRODUCTION 
 
 With an increasing number of advanced driver assistance 
systems becoming standard in new vehicles, understanding 
driver response in relation to warnings and upcoming threats is 
essential to road safety benefit estimation (see e.g. Page et al., 
2015). Traditionally, most mathematical models used to 
simulate driver braking behaviour in critical longitudinal 
scenarios have been based on probability distributions, 
determining a reaction time and a predefined brake profile 
(e.g. Green, 2000, and the review by Markkula, Benderius, 
Wolff & Wahde, 2012). In such models, the driver’s reaction 
is typically initiated by what is assumed to be a sudden threat 
appearance, for example a brake light onset of the vehicle in 
front. However, recent analyses of real crashes and near-
crashes in the second Strategic Highway Research Program 
(SHRP 2) dataset have shown a strong dependency on 
kinematics for both brake initiation and brake ramp-up, 
inconsistent with the existing situation-independent models 
(Markkula, Engström, Lodin, Bärgman & Victor, 2016). 
 A parallel modelling tradition, focusing more on non-
critical braking, and building on ideas from ecological 
psychology, argues that driver braking is driven by perceptual 
cues such as visual looming (e.g. Lee 1976; Fajen, 2008). 
Such looming can be quantified for example using the 
measure  
  ߬ିଵ ൌ  ఏሶఏ , (1) 

where ߠ is the optical size (width) of the lead vehicle on the 
driver’s retina. Markkula et al. (2016) suggested that their 
findings from SHRP 2 naturalistic driving data could be 
explained if the driver’s brake initiation is not solely related to 
the crossing of a looming threshold, but to noisy evidence 
accumulation of looming and other perceptual input over time, 
a type of mechanism for which there is much support from 
laboratory tasks in psychology and neuroscience (Gold & 
Shadlen, 2007). Combining this model mechanism with other 
well proven neuroscientific concepts, especially motor 
primitives (Giszter, 2015) and prediction of sensory outcomes 
of motor actions (Crape & Sommer, 2008), Markkula and 
colleagues (Markkula, 2014; Markkula, Boer Romano & 
Merat, 2017) have developed a computational framework for 
driver control behaviour. This paper describes, for the first 

time, an application of this framework to braking behaviour, 
more specifically braking in critical scenarios. 
 The framework aligns well with the more general 
predictive processing theory, which has recently received 
much attention as a potential unifying account of brain 
function (Friston, 2010; Clark, 2016). The basic idea 
underlying predictive processing is that cognition and 
behaviour can be explained as prediction error minimization. 
Engström et al. (2017) provide a proposal on how predictive 
processing concepts can be applied to automobile driving, 
with the type of model presented in this paper as one example. 
 The proposed model is described in detail in the first 
section of the paper. The subsequent two sections illustrate 
that simulations utilizing the model successfully reproduce the 
dependencies on kinematics observed in naturalistic data. The 
paper concludes with an exploration of possibilities for 
extending the model to a wider variety of scenarios. 
 

THE MODEL 
 
 The computational framework adopted here (Markkula, 
2014; Markkula et al. 2017) posits that: 
 Driving control can be regarded as a series of intermittent, 

open loop control adjustments (motor primitives). 
 The timing of new adjustments is determined by a process 

of evidence accumulation. 
 The magnitude of adjustments is tuned to perceptual 

inputs. 
 After each control adjustment, the driver makes a 

prediction of how this adjustment will affect future 
sensory inputs. 

 In the model proposed in the current paper, the driver 
collects evidence for the first brake onset by accumulating 
looming. Once the accumulated evidence exceeds a predefined 
threshold, the driver is assumed to press the brake pedal. The 
amplitude of braking will aim to resolve the situation at hand, 
that is, the driver will only use the brake force that is judged 
necessary to avoid collision and maintain a safe distance to the 
vehicle in front, given the currently available information and 
a prediction of the effect of the braking based on previous 
experience of similar conflict situations. That is, while issuing 
a brake adjustment, the driver makes a prediction of how the 
looming will gradually decay as a result of the braking. 



 

 

Subsequently, the (new) predicted looming is compared to the 
actual looming and the model continues to operate on the 
prediction error (rather than the looming signal in itself) until 
either the situation is resolved, maximum braking is achieved 
or a collision occurs. Figure 1 provides an illustration of the 
model. P(t) is the perceptual input, that is, looming, and Pp1(t) 
is a looming prediction based on prior braking adjustments. 
The Pp2(t) prediction is a new addition here (compared to the 
framework by Markkula, 2014; Markkula et al. 2017) based 
on the predictive processing theory, and represents higher-
level expectations of looming based on existing knowledge on 
how driving situations typically play out, as explained in 
further detail below. (t) is the total looming prediction error 
and C(t) is the brake signal constructed from control 
adjustments issued as a result of prediction error 
accumulation. 
 

 
Figure 1 Illustration of the fundamentals of the driver modelling framework, 
incorporating both brake modulation and higher level prediction to the 
framework presented by Markkula (2014). 
 
Kinematics dependent brake initiation 
 
 Mathematically, the accumulative part of the model, 
illustrated in the lower part of  
Figure 1, can be expressed as 

 
࢚ࢊሻ࢚ሺࢊ ൌ ή ࡷ ሻ࢚ሺࢿ  െ  ࡹ   ሻǡ  (2)࢚ሺ࢜

where A(t) is the total accumulated prediction error, 
henceforth called the activity. When the activity reaches a 
certain threshold At, a brake adjustment is issued and the 
activity is reset to Ar. At and Ar, as well as K and M are free 
model parameters and v(t) is Gaussian zero-mean white noise 
with a standard deviation ߪξȟݐ for a model simulation time 
step of ȟݐ. The parameter K corresponds to the gain 
determining the impact of the prediction error on the 
accumulator, i.e. a higher K will lead to more rapid changes in 
activity level. Note that the prediction error (t) may work 
both as evidence for ((t) > 0) and against ((t) < 0) braking, 
depending on its sign. The gating, M, can be interpreted as the 
sum of all non-looming evidence for and against the need of 
braking (again, see the lower part of Figure 1). For an example 
of activity and brake pedal signals in a rear-end scenario with 
a braking lead vehicle, see Figure 2. 
 

 
Figure 2 Longitudinal acceleration, predicted (Pp1) and actual ሺି࣎ሻ looming, 
activity (A) and brake pedal position (C) from a straight rear-end scenario 
where the lead vehicle is braking with moderate deceleration at t = 5 s. 
 
Kinematics dependent brake modulation 
 
 The magnitude of the ith individual adjustment, issued at 
time ti, is a linear scaling of the prediction error at brake onset 
and can be calculated by the heuristic 

 ݃ ൌ ݇ ή  ሻ, (3)ݐሺߝ 

 
where k is a free model parameter. The shape of each brake 
adjustmen7ut is determined by a function G(t), which needs to 
fulfil the requirements 

ሻݐሺܩ   ൌ  ቊ Ͳ, for ݐ  Ͳ    ͳ, for  ݐ  ȟܶǡ (4) 

where ǻT is a free model parameter representing the 
adjustment duration. The individual control adjustment G(t) 
will only affect the braking after time ti and when complete, 
the adjustment will reach the magnitude gi and stay at that 
level. For the sake of simulation simplicity, in this paper G(t) 
is chosen to be linearly increasing from G(0) = 0 to G(ȟܶ) = 1. 
Eventually, the total brake pedal signal ܥሺݐሻ is generated as 
the sum of all brake adjustments, 

ሻݐሺܥ  ൌ σ ݃ܩሺݐ െ ሻǡேୀଵݐ  (5) 
where N is the number of brake adjustments with ti < t. 
  
Low level perception prediction 
 
 At each brake adjustment, a prediction of the resulting 
looming will be added to the signal Pp1(t). Each prediction will 
be scaled with the magnitude of the prediction error at time ti, 
that is at start of the brake adjustment, and take the shape of a 
function H(t) fulfilling the requirements 

ሻݐሺܪ   ൌ  ൞ൌ Ͳǡ for ݐ  Ͳ and ݐ  ߂ ܶ՜ ͳǡ for ݐ ՜ Ͳା՜ Ͳǡ for ݐ ՜         ǡܶ߂  (6) 

where ǻTp is a free model parameter. Pp1(t) can be generated 
as  

  ܲଵሺݐሻ ൌ σ ݐሺܪሻݐሺߝ െ ሻǡேୀଵݐ  (7) 

where N is the number of brake adjustments with ti < t. For 
simulation simplicity, a piecewise linear function H(t) was 
used in this paper, constant at 1 for a duration ȟ ܶ (i.e. ܪ൫ݐ  ȟ ܶ൯ ൌ ͳ) before falling linearly to zero during a 
second duration ȟ ܶଵ such that ȟ ܶ  ȟ ܶଵ ൌ ȟ ܶ.  



 

 

 The H(t) definition (eqs. 6 and 7) assures that the overall 
looming prediction Pp1(t) + Pp2(t) just after each new brake 
adjustment immediately becomes equal to the actual observed 
looming P(t) (see the example in Figure 2). Moreover, the 
shape of H(t) reflects the assumption that control adjustments 
aim to resolve the conflict that triggered them, that is after 
each brake adjustment the driver predicts that the looming will 
decay to the high-level prediction Pp2(t). 
 
High level perception prediction 
 
 While the lower level prediction Pp1(t) predicts how the 
looming is affected by each new brake adjustment, there is 
also a higher level prediction Pp2(t), which can be viewed as 
the expected looming or as a looming target, a level of 
looming that the driver aims to achieve when braking. This 
can be illustrated with the following example:  
 When approaching a signalled intersection with a vehicle 
in front standing still at a traffic light, the driver in the host 
vehicle may expect and accept a certain amount of looming, if 
also predicting (or already observing) that the light will soon 
shift to green and the lead vehicle accelerate away. In this 
case, Pp2(t) will initially increase over time, permitting the 
amount of looming to become relatively large without 
increasing the activity level in the model (i.e. (t)  = P(t) – 
Pp2(t) = 0). However, if the prediction of lead vehicle 
acceleration, and the associated quickly reduced looming, is 
not met, the driver will suddenly be exposed to a high amount 
of unexpected looming, triggering an immediate and large, but 
at this point not necessarily sufficient, brake adjustment. This 
suggests a mechanism for how expectations may lead to late 
reactions in critical scenarios (see Engström et al., 2017, for a 
more extensive discussion of this point). 
 Hence, including the higher level prediction in the model 
makes it possible to use for a wider range of scenarios where 
the driver expectation may play an essential role. However, 
the mathematical details in how to set up the Pp2(t) for 
different scenarios is outside the scope of this paper and 
warrants further investigation. 

 
MODEL APPLICATION 

 
 To illustrate that the driver model is able to qualitatively 
reproduce driver behaviour observed in naturalistic data, it 
was applied to a set of (artificially created) straight lead 
vehicle scenarios assuming a certain off-road glance 
behaviour. 
 
Model tuning and scenario description 
 
 The driver model parameters were hand tuned to 
demonstrate that the model is able to capture the kinematics-
dependence seen in naturalistic data. The parameters are 
presented in Table 1. However, before future use of the model 
for real safety benefit analysis, it is crucial to perform 
thorough parameterization and validation against empirical 
data, indeed the example simulation in Figure 2 suggests that 

the present manually parameterized model may be responding 
overly late. 
 
Table 1 The parameter values used in the simulations. 

 
 The driver model was applied to a set of lead vehicle 
scenarios set up by the European New Car Assessment 
Programme (Euro NCAP), forming the standard scenario set 
used for consumer rating tests of forward collision warning 
and advanced emergency brake systems (Euro NCAP, 2015). 
The set consists of 26 straight lead vehicle scenarios divided 
into three categories: 
 Car to Car Rear Stationary. 11 scenarios where the host 
vehicle drives with a moderate speed of 30-80 km/h towards a 
vehicle that is standing still. 
 Car to Car Rear Moving. 11 scenarios where the host 
vehicle drives with moderate speed of 30-80 km/h towards a 
slower vehicle, cruising at 20km/h. 
 Car to Car Rear Braking. 4 scenarios where both 
vehicles drive with an initial speed of 50km/h. The distance 
between the vehicles is 12 m or 40 m, until the lead vehicle 
starts braking with a deceleration of -2 or -6 m/s2.  
 
Driver glance behaviour 
 
 Applying the driver model to the Euro NCAP scenarios 
assuming a completely attentive driver results in a very low 
amount of collisions. This is expected since inattention is 
shown to be a cause for a large proportion of the rear-end 
collisions observed in real life (see e.g. Neale, Dingus, Klauer, 
Sudweeks & Goodman, 2005; Victor et al., 2015). To create a 
realistic driver glance behaviour in all scenarios, a glance 
distribution was added to each event. For this purpose, the 
baseline distribution extracted by Bärgman, Lisovskaja, 
Victor, Flannagan, and Dozza (2015) from SHRP 2 lead 
vehicle scenarios for normal driving was chosen, sampled into 
bins of 0.2 s. 
 Previous studies have shown that drivers are not likely to 
start looking away from the road unless the velocity relative to 
the lead vehicle is close to zero (Tijerina, Barickman and 
Mazzae, 2004). Based on the further assumption that this is 
judged by the driver in terms of looming, we here defined the 
anchor point for the glance distribution as ߬ିଵ ൌ ͲǤʹ ିݏଵ. 
Therefore, the simulations were set up in a manner so that the 
glances first started at the anchor point, and for each 
simulation run the glance starting point was incrementally 
moved 0.2 s backwards in time until the glance no longer 
overlapped the anchor point (i.e., assuming equal probability 
of glance initiation at these times). Since the aim is to simulate 
the last glance off-road, scenarios with glances ending before 
the anchor point are here treated as equivalent to scenarios 
where the driver looks ahead for the entire scenario (called 
"eyes-on-threat” scenarios by Markkula et al., 2016) and are 
out of scope for the current simulations. 

Parameter Value Parameter Value Parameter Value 
K 3 At 1 0.5 ܶ߂ 
M 0.3 Ar 0.7 ߂ ܶ 0.5 0.007 ߪ k 1.5 ߂ ܶଵ 4 



 

 

 
SIMULATION RESULTS AND COMPARISON TO 
NATURALISTIC DATA 
 
 The model in this paper differs from other state of the art 
driver models in its ability to capture the kinematic 
dependence of both brake onset timing and brake ramp-up in a 
way that reflects the behaviour of human drivers. In this 
section, this will be illustrated by reproducing two figures 
from Markkula et al. (2016), comparing results from the 
simulated Euro NCAP scenarios to the original figures, which 
are based on analysis of empirical data reported from the 
SHRP 2 naturalistic study. The data are divided into crash 
events, defined as the vehicles touching each other, and near-
crash events, defined as events where the driver model brakes 
with a maximum deceleration exceeding 0.5 g. The latter is 
similar to the SHRP 2 near-crash definition, although not an 
exact match since the SHRP 2 data were also manually 
annotated (see Victor et al., 2015). 
 
Deceleration onset timing 

 
 The top panes of Figure 3 show the results from the 
simulation for crashes and near crashes respectively, which are 
compared to the corresponding SHRP 2 data in the bottom 
panels. The plots represent the time it takes from the end of 
the last off-road glance (ELG) until the driver initiates braking 
as a function of the kinematic urgency of the situation, 
expressed as ߬ିଵ at ELG. Positioning the glance anchor at ߬ିଵ ൌ ͲǤʹ ିݏଵ implies that the simulation results will only 
reflect events described as eyes-off-threat by Markkula et al. 
(2016). 
 

    

 
Figure 3 Time between the end of last off-road glance and brake onset as a 
function of of ି࣎ at the end of the glance. Top: simulated data. Bottom: 
Naturalistic data; reprinted from (Markkula et al., 2016, Fig. 4), with 
permission from Elsevier. 
 
 For the crash events (left panels), the behaviour in the 
simulated eyes-off-threat events is remarkably similar to the 
behaviour reported from the SHRP 2 data set, despite the 
limited parameter tuning carried out. The main difference for 
the crashes is the tendency of a longer time to brake onset for 
low looming levels, close to the anchor point, in the simulated 

scenarios. In the naturalistic data there were very few crashes 
in this region. 
 For the near-crash cases (right panels), although again 
the qualitative pattern of reduced response times with 
increasing severity is captured, the difference between 
simulated and naturalistic data is more pronounced. The time 
between looking back to the road and brake initiation is longer 
in the simulated cases than in the naturalistic data, in particular 
for less urgent situations (with a low ߬ாீିଵ ). This could partly 
be a result of the assumption that no evidence accumulation at 
all occurs while glancing off-road. This might also explain the 
lack of real crashes with last glances at a low looming level 
close to the anchor point. In a real situation, the driver would 
most likely perceive a certain amount of accumulation in the 
peripheral view while glancing (Lamble, Laakso & Summala, 
1999). This peripheral accumulation may also make the driver 
look back earlier in urgent situations. However, it is also 
possible that simply a more thorough parameterization on 
empirical data could lead to lower simulated reaction times for 
the cases with ELG close to the anchor point. 
 
Deceleration ramp-up behaviour. 
 
 The model in this paper is not only able to adjust the 
brake onset timing to the kinematical urgency of the situation, 
but it also adapts the ramp-up of braking accordingly. The top 
panels in Figure 4 shows how the brake ramp-up for the 
simulated events is more severe when the looming is high at 
the time of brake initiation, while starting to brake at a low 
looming level permits a slower ramp-up of the brake force. 
These observations agree with the results obtained from SHRP 
2 data in Fig. 8 in Markkula et al. (2016), here reprinted in the 
bottom panels of Figure 4. However, while the general shape 
of the simulated data in the top panels of Figure 4 is similar to 
what is found in SHRP 2 data, there are also a few differences. 

 

 

 
Figure 4 Average brake jerk as a function of ି࣎ at brake onset. Top: 
Simulated data. Bottom: Naturalistic data; reprinted from (Markkula et al., 
2016, Fig. 8), with permission from Elsevier. (Note that the original 
publication mistakenly reported the y-axis unit as m/s3). 
 

One of the most evident differences is that the brake 
ramp-up of the simulated scenarios saturate at a minimum 
brake jerk of -4.07 g/s. This is a result of limitations in the 
brake capacity of the virtual vehicle model used in the 



 

 

simulations. In the naturalistic data a wider variety of vehicles 
with different brake capacities, as well as drivers with 
different characteristics, were included. 

The second difference is that there are no crashes with a 
brake onset at low looming levels. It is reasonable to believe 
that a crash occuring even though the driver starts braking at a 
low looming level either (i) has a very rapid course of events, 
making the looming increase rapidly, or (ii) results from the 
driver initially expecting the scenario to become less critical 
than it actually did (and thus not requiring hard braking). The 
first reason will not be reflected in the simulated data set, 
since the Euro NCAP scenarios do not develop in the rapid 
way described. The latter reason might be possible to capture 
with the current model if adding a higher level prediction 
signal, Pp2, accounting for the initially expected looming. A 
non-zero Pp2 would result both in a smaller initial brake 
adjustment and later subsequent brake adjustments. 

A final interesting difference between the simulated 
scenarios and the naturalistic data set in Figure 4 is the 
division of the near-crash brake jerk plot into two regions: one 
cluster of data points seemingly following a straight line and 
one wider cluster positioned slightly above. The two clusters 
correspond to the number of brake adjustments done by the 
driver model, with the lower cluster being for single 
adjustment responses. In reality, the number of brake 
adjustments used by drivers may differ as well, but the 
outcome in terms of brake jerk is likely to be noisier. If adding 
more parameter variations and, for example, motor system 
noise, the clusters may become indistinguishable in simulation 
results as well, making the near-crash plot in the upper part of 
Figure 4 more similar to the corresponding plot in the lower 
part of the figure. 
 

DISCUSSION AND FUTURE WORK 
 
 The model proposed in this paper demonstrates how 
intermittent minimization of accumulated looming prediction 
error results in qualitatively realistic, kinematics-dependent 
brake initiation and brake ramp-up in critical longitudinal 
scenarios. One important item for future work is a thorough 
parameterization of the model on naturalistic data. Another is 
to properly account for crashes without off-road-glances, for 
example by incorporating higher-level expectancy (Pp2).  
 The modelling framework also allows extension to 
additional perceptual cues as sensory input. For example, 
driver reaction to a warning or brake light could be accounted 
for by adding an instantaneous increase in the activity level. 
This increase in activity, to be parameterized on data from 
naturalistic or controlled studies, will result in a shorter time to 
reach the reaction threshold, that is, shorten the time to brake 
initiation.  
 The development of driver behavioural models to be 
used in simulation is essential for performing realistic road 
safety benefit analysis and estimating the real life impact of 
advanced driver assistance systems. Due to the generic 
framework of the current model, it should be possible to adapt 
it for other use cases, as for example run off road or 
intersection crashes. Since the higher level prediction part in 

the model is a tool to model driver expectancy, the framework 
also forms a solid base to build models describing the driver’s 
behaviour in relation to a failing automated driving system. 
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